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1. Introduction



Higgs sector in the Standard Model

* “Higgs” boson was discovered in 2012.

*Its properties are consistent with the Higgs boson in SM.
VEV, mass, spin, parity, some couplings etc.

Vit = —up?H'H + Ay (HTH)? V2 h ) h :Higgs boson field

Higgs potential of SM VEV (unita)r\y gauge)
H

272 3, N\H 4
W const. + A\gvg“h” + Agvgh® + 1 h
mass unmeasured
mp = /2 \gvg ~ 125 GeV triple coupling

quartic coupling

*Measurements of Higgs self couplings are necessary
to determine the Higgs potential.



Motivation

Current situation

OK!
Higgs sector is Consistent with

as in the SM. current experimental
data.

*|s there possibility that ONLY self couplings
deviate (substantially) from SM predictions?

*We are interested in information about the
vicinity of the vacuum (“shape” of potential).



Motivation

*One candidate: Scale-invariant extension
—> EWSB via CW mechanism (radiative symmetry breaking)

- Effective potential is like ¢* log(®)
*irregular at the origin (e.g. QCD, BCS theory)
"realise Higgs VEV 246 GeV and mass 125 GeV,
*large deviations in cubic and quartic self couplings?

We dealt with singlet—extension.
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2. Model

and

Our method of analysis



Model

&L = Lol o+ (a $)2 — \us(HTH)(S - §) —
H: Higgs doublet

S: SM singlet (global O(N)-multiplet)

H:i( \/§G+ ), §=(’Us—|-51 Sg +++ SN )T

V2 \ vg +h+iG°
K. A. Meissner et.al. [hep-ph/0612165],
R. Foot et. al. [0704.1165]
etc.

“We have re-analysed the model and its effective potential,
-and found the consistent vacuum by more precise
perturbation.

(cf. R. Dermisck et.al. [1308.0891], C. Tamarit [1404.7673])



Particle content

T P
L = Lautl ot 5 (a $)? — Aus(HTH)(S - S)—ZS(S-S)2
H: Higgs doublet
S: SM singlet (global O(N)-multiplet)

1 2G 7+ =
SM particles

4

N real singlet scalar bosons (s))
"mass? ~ AV, 2
*singlet field VEV <5§>=0 eventually
“thus singlet cannot decay



Effective potential

H: Higgs doublet

S: SM singlet (global O(N)-multiplet)

<H>J:%(2)’ <§>J:(90703"'70); ¢790€R7 ¢7903£0

V;eff(qba 90) — Vvtree(cbv ) + Vl loop(¢a )

A )\
Vvtree((ba ) — _Cb + is¢ 4S 904
M2 o
Viiloop (9 ¢ 64 @) |1n M l(;f’ 2 — ¢; |(MS scheme)

M;2(¢, ¢): mass-squared eigenvalues < determined in tree level
p: renormalisation scale - set to Higgs VEV 246GeV

c;: scheme-dependent constants



Order counting in perturbation

It is necessary that tree and 1-loop effects balance each other
to occur correctly EWSB via CW mechanism.

tree effects 1-loop effects
0 6
N Y U O W
) N / \\ /,’—\\ \ II ?
o0 Am VS AHS :+ :’i Ams + At ty
RN p ‘\\ a +
7 . ! \-'—/ \ Y -t B
o o o BTy ’ s
Nns® ~ Nowy* o4

| Ag| ~ (47)2 (47)? <1 (massless scalar QED: \ ~ 1)

(47)?
(Roughly [Ag| < |Aus| . N¢ is the colour factor. )

N2

Using this relation gives us specific order-counting.




