

A model with radiative electroweak symmetry breaking and dark matter

K.E. and Y. Sumino (Tohoku Univ.), JHEP 1505 (2015) 030.

K.E. and K. Ishiwata (капазаwа Univ.), PLB 749 (2015) 583.

遠藤 和寛(東北大学)

② 基研研究会「素粒子物理学の進展2015」2015年9月14日(月)

1. Introduction

Higgs sector in the Standard Model

- "Higgs" boson was discovered in 2012.
- Its properties are consistent with the Higgs boson in SM.

VEV, mass, spin, parity, some couplings etc.

$$V_H^{\rm SM} = -\mu_H^2 H^\dagger H + \lambda_H (H^\dagger H)^2 \qquad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_H + h \end{pmatrix} \qquad v_H = 246 \; {\rm GeV} \\ h \; : {\rm Higgs \; boson \; field} \\ {\rm VEV} \; {\rm (unitary \; gauge)} \qquad h \; : {\rm Higgs \; boson \; field} \\ {\rm EWSB} \qquad {\rm const.} + \lambda_H v_H^2 h^2 + \lambda_H v_H h^3 + \frac{\lambda_H}{4} h^4 \\ {\rm mass} \qquad {\rm unmeasured} \\ m_h = \sqrt{2\lambda_H} v_H \simeq 125 \; {\rm GeV} \qquad {\rm triple \; coupling} \\ {\rm quartic \; coupling} \qquad {\rm quartic \; coupling} \\ {\rm Holosophics} \qquad {\rm triple \; coupling} \\ {\rm quartic \; coupling} \qquad {\rm triple \; coupling} \\ {\rm Holosophics} \qquad {\rm Holosophics$$

 Measurements of Higgs self couplings are necessary to determine the Higgs potential.

Motivation

Current situation

Higgs sector is as in the SM.

Consistent with current experimental data.

- Is there possibility that ONLY self couplings deviate (substantially) from SM predictions?
- •We are interested in information about the vicinity of the vacuum ("shape" of potential).

Motivation

- One candidate: Scale-invariant extension
 - → EWSB via CW mechanism (radiative symmetry breaking)
 - \rightarrow Effective potential is like $\phi^4 \log(\phi)$
 - irregular at the origin (e.g. QCD, BCS theory)
 - realise Higgs VEV 246 GeV and mass 125 GeV,
 - large deviations in cubic and quartic self couplings?

We dealt with singlet-extension.

Contents

- 1. Introduction
- 2. Model and Our method of analysis
- 3. Couplings of the Higgs and singlets
- 4. Veltman's condition for the Higgs mass
- 5. Singlets as dark matter?
- 6. Summary

2. Model

and

Our method of analysis

Model

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}}|_{\mu_{\mathrm{H}} \to 0} + \frac{1}{2} (\partial_{\mu} \vec{S})^2 - \lambda_{\mathrm{HS}} (H^{\dagger} H) (\vec{S} \cdot \vec{S}) - \frac{\lambda_{\mathrm{S}}}{4} (\vec{S} \cdot \vec{S})^2$$

$$H: \text{ Higgs doublet}$$

$$\vec{S}: \text{ SM singlet (global } O(N)\text{-multiplet})$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} G^+ \\ v_{\mathrm{H}} + h + i G^0 \end{pmatrix}, \quad \vec{S} = \begin{pmatrix} v_{\mathrm{S}} + s_1 & s_2 & \cdots & s_N \end{pmatrix}^{\mathrm{T}}$$

$$\text{K. A. Meissner et.al. [hep-ph/0612165],}$$

$$\text{R. Foot et. al. [0704.1165]}$$

$$\text{etc.}$$

- We have re-analysed the model and its effective potential,
- and found the consistent vacuum by more precise perturbation.

(cf. R. Dermisck et.al. [1308.0891], C. Tamarit [1404.7673])

Particle content

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}}|_{\mu_{\mathrm{H}} \to 0} + \frac{1}{2} (\partial_{\mu} \vec{S})^{2} - \lambda_{\mathrm{HS}} (H^{\dagger} H) (\vec{S} \cdot \vec{S}) - \frac{\lambda_{\mathrm{S}}}{4} (\vec{S} \cdot \vec{S})^{2}$$

$$H: \text{ Higgs doublet}$$

$$\vec{S}: \text{ SM singlet (global } O(N)\text{-multiplet})$$

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^{+} \\ v_{\mathrm{H}} + h + iG^{0} \end{pmatrix}, \quad \vec{S} = \begin{pmatrix} v_{\mathrm{S}} + s_{1} & s_{2} & \cdots & s_{N} \end{pmatrix}^{\mathrm{T}}$$

SM particles

+

N real singlet scalar bosons (s_i)

- mass² ~ $\lambda_{HS} V_H^2$
- singlet field VEV <S>=0 eventually
- thus singlet cannot decay

