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Introduction

B Reheating after Inflation
¢ Inflaton should convert its energy into radiation.
¢ Rough sketch of thermal history after the inflation:
r,~H

Reheating

Big Bang Nucleosynthesis

T ~ MeV #

T ~ eV 4 Recombination
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Introduction

B Reheating after Inflation
¢ Inflaton should convert its energy into radiation.
¢ Rough sketch of thermal history after the inflation:

'y ~H 4 Reheating Far From Thermal Equilibrium

¢ May strongly depend on details of the process
of reheating.

Thermal Equilibrium

¢ Tend to lose information:

e.g., initial conditions, details of the
T ~ MeV process of reheating...etc

¢ Simply characterized by the
T ~eV temperature.
# Restricted (More predictable).

Kyohei Mukaida - Univ. of Tokyo
.




Introduction

B Goal of This Talk

1. Thermalization: when and how 222
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Far From Thermal Equilibrium

, ¢ May strongly depend on details of the process
# AD-mechanism of reheating.

DM Production Thermal Equilibrium
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Introduction

B Goal of This Talk

1. Thermalization: when and how 222
2. Non-thermal DM production in the thermalization.

Far From Thermal Equilibrium

, ¢ May strongly depend on details of the process
# AD-mechanism of reheating.

Thermal Equilibrium

¢ Tend to lose information:

e.g., initial conditions, details of the
T ~ MeV process of reheating...etc

¢ Simply characterized by the
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Naive Estimation

B Reheating via Planck-suppressed Decay
¢ Reheating can be described by a perturbative decay. [e.g., Fé}dim *) ~ mf/) /lel]
¢ As an illustration, let us study right after the reheating: ", ~ H.
= Typical distribution function, f(p), is...

f(p) 4
mj,f(mcp) ™~ Prad ™~ Hrth; ~ Filel
Initial
roMs (@)2“ __________________________________________________________________________________________________________________________________________________ |
mj) M,
— D
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Kyohei Mukaida - Univ. of Tokyo
.




Naive Estimation

B Reheating via Planck-suppressed Decay

¢ Reheating can be described by a perturbative decay. [e.g., F(dlm ) ~my [M]]
# As an illustration, let us study right after the reheating: [y~ H.

= Typical distribution function, f(p), is

f(P) 4 Thermal »
[ | -~ prad ~ \/Hrh ~ \/F¢M
i i »p
My
T~ y/TyMy ~my |7
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Naive Estimation

B Reheating via Planck-suppressed Decay

= Number violating processes play crucial roles !!!

f(p) 4 Initial
'y M ¢ Large energy: m
T I - e Small energy: T ~ m, :1 Y 5 8y: my
’ & Small #: 'y My, :
¢ Large #: 1 L e 2

2 2 2
oMot (ﬂ) | A .

mj) M,

= — D
pl
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Naive Estimation

B Number Violating Processes (naive estimation)

® Apparently, number violating “hard” processes seem to efficiently
increase #/reduce energy per one-particle...

= Delayed thermalization 22?2

2

((TVTI) N (X3 1_‘(.1)]\4p1

i L]
~ a’ for dim 5
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Naive Estimation

B Number Violating Processes (naive estimation)

fficie

/

parently, number violating “hard” processes seem to e
#/reduce energy per one-particle...
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Bottom-up Thermalization

B “Soft” Number Violating Processes

¢ t-channel enhancement of “soft” processes:

soft particle : [, M> mé

ovn p! 2 Mo
m H YT w2 TOT
¢ s >
~m.<<m M\ *
m > ¢ N(a—pl) for dim 5
W/mSZNaJLp)
p P

=  Soft particles are created rapidly !!!

B Bottom-up Thermalization; sudied in the context of QaP

: : [Baier et al., ‘00; Kurkela, Moore, "11,'14]
¢ Thermalization proceeds from the soft sector.

