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Inflaton should convert its energy into radiation.

Rough sketch of thermal history after the inflation:

Reheating

Recombination

Big Bang Nucleosynthesis

Thermal Equilibrium

Far From Thermal Equilibrium

T ⇠MeV

T ⇠ eV

Non-Thermal DM Production

May strongly depend on details of the process 
of reheating.

Tend to lose information:

Simply characterized by the 
temperature.

e.g., initial conditions, details of the 
process of reheating…etc

Restricted (More predictable).
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2. Non-thermal DM production in the thermalization.
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Reheating can be described by a perturbative decay.
As an illustration, let us study right after the reheating:

➡Typical distribution function, f(p), is…
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Reheating can be described by a perturbative decay.
As an illustration, let us study right after the reheating:
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Reheating can be described by a perturbative decay.
As an illustration, let us study right after the reheating:

➡Typical distribution function, f(p), is…
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➡ Number violating processes play crucial roles !!!
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Apparently, number violating “hard” processes seem to efficiently 
increase #/reduce energy per one-particle…

➡ Delayed thermalization ???
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t-channel enhancement of “soft” processes:
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Bottom-up Thermalization; studied in the context of QGP

Thermalization proceeds from the soft sector.

Soft sector: evolves towards UV and thermalizes separately.
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[Baier et al., ‘00; Kurkela, Moore, ’11,’14]
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Numerical simulation is recently performed by Kurkela, Lu, 1405.6318.

➡ Bottleneck process: energy loss of remaining hard particles, which 
still dominates the energy density.

[Baier et al., ‘00; Kurkela, Moore, ’11,’14]
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Numerical simulation is recently performed by Kurkela, Lu, 1405.6318.

➡ Bottleneck process: energy loss of remaining hard particles, which 
still dominates the energy density.
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➡ Instantaneous thermalization in most cases: [K. Harigaya and KM, 1312.3097]
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Reheating after Inflation
Inflaton should convert its energy into radiation.

Rough sketch of thermal history after the inflation:

Reheating

Recombination

Big Bang NucleosynthesisT ⇠MeV

T ⇠ eV

Non-Thermal DM Production w/

1. Thermalization: when and how ???  
2. Non-thermal DM production in the thermalization.

Goal of This Talk
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Non-thermal production from direct inflaton decay

Non-thermal/Thermal production from background plasma

Hard Particles

Hard: p ~ mΦ

Thermal Plasma

Dominates number/energy

Soft: p ~ T

Small number

1
Red-shift: T∝t-1/4

Red-shift: f(mΦ)∝1/t

radiation

inflaton

t
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Non-thermal production from direct inflaton decay

Non-thermal/Thermal production from background plasma

1 Dominates number/energy
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Non-thermal production from direct inflaton decay

Non-thermal/Thermal production from background plasma

1

Hard Particles

Hard: p ~ mΦ

Small number

➡DM production thru 
interactions btw Hard 
and Soft particles !

Breakup completely @ TR

Red-shift: f(mΦ)∝1/t
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DM can be produced even at mDM � T.
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Summary
A small decay rate of inflaton (e.g., Planck-suppressed one) 
results in a small number density of decay products initially. 

We found the condition for instantaneous thermalization, 
which is satisfied in most cases: 

Discussion on during reheating and Tmax → See our paper. 

For mΦ ≫ TR, DM is efficiently produced through interactions 
btw hard and soft particles.
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