Order counting in perturbation

[Usual perturbation] only for Higgs
¢ 6 ¢ o ¢ o ¢ 0 fieldg,
. - b \ {s:} K e " for simplicity
\/V\S\ B )\H\/ *, \/X\l/\H )\HS\/ *, \/x\/)\HS
/,/ \\\ J \}; \ J JES:} \ v %,
0 619 6 ¢ 'ao ¢ ¢ ]
LO (tree level) NLO (1-loop level)

[This prescription]

¢ ¢ ¢ ¢ ¢ ¢ ¢
S N , s \\ ’h\ // \\ {fz\} // \yt %’
\/‘.’\3\ B )\H\/ */ \/x\l/\H )\HS\/ */ \/x\/)\HS
//, \\\ l/ \}-l_ \\ // {\S:} \\ /y{ yi\
L& 6 )10 g 19 o ¢ ¢ ]
NLO of ! NNLO of J

: NLO of order-countin
order-counting  grder-counting &



Order counting in perturbation

[For the tree potential]

)\H 4 )\HS 2 92 )\S 4
ot 4 =2 4+ =2
1 ? 5 Pt e
next-to-leading order (NLO) leading order (LO) of
of perturbation perturbation
|
» i/ 7400
‘The LO potential is }‘isqs?(pz + /\—S(p4 = 200
2 4 _400 = '

-and it has degenerate minima on the ¢-axis.



Order counting in perturbation

—STrM*(¢) [ln (M 2§¢)) — C]

[For the 1-loop corrections]

| Au| < [AHs]| ﬂ

F:i:app ((b: (70)

s (¢,>[( =59 - g] 6412Fiapp(¢,)[( v 0 - 7).

where
Fi(¢ 90) = F:tapp(¢a 90)

_ A A 3\ A AHS — 3\ 2
HS¢ HS + Scp2:l:\/[ ﬂ(b? HS S(p2j| + g2

647r 7’

" 6472
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Order counting in perturbation

A A
VLo 2%8&902 + XSSOLI

AH 4 F+app2(¢a 90) F+app(¢a90) 3
=22 ] _2
VNwo 4 0"+ 6472 N p? 2
3 AHS P2 3
)\ 2\ 2 1 v
+647T2( HS¥ ) |:Il( M2 9
N -1 Aus@? + Asp? 3
Aasd? + ds0?)? |1 — =
‘|‘647r2(HS¢+ 5¢°) [n( pE 5

+ (vector boson parts) + (fermion parts)

@ LO

Higgs field has degenerate minima on the ¢ -axis.
*Singlet field does not have VEV (O(N)-symmetry is not broken).
@ NLO

“Higgs VEV determines and Higgs boson gets its mass.

Higgs becomes lighter than singlet(s).
(cf. E. Gildener and S. Weinberg [PRD13, 3333 (1976)])



RG-improved potential

We used the two kinds of RG-improved potential.
[M. Bando et. al., PLB 301, 83 (1993)]

VD6, ) = 288 gy 4 AW g2 2y 4 25 sy
VimNLO) (g, ) = AHf) 5(6) + AH;“” #(1)0%(1) + Dt

T Z 6471’2 ), ¢(t)) |In M ((Z(Qt()t’)(p(t)) — €

(t: running parameter)

Using both, we can compare the “shape” around the vacuum
and can confirm the validity of perturbation there.




3. Couplings of the Higgs and singlets



Results: N =1 case

N =1
] vy = 246 GeV
Y (v ) 0.919
g(vy) 0.644
g (vy) 0.359
A (vy) —0.059
)\HS(UH) 4.5
)\Ss?)HZ 0.10
(H) 246 GeV
mp, 126 GeV
(S) 0
My 527 GeV
Landau pole 4.1 TeV

K.E. and Y. Sumino

5

=)

Ve [10’GeV*
|
)1

|
[E—
=}

|
p—
9,1

d[GeV]
=== SM = unimproved === LI ==-- imp—NLO

Almost the same as the previous work
(R. Dermisck et.al. [1308.0891]).
— Our analysis is valid

around the VEV (¢) = 246GeV .



Results: N =4 and 12 cases

N =4 N =12
1 vy = 246 GeV L vy = 246 GeV
v (v ) 0.919 Y (vp) 0.919
g(vy) 0.644 g(vy) 0.644
g (vy) 0.359 g (vy) 0.359
)\H(UH) —0.061 )\H(’UH) —0.063
AHS(UH) 2.3 AHS(UH) 1.4
/\5(UH) 0.10 )\5(1)]{) 0.10
(H) 246 GeV (H) 246 GeV
mp 126 GeV mp 126 GeV
(S) 0 (S) 0
Mg 378 GeV M 293 GeV
Landau pole 19 TeV Landau pole 37 TeV

As N increases,

" portal coupling A, decreases

-and Landau pole goes far away,

-singlet mass decreases (m,2 = Agsvy?).