¢ Soft sector: evolves towards UV and thermalizes separately.
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Bottom-up Thermalization

[Baier et al., ‘00; Kurkela, Moore, "11,/14]

H BOttOm-up Thermalization; studied in the context of QGP
¢ Numerical simulation is recently performed by Kurkela, Lu, 1405.6318.
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B T ~Y
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el A=0.1 — . 2
U E = A — Ncg
= 0.0001 F =
O
S 1e-06 - M TUT/Q) =100 E
= . 50 .
é’ le-08 25 =
s 12.5 \
le-10 6.25 =
= =
16-12I_IIII| ] ] IIIIII| ] ] IIIIII| |

0.1 1 10 100
Momentum: p/T

= Bottleneck process: energy loss of remaining hard particles, which
still dominates the energy density.
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Bottom-up Thermalization

[Baier et al., ‘00; Kurkela, Moore, "11,/14]

H BOttOm-up Thermalization; studied in the context of QGP
¢ Numerical simulation is recently performed by Kurkela, Lu, 1405.6318.
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Bottom-up Thermalization

[Baier et al., ‘00; Kurkela, Moore, "11,/14]

B Bottleneck process: splitting of hard particles

T sz(p
A>~a

Soft
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Bottom-up Thermalization

[Baier et al., ‘00; Kurkela, Moore, "11,/14]

B Bottleneck process: splitting of hard particles
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Bottom-up Thermalization

[Baier et al., ‘00; Kurkela, Moore, "11,/14]

B Bottleneck process: splitting of hard particles
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Bottom-up Thermalization

[Baier et al., ‘00; Kurkela, Moore, "11,/14]

B Bottleneck process: splitting of hard particles
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¢ Energy loss rate of hard particles ~ me (w/ LPM effect):

= [nstantaneous thermalization in most cases: [K. Harigaya and KM, 1312.3097]

1/8
1 m¢ 5 1_'(/) M2 / m¢ 5/8
>]l—a> = *a>>4><10_4( B ) for dim 5
H tsplit Mpl m¢ 10°° GeV
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DM Production

B Goal of This Talk

1. Thermalization: when and how ?¢?
2. Non-thermal DM production in the thermalization.

Non-Thermal DM Production w/ ’ ’ 1 DM > Tg

& Reheating
Big Bang Nucleosynthesis

+ Recombination
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DM Production

B DM production processes w/ []] DM > Ty

¢ Non-thermal production from direct inflaton decay

¢ Non-thermal/Thermal production from background plasma

oA
£(p) 4 gy, Thermal Plasma
0y ¢ Red-shift; T«t1/4
%,/,
[ I O’; ‘ ¢ Dominates number/energy
®Softtp~T
N R Hard Particles
4
! : : & Red-shift: f(mo)«1/t
l — = D & Small number
1 m
T ~ /T yM, (W) ¢ ¢ Hard: p ~ mo
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DM Production

B DM production processes w/ []] DM > Ty

¢ Non-thermal production from direct inflaton decay

¢ Non-thermal/Thermal production from background plasma

m
F(p) 4 T T PR g, Thermal Plasma
2 ¢ Red-shift; T«t1/4
1P I t ¢ Dominates number/energy
®Softtp~T
= Thermal Freeze-out
I, M?>
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m¢t : ~ _—
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p]t)hM plt)hM
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DM Production

B DM production processes w/ []] DM > Ty

¢ Non-thermal production from direct inflaton decay

¢ Non-thermal/Thermal production from background plasma

MpM - pa : .
f(p)4 Ty~ = D, Hard Particles
¢ Red-shift: f(me)«1/t

¢ Small number

¢ Hard: p ~ mo

©-
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DM Production

B DM production processes w/ []] DM > Ty

¢ Non-thermal production from direct inflaton decay

¢ Non-thermal/Thermal production from background plasma

MpM  paA

AR T

Ing, ton

T ~ A/ F¢Mp1
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Hard Particles
¢ Red-shift: f(me)«1/t
¢ Small number
¢ Hard: p ~ mo
¢ Breakup completely @ Ty

=DM production thru
interactions btw Hard
and particles !




DM Production

B DM production during thermalization

¢ DM can be produced even at mDM > T.
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DM Production

B Contour plot of DM density as a function of Tg and me
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B Contour plot of DM density as a function of Tg and me

lOglo(TRH/Gﬁ\/)

DM Production
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Summary

B A small decay rate of inflaton (e.g., Planck-suppressed one)
results in a small number density of decay products initially.

B We found the condition for instantaneous thermalization,
which is satisfied in most cases: a > (m, [ Mp)>S(MAT , /m3 ).

B Discussion on during reheating and T...x = See our paper.

B For me » Tr, DM is efficiently produced through interactions
btw hard and soft particles.

JHEP 1405 (2014) 006; 1312.3097
Phys. Rev. D 89, 083532 (2014); 1402.2846
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