Effective potential

H: Higgs doublet

 \vec{S} : SM singlet (global O(N)-multiplet)

$$\langle H \rangle_J = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \phi \end{pmatrix}, \quad \langle \vec{S} \rangle_J = (\varphi, 0, \dots, 0); \quad \phi, \varphi \in \mathbb{R}, \quad \phi, \varphi \neq 0$$

$$V_{\rm eff}(\phi,\,\varphi) = V_{\rm tree}(\phi,\,\varphi) + V_{\rm 1-loop}(\phi,\,\varphi)$$

$$V_{\mathrm{tree}}(\phi,\,arphi) = rac{\lambda_{\mathrm{H}}}{4}\phi^4 + rac{\lambda_{\mathrm{HS}}}{2}\phi^2arphi^2 + rac{\lambda_{\mathrm{S}}}{4}arphi^4$$

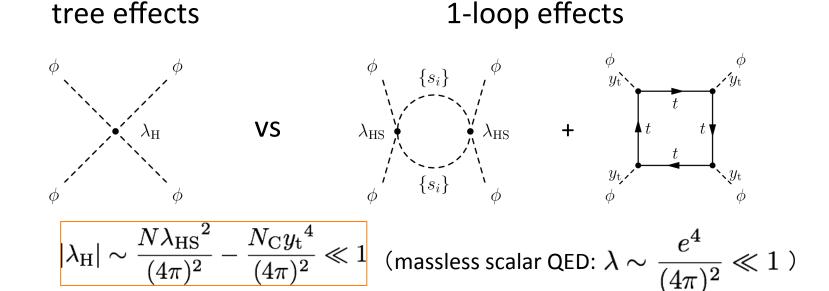
$$V_{1\text{-loop}}(\phi, \varphi) = \sum_{i} \frac{n_i}{64\pi^2} M_i^4(\phi, \varphi) \left[\ln \frac{M_i^2(\phi, \varphi)}{\mu^2} - c_i \right] (\overline{\text{MS}} \text{ scheme})$$

 $M_i^2(\phi, \varphi)$: mass-squared eigenvalues \leftarrow determined in tree level

 μ : renormalisation scale \rightarrow set to Higgs VEV 246GeV

 c_i : scheme-dependent constants

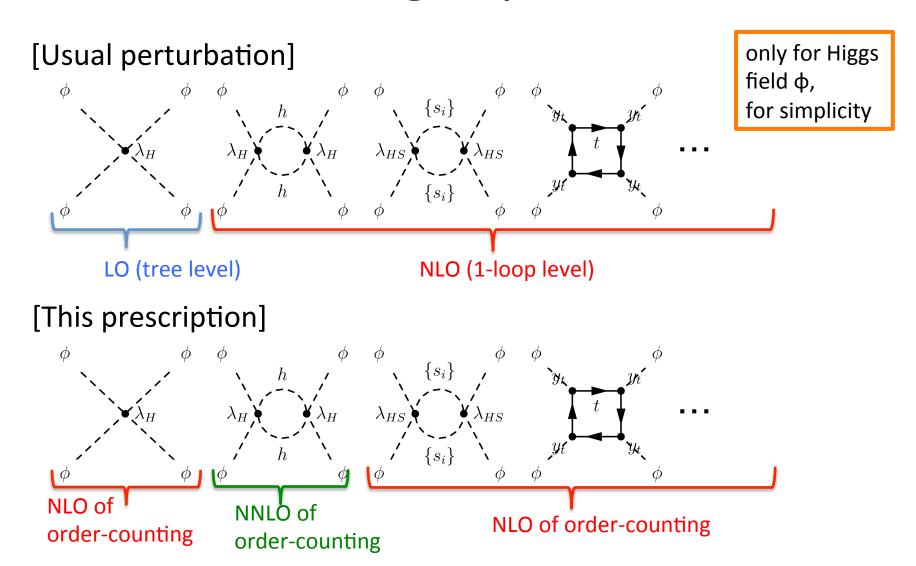
It is necessary that tree and 1-loop effects balance each other to occur correctly EWSB via CW mechanism.



.

(Roughly $|\lambda_{
m H}| \ll |\lambda_{
m HS}|$. $N_{
m C}$ is the colour factor.)

Using this relation gives us specific order-counting.



[For the tree potential]

$$|\lambda_{\rm H}| \ll |\lambda_{\rm HS}|$$

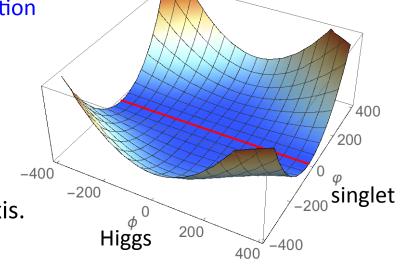
$$\frac{\lambda_{\rm H}}{4} \phi^4 + \frac{\lambda_{\rm HS}}{2} \phi^2 \varphi^2 + \frac{\lambda_{\rm S}}{4} \varphi^4$$

next-to-leading order (**NLO**) of perturbation

leading order (**LO**) of perturbation

•The LO potential is $\, rac{\lambda_{
m HS}}{2} \phi^2 arphi^2 + rac{\lambda_{
m S}}{4} arphi^4 \,$

•and it has degenerate minima on the ϕ -axis.