K.E.and Y. Sumino



Results:
Couplings of the Higgs and Singlets

N=1 N=4 N =12
A/ N0 |18 1.7 1.6
A A 143 3.2 2.8
>‘hss 20 10 5.9
Ahhss 13 5.7 3.2
Assss 8.3 1.9 0.9 K.E. and Y. Sumino
_ I 95 1 o o Amn ;3 Awnhh, g
Ve = const. + omph” + omg 5+ 8+ =T vph T
)\hss - - )\hhss )\ssss




Comparison with GW’s method

E. Gildener and S. Weinberg [PRD13, 3333 (1976)]

N =1 Ahhh  Ahhhh Ahss Ahhss Assss
SM prediction | 0.78  0.78 none none none
GW’s framework | 1.3 29 2 g =96 2Apgs=9.6 6Ag =0.6
our analysis (LL) | 1.4 3.4 10.2 13.0 6.5
N =4 )‘hhh )\hhhh )‘hss )‘hhss )\ssss
SM prediction | 0.78  0.78 none none none
GW'’s framework | 1.3 2.9 2 g =48 2Apgg=4.8 6Ag=0.6
our analysis (LL) | 1.3 2.5 5.0 5.7 1.9
N =12 Ahhh Ahhhh Ahss Ahhss Assss
SM prediction | 0.78  0.78 none none none
GW’s framework | 1.3 2.9 2 \gs =2.8 2 Ags=2.8 6Ag=0.6
our analysis (LL) | 1.3 2.2 3.0 3.2 0.92

K.E. and Y. Sumino



4. Veltman’s condition for the Higgs mass



Is Veltman’s condition favoured?

[Veltman’s condition]

Coefficient of quadratic divergence

in quantum corrections for Higgs mass vanishes.
— Ifitis, there is no fine-tuning.

Cutoff-regularised quantum correction:

0= oo (1) e 0 (250 ]

[O. Antipin et. al, 1310.0957v3] etc.

Coefficient of quadratic divergence for Higgs mass:

1 07 1
§wSTrM2(h) — - (6mW2 +3mz% — 12m,° + NmSQ)

p=po



Is Veltman’s condition favoured?

SM case
1
—2 [GmWQ — 3m22 — 12mt2 — th] ~ —4
Vg
Our model
1 0.3-0.8 for N =1
— [6mw?® 4+ 3mz” — 12m,> + Nm,*] ~ ¢ 4.9-5.1 for 4
2 %% A t S — . .
vH 12-13  for 12

based on K.E. and Y. Sumino

N =1 case seems to be relatively and approximately
favoured, so that Fine-tuning seems to be relaxed.



5. Singlets as dark matter?



Singlets as dark matter?

“Singlets can be the dark matter candidates.
*Their thermal relic abundance are very small.

Spin-independent cross sections with proton are predicted.

Precision has been improved recently.
We used the framework in JHEP 1506 (2015) 097
(Hisano, Ishiwata, Nagata).

N 1 4 12
Q. /Qpwm 2.01 x 107 454 x 107* 8.07 x 1074
5% (10746 cm?] 6.77 25.6 74.5

K.E. and K. Ishiwata



Singlets as dark matter?

LUX 90% C.L.

10™44 [

NLO; N=12
[ ]

GSI(p)
[cm?]

A
rough; N=12

rough; N=4

1 0—45 :
NLO; N=1

rough; N=1

o' 102 10
m, [GeV]
K.E. and K. Ishiwata



6. Summary



Summary

*Can only Higgs self couplings deviate (significantly) from SM
predictions? — classically scale-inv. model

*We found perturbatively valid vacuum taking into account
consistent order counting.

*Higgs self couplings: A5, /ASM ~ 1.7, Aap/A5M ~ 3.0 — 4.0

-Singlet scalars get mass around 300-500GeV
and are only pair-produced.

N =1 case
- * Singlet can be dark matter;
although relic abundance is small, it is detectable.
* may approximately satisfy Veltman’s condition.



Thank you for your attention.



