Walking Technihadrons at the LHC

Shinya Matsuzaki
Institute for Advanced Research & Department of Physics, Nagoya U.

Collaborators:
M.Kurachi, K.Yamawaki (KMI, Nagoya U)
K.Terashi (Tokyo U) (involving works in progress)

References:
S.M. and K. Yamawaki, PRD85, 86, 86 ('12),
PRD87, PLB719, 1304.4882 ('13), 1403.0467, 1404.3048
and works in progress

@ PPP, YITP 07/31/2014
Contents

1. Introduction
 --- walking technicolor (WTC)
 and technidilaton (TD)

2. TD as the LHC Higgs boson
 --- coupling properties,
 consistency with current status

3. Walking technipions and technirho mesons
 --- current LHC limits and discovery channels

4. Summary
1. Introduction

Current status on 125 GeV Higgs discovered at LHC

* measured coupling properties consistent w/ the SM Higgs so far
* BUT, is it really the SM Higgs?
 --- origin of mass put in by hand?
 --- unnatural elementary Higgs?
It could be a composite scalar, “Technidilaton (TD)”

* TD = a composite scalar:

-- predicted in walking technicolor (WTC)
 giving dynamical origin of mass by technifermion condensate

-- arises as a pNGB for SSB of (approximate) scale symmetry
technifermion condensate

-- lightness protected by the scale symmetry
 and hence can be, say, \(\sim 125 \text{ GeV} \).

* 125 GeV TD signatures at LHC are consistent with current data

S.M. and K. Yamawaki, PRD85,86 (’12), PLB719 (’13);
S.M. 1304.4882; S.M. talk at SCGT14mini (’14)

LatKMI Collaboration, PRD89 (’14)
S.M. and K. Yamawaki, PRD86 (’12)
* Walking TC can be viable, solve problems by which QCD-like TC was killed:

- **FCNC**
 \[m_{q,l} \ll m_{q,l}^{(\text{exp})} \]

- **S, T, U parameters**
 \[\frac{S}{(N_{\text{TC}} N_D)} \sim S_{\text{QCD}} \sim 0.3 \]
 \[S^{(\text{exp})} < 0.1 \]

- **125 GeV Higgs**
 \[125 \text{ GeV} \ll \Lambda_{\text{TC}} = \mathcal{O}(\text{TeV}) \]

(Holographic) Walking TC
[or ETC effects]

Walking TC scale inv.

Yamawaki, Bando, Matumoto (‘86)

Haba, Matsuzaki, Yamawaki (‘08,’10,)

Matsuzaki, Yamawaki (‘12,’13)
TD phenomenological Lagrangian

* effective theory below m_F
after TF decoupled/integrated out
& confinement:
governed by TD and other light TC hadrons
(technipions, technirho)

* Nonlinear realization of scale and chiral symmetries

Nonlinear base χ for scale sym. w/ TD field Φ

$$\chi = e^{\phi/F_\phi}, \quad \delta \chi = (1 + x^\nu \partial_\nu)\chi$$

TD decay constant F_ϕ

$$\delta \phi = F_\phi + x^\nu \partial_\nu \phi$$

Nonlinear base U for chiral sym. w/ TC pion field π

$$U = e^{2i\pi/F_\pi}, \quad \delta U = x^\nu \partial_\nu U$$
eff. TD Lagrangian \[\mathcal{L} = \mathcal{L}_{\text{inv}} + \mathcal{L}_{S} - V_{\chi} \]

i) The scale anomaly-free part:

\[\mathcal{L}_{\text{inv}} = \frac{F_{\pi}^{2}}{4} \chi^{2} \text{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] + \frac{F_{\phi}^{2}}{2} \partial_{\mu} \chi \partial^{\mu} \chi \]

ii) The anomalous part (made invariant by including spurion field "S"):

\[\mathcal{L}_{S} = -m_{f} \left(\left(\frac{\chi}{S} \right)^{2 - \gamma_{m}} \cdot \chi \right) \bar{f} f \]

\[+ \log \left(\frac{\chi}{S} \right) \left\{ \frac{\beta_{F}(g_{s})}{2g_{s}} G_{\mu\nu}^{2} + \frac{\beta_{F}(e)}{2e} F_{\mu\nu}^{2} \right\} + \ldots \]

reflecting ETC-induced TF 4-fermi w/ (3-\(\gamma_{m}\))

iii) The scale anomaly part:

\[V_{\chi} = \frac{F_{\phi}^{2} M_{\phi}^{2}}{4} \chi^{4} \left(\log \chi - \frac{1}{4} \right) \]

\[\langle \theta_{\mu}^{\mu} \rangle = -\delta_{D} V_{\chi} \bigg|_{\text{vacuum}} = -\frac{F_{\phi}^{2} M_{\phi}^{2}}{4} \langle \chi^{4} \rangle \bigg|_{\text{vacuum}} = -\frac{F_{\phi}^{2} M_{\phi}^{2}}{4} \]

which correctly reproduces the scale anomaly in the underlying WTC
TD couplings to the SM particles

* TD couplings to W/Z boson (from L_inv)

\[g_{\phi W W/Z Z} = \frac{2m_{W/Z}^2}{F_\phi} \]

* TD couplings to γγ and gg (from L_S)

\[g_{\phi \gamma \gamma} = \frac{\beta_F(e)}{e} \frac{1}{F_\phi} \]

\[g_{\phi gg} = \frac{\beta_F(g_s)}{g_s} \frac{1}{F_\phi} \]

β_F: TF-loop contribution to beta function

The same form as SM Higgs couplings except FΦ and betas
* TD couplings to SM fermions

\[-\frac{(3 - \gamma_m) m_f}{F_\phi} \phi f \bar{f} f\]

* $\gamma_m \sim 1$

in WTC to get realistic masses w/o FCNC concerning 1st and 2nd generations

\[
\frac{g_{\phi f f}}{g_{h_{SM} f f}} = 2 \frac{v_{EW}}{F_\phi}
\]

* $\gamma_m \sim 2$

in Strong ETC to accommodate masses of the 3rd generations (t, b, tau)

\[
\frac{g_{\phi f f}}{g_{h_{SM} f f}} = \frac{1}{2} v_{EW} \frac{1}{F_\phi}
\]
Thus, the TD couplings to SM particles essentially take the same form as those of the SM Higgs:

Just a simple scaling from the SM Higgs:

\[
\frac{g_{\phi WW/ZZ}}{g_{h_{SM} WW/ZZ}} = \frac{v_{EW}}{F_\phi},
\]

\[
\frac{g_{\phi ff}}{g_{h_{SM} ff}} = \frac{v_{EW}}{F_\phi}, \quad \text{for } f = t, b, \tau.
\]

But, note ϕ-gg, ϕ-\gamma\gamma depending on particle contents of WTC models.

β_F: TF-loop contribution to beta function

\[
\mathcal{L}_{\phi\gamma\gamma,gg} = \frac{\phi}{F_\phi} \left[\frac{\beta_F(e)}{e^3} F_{\mu\nu}^2 + \frac{\beta_F(g_s)}{2g_s^3} G_{\mu\nu}^2 \right]
\]
Thus, the TD couplings to SM particles essentially take the same form as those of the SM Higgs!

Just a simple scaling from the SM Higgs:

\[
\frac{g_{\phi WW/ZZ}}{g_{h_{\text{SM}} WW/ZZ}} = \frac{v_{\text{EW}}}{F_\phi},
\]

\[
\frac{g_{\phi ff}}{g_{h_{\text{SM}} ff}} = \frac{v_{\text{EW}}}{F_\phi}, \quad \text{for } f = t, b, \tau.
\]

But, note ϕ-gg, ϕ-γγ depending on particle contents of WTC models.

\[
\mathcal{L}_{\phi \gamma \gamma, gg} = \frac{\phi}{F_\phi} \left[\frac{\beta_F(e)}{e^3} F_{\mu\nu}^2 + \frac{\beta_F(g_s)}{2g_s^3} G_{\mu\nu}^2 \right]
\]

β_F: TF-loop contribution to beta function
* relevant production processes at LHC

similar to SM Higgs:

- ggF, VBF, VH, ttH

* relevant decay channels
(for $N_{TC}=4$)

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi \rightarrow gg$</td>
<td>$\sim 75%$</td>
</tr>
<tr>
<td>$\Phi \rightarrow bb$</td>
<td>$\sim 19%$</td>
</tr>
<tr>
<td>$\Phi \rightarrow WW$</td>
<td>$\sim 3.5%$</td>
</tr>
<tr>
<td>$\Phi \rightarrow \tau\tau$</td>
<td>$\sim 1.1%$</td>
</tr>
<tr>
<td>$\Phi \rightarrow ZZ$</td>
<td>$\sim 0.4%$</td>
</tr>
<tr>
<td>$\Phi \rightarrow \gamma\gamma$</td>
<td>$\sim 0.1%$</td>
</tr>
</tbody>
</table>

enhanced by extra colored techni-quark contribution

S.M. and K. Yamawaki, PLB719 ('13); S.M. 1304.4882;
The signal strength fit to the LHC-Run I full data

One-parameter fit \((F\phi)\)

<table>
<thead>
<tr>
<th>(N_{TC})</th>
<th>([v_{EW}/F\phi])_{best}</th>
<th>(\chi^2) min /d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.28</td>
<td>37/17 = 2.2</td>
</tr>
<tr>
<td>4</td>
<td>0.24</td>
<td>19/17 = 1.1</td>
</tr>
<tr>
<td>5</td>
<td>0.17</td>
<td>33/17 = 1.9</td>
</tr>
</tbody>
</table>

Compared w/ SM Higgs
\(\chi^2/d.o.f = 17/18 = 1.0\)

Current LHC has favored TD at almost the same level as SM Higgs!
Characteristic coupling property of $125 \text{ GeV TD in 1FM (w/ } N_{TC}=4) \text{ at the LHC}$

\[g_{\Phi} = \left(\frac{v_{EW}}{F} \right) g_{H} = 0.24 g_{H} \]

- di-weak bosons
 - w, z
 - w^*, z^*

- quark, lepton pairs
 - b, τ

- digluon

- diphoton

- v.s. SM Higgs
 - suppressed

- QCD-colored TF contributions

- EM-charged TF contributions

- moderately enhanced
 - $\beta_{F}(g_s)$

- moderately suppressed
 - $\beta_{F}(e)$
The TD signal strengths ($\mu = \sigma \times \text{BR}/\text{SM Higgs}$) vs. the current data (i)

(i) ggF+ttH category

* Data as of ICHEP2014

<table>
<thead>
<tr>
<th>TD signal strength</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_{\gamma\gamma}^{ggF+ttH}$ \simeq 1.6</td>
<td>1.6 \pm 0.25</td>
<td>1.13 \pm 0.35</td>
</tr>
<tr>
<td>$\mu_{ZZ}^{ggF+ttH}$ \simeq 1.1</td>
<td>1.8 \pm 0.35</td>
<td>0.83 \pm 0.28</td>
</tr>
<tr>
<td>$\mu_{WW}^{ggF+ttH}$ \simeq 1.1</td>
<td>0.82 \pm 0.36</td>
<td>0.72 \pm 0.37</td>
</tr>
<tr>
<td>$\mu_{TT}^{ggF+ttH}$ \simeq 1.1</td>
<td>1.1 \pm 1.2</td>
<td>1.1 \pm 0.46</td>
</tr>
</tbody>
</table>

* one-family model w/ NTC=4, $v_{EW}/F_{\phi} = 0.24$
The TD signal strengths ($\mu = \sigma \times \text{BR}/\text{SM Higgs}$) vs the current data (ii)

(ii) VBF + VH category

<table>
<thead>
<tr>
<th>TD signal strength</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_{\gamma\gamma}^{\text{VBF+VH}} \approx 0.9$</td>
<td>1.7 ± 0.63</td>
<td>1.16 ± 0.59</td>
</tr>
<tr>
<td>$\mu_{ZZ}^{\text{VBF+VH}} \approx 0.7$</td>
<td>1.2 ± 1.3</td>
<td>1.45 ± 0.76</td>
</tr>
<tr>
<td>$\mu_{WW}^{\text{VBF+VH}} \approx 0.7$</td>
<td>1.7 ± 0.79</td>
<td>0.62 ± 0.53</td>
</tr>
<tr>
<td>$\mu_{\tau\tau}^{\text{VBF+VH}} \approx 0.7$</td>
<td>1.6 ± 0.75</td>
<td>0.94 ± 0.41</td>
</tr>
<tr>
<td>$\mu_{bb}^{\text{VBF+VH}} \approx 0.03$</td>
<td>0.20 ± 0.64</td>
<td>1.0 ± 0.50</td>
</tr>
</tbody>
</table>

* Consistent within about 1 sigma error
* VBF: ~30% contamination from ggF, compensating direct VBF coupling suppression: $gg \rightarrow \Phi + gg$ highly enhanced compared to SM Higgs case!
* Smaller VBF+VH signal (particularly, bb-channel), compared to the SM Higgs
SM Higgs, or TD?
-- Conclusive answer needs high statistic LHC-Run II !

What do we expect next to discovery of the "Higgs"?

New particles signaling the WTC as BSM

= > Walking techni-pions & techni-vector mesons (technirrho mesons) !

= smoking-gun of WTC
3. Walking technipions and technirho mesons

* One-family (Farhi-Susskind) model w/ $SU(8)_L \times SU(8)_R \rightarrow SU(8)_V$

<table>
<thead>
<tr>
<th>$T_{F_{EW}}$</th>
<th>$SU(3)_c$</th>
<th>$SU(2)_L$</th>
<th>$U(1)_Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_L = \begin{pmatrix} U \ D \end{pmatrix}_L$</td>
<td>3</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>$L_L = \begin{pmatrix} N \ E \end{pmatrix}_L$</td>
<td>1</td>
<td>2</td>
<td>-1/2</td>
</tr>
<tr>
<td>U_R</td>
<td>3</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>D_R</td>
<td>3</td>
<td>1</td>
<td>-1/3</td>
</tr>
<tr>
<td>N_R</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E_R</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Can be “walking” : suggested by LatKMI collaboration , [PRD87 (’13), 1309.0711] and can have a light TD [1403.500]

* By TF condensation, 63 NGBs emerge: 3 = eaten by W,Z

Coupling properties fixed by $SU(8)_L \times SU(8)_R / SU(8)_V$, scale-inv. chiral Lagrangian

60 = *pseudos, Technipions*

Get masses due to EW and ETC gauges

pNGB masses are of O(TeV), due to the walking feature

J. Jia, S.M. and K. Yamawaki, PRD86 (’12)
M. Kurachi, S.M. and K. Yamawaki, 1403.0467
* Current LHC limits on 60 technipions

M. Kurachi, S. M. and K. Yamawaki, 1403.0467

<table>
<thead>
<tr>
<th>techni-pion</th>
<th>color</th>
<th>isospin</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ^i_a</td>
<td>octet</td>
<td>triplet</td>
<td>$\frac{1}{\sqrt{2}} \bar{Q}a \gamma\mu \gamma_5 \lambda_a \tau^i Q$</td>
</tr>
<tr>
<td>θ_a</td>
<td>octet</td>
<td>singlet</td>
<td>$\frac{1}{2\sqrt{2}} \bar{Q}a \gamma\mu \gamma_5 \lambda_a Q$</td>
</tr>
<tr>
<td>T^i_c (\bar{T}^i_c)</td>
<td>triplet</td>
<td>triplet</td>
<td>$\frac{1}{\sqrt{2}} \bar{Q}c \gamma\mu \gamma_5 \tau^i L$ (h.c.)</td>
</tr>
<tr>
<td>T_c (\bar{T}_c)</td>
<td>triplet</td>
<td>singlet</td>
<td>$\frac{1}{2\sqrt{2}} \bar{Q}c \gamma\mu \gamma_5 L$ (h.c.)</td>
</tr>
<tr>
<td>P^i</td>
<td>singlet</td>
<td>triplet</td>
<td>$\frac{1}{2\sqrt{3}} (\bar{Q}\gamma\mu \gamma_5 \tau^i Q - 3\bar{L}\gamma\mu \gamma_5 \tau^i L)$</td>
</tr>
<tr>
<td>P^0</td>
<td>singlet</td>
<td>singlet</td>
<td>$\frac{1}{4\sqrt{3}} (\bar{Q}\gamma\mu \gamma_5 Q - 3\bar{L}\gamma\mu \gamma_5 L)$</td>
</tr>
</tbody>
</table>

Most stringent constraints from

$pp \rightarrow ggF \rightarrow$ isosinglet technipions \rightarrow tt

and scalar leptoquark search for color-triplet T_c

exclude TP w/ masses

\[
\begin{align*}
\text{color-octet (}θ_\ast\text{)} & < 1.5—1.6 \text{ TeV} \\
\text{color-triplet (}T_c\text{)} & < 1.0—1.1 \text{ TeV} \\
\text{color-singlet (}P\text{)} & < 800 \text{ GeV}
\end{align*}
\]

depending on # of Ntc and size of $S^{(TC)}$ (for details, see 1403.0467)
Search for walking techni-rho mesons @ LHC
M.Kurachi, S.M. and K. Yamawaki, 1404.3048
M.Kurachi, S.M., K.Terashi and K.Yamawaki, work in progress

63 vector mesons in a way similar to TPs

<table>
<thead>
<tr>
<th>Techni-rho meson</th>
<th>color</th>
<th>isopin</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^0_{\Theta \bar{q}}$</td>
<td>octet</td>
<td>triplet</td>
</tr>
<tr>
<td>$\rho^0_{{\bar{\Omega}} \bar{q}}$</td>
<td>octet</td>
<td>singlet</td>
</tr>
<tr>
<td>$\rho^0_{Tc} (\bar{\rho}^0_{Tc})$</td>
<td>triplet</td>
<td>triplet</td>
</tr>
<tr>
<td>$\rho^0_{Tc} (\bar{\rho}^0_{Tc})$</td>
<td>triplet</td>
<td>triplet</td>
</tr>
<tr>
<td>ρ^i_P</td>
<td>singlet</td>
<td>triplet</td>
</tr>
<tr>
<td>ρ^0_P</td>
<td>singlet</td>
<td>singlet</td>
</tr>
<tr>
<td>ρ^i_{Π}</td>
<td>singlet</td>
<td>triplet</td>
</tr>
</tbody>
</table>

Coupling properties fixed by

\[
[SU(8)_L \times SU(8)_R \times [SU(8)_V]_{HLS}]/SU(8)_V
\]

scale-inv. Hidden Local Symmetry (HLS) Lagrangian

Refs. for HLS
Bando, et al. PRL 54 (‘85); Bando, et al, NPB 259 (‘85);
Bando, et al, PTP 79 (‘88); Bando, et al, PR 164 (‘88)
* Relevant couplings: $\rho \rightarrow f-f$, $\rho \rightarrow \pi - W/Z$, $\rho \rightarrow W - W/Z$ and interesting interactions involving TD (Higgs):

* Dominant production process @ LHC = > Drell-Yan

model parameters fixed:

VMD, $F_\pi = v_{EW}/2$, $F_\Phi \sim 1.1\text{TeV}$ (best-fit); varying M_ρ
ρ_P^0 Color-singlet Iso-singlet

Branching ratio

Higgs-gamma channel is dominant below Techni-Pion threshold

Color-triplet Techni-Pions ($M_T = 2$ TeV)
$\rho^0_{\theta \alpha}$

Color-octet Iso-singlet

Branching ratio

- ϕg
- $\bar{b}b$
- $\bar{t}t$
- jj

Higgs-gluon channel is dominant below Techni-Pion threshold

Color-triplet Techni-Pions

$(M_T = 2$ TeV)
ρ_P^0 Color-singlet Iso-singlet

$\sigma(pp \rightarrow \rho_P^0 \rightarrow \phi \gamma) \times \text{BR}(\phi \rightarrow gg) \approx 75\%$

Maybe it's challenging...

excluded by di-lepton search
\[\rho_{\theta_a}^0 \] Color-octet Iso-singlet

\[\sigma(pp \rightarrow \rho_{\theta_a}^0 \rightarrow \phi g) \times \text{BR} (\phi \rightarrow gg) \approx 75\% \]

It's promising!!

excluded by di-jet search

14 TeV LHC
8 TeV LHC
Color-Octet $\rho_8 \rightarrow g + \Phi$

Color-octet technirhosp: $\rho_8 \rightarrow g + \Phi (\Phi \rightarrow gg)$

$m_{\rho_8} \leq 1.6$ TeV excluded by 8 TeV dijet resonance search

$\Rightarrow m_{\rho_8} = 1.7, 2.0$ and 2.3 TeV chosen as benchmark points

Event Selection:
- ≥ 2 jets $p_T > 500,400$ GeV
- Either one of them $= 115 < m_{\text{jet}} < 145$ GeV, other jet $= m_{\text{jet}} < 115$ GeV

Considered Backgrounds: multi-jets (PYTHIA)

Cut and count in a sliding M window

<table>
<thead>
<tr>
<th>\sqrt{s} = 8 TeV</th>
<th>m_{ρ_8} [TeV]</th>
<th>$\sigma \cdot \text{BR}$ [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.7</td>
<td>~ 300</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>~ 70</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>~ 20</td>
</tr>
</tbody>
</table>

Preliminary

8 TeV, 20 fb$^{-1}$

$\rho_8^{TC} \rightarrow g\Phi^{TC} (\rightarrow gg)$

$\rho_8^{int,2} > 500,400$ GeV

$115 < M_{jj(\ell\ell)} < 145$ GeV

$M_{\rho(\ell\ell)} < 115$ GeV

Table:

<table>
<thead>
<tr>
<th>m_{ρ_8} [TeV]</th>
<th>M_{jj} [TeV]</th>
<th>S</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>1.7-2.0</td>
<td>45</td>
<td>5.3</td>
</tr>
<tr>
<td>2.3</td>
<td>2.1-2.3</td>
<td>8 (46)</td>
<td>1.5 (4.3)</td>
</tr>
</tbody>
</table>

$(\sqrt{s} = 14$ TeV, 10 fb$^{-1})$

Promising channel to probe the model
3. Summary

- Walking TC is viable for LHC-run II, in searching for BSM

- 125 GeV Higgs = could be the Technidilaton (→ LHC Run II)

- Probing the WTC is argent task, promising via smoking-gun: technipion & techni-vectors, masses of order of just reach for upcoming Run II in particular, processes involving TD intrinsic to WTC!

Stay tune with WTC!!

Thank you very much!