[For the 1-loop corrections]

$$\frac{1}{64\pi^2} \operatorname{STr} M^4(\phi) \left[\ln \left(\frac{M^2(\phi)}{\mu^2} \right) - C \right]$$

$$|\lambda_{\rm H}| \ll |\lambda_{
m HS}|$$

$$\frac{1}{64\pi^2} (\lambda_{\rm H}\phi^2 + \lambda_{\rm HS}\varphi^2)^2 \left[\ln \left(\frac{\lambda_{\rm H}\phi^2 + \lambda_{\rm HS}\varphi^2}{\mu^2} \right) - \frac{3}{2} \right]$$

$$\simeq \frac{1}{64\pi^2} (\lambda_{\rm HS}\varphi^2)^2 \left[\ln \left(\frac{\lambda_{\rm HS}\varphi^2}{\mu^2} \right) - \frac{3}{2} \right]$$

$$\frac{1}{64\pi^2} F_{\pm}^{2}(\phi,\,\varphi) \left[\ln \left(\frac{F_{\pm}(\phi,\,\varphi)}{\mu^2} \right) - \frac{3}{2} \right] \simeq \frac{1}{64\pi^2} F_{\pm \mathrm{app}}^{2}(\phi,\,\varphi) \left[\ln \left(\frac{F_{\pm \mathrm{app}}(\phi,\,\varphi)}{\mu^2} \right) - \frac{3}{2} \right] \,,$$

where

$$F_{\pm}(\phi, \varphi) \simeq F_{\pm \mathrm{app}}(\phi, \varphi)$$

$$\phi \equiv rac{\lambda_{
m HS}}{2}\phi^2 + rac{\lambda_{
m HS}+3\lambda_{
m S}}{2}arphi^2 \pm \sqrt{\left[-rac{\lambda_{
m HS}}{2}\phi^2 + rac{\lambda_{
m HS}-3\lambda_{
m S}}{2}arphi^2
ight]^2 + 4\lambda_{
m HS}^2\phi^2arphi^2}$$

$$\begin{split} V_{\text{LO}} = & \frac{\lambda_{\text{HS}}}{2} \phi^2 \varphi^2 + \frac{\lambda_{\text{S}}}{4} \varphi^4 \\ V_{\text{NLO}} = & \frac{\lambda_{\text{H}}}{4} \phi^4 + \frac{F_{+\text{app}}^2(\phi, \varphi)}{64\pi^2} \left[\ln \left(\frac{F_{+\text{app}}(\phi, \varphi)}{\mu^2} \right) - \frac{3}{2} \right] \\ & + \frac{3}{64\pi^2} (\lambda_{\text{HS}} \varphi^2)^2 \left[\ln \left(\frac{\lambda_{\text{HS}} \varphi^2}{\mu^2} \right) - \frac{3}{2} \right] \\ & + \frac{N-1}{64\pi^2} (\lambda_{\text{HS}} \phi^2 + \lambda_{\text{S}} \varphi^2)^2 \left[\ln \left(\frac{\lambda_{\text{HS}} \phi^2 + \lambda_{\text{S}} \varphi^2}{\mu^2} \right) - \frac{3}{2} \right] \\ & + (\text{vector boson parts}) + (\text{fermion parts}) \end{split}$$

@ LO

- Higgs field has degenerate minima on the ϕ -axis.
- •Singlet field does not have VEV (O(N)-symmetry is not broken).

@ NLO

- Higgs VEV determines and Higgs boson gets its mass.
- Higgs becomes lighter than singlet(s).
 (cf. E. Gildener and S. Weinberg [PRD13, 3333 (1976)])

RG-improved potential

We used the two kinds of RG-improved potential.
[M. Bando et. al., PLB 301, 83 (1993)]

$$\begin{split} V_{\text{eff}}^{\text{(LL)}}(\phi,\,\varphi) &= \frac{\lambda_{\text{H}}(t)}{4}\phi^4(t) + \frac{\lambda_{\text{HS}}(t)}{2}\phi^2(t)\varphi^2(t) + \frac{\lambda_{\text{S}}(t)}{4}\varphi^4(t) \\ V_{\text{eff}}^{\text{(imp-NLO)}}(\phi,\,\varphi) &= \frac{\lambda_{\text{H}}(t)}{4}\phi^4(t) + \frac{\lambda_{\text{HS}}(t)}{2}\phi^2(t)\varphi^2(t) + \frac{\lambda_{\text{S}}(t)}{4}\varphi^4(t) \\ &+ \sum_{i} \frac{n_i}{64\pi^2} M_i^4(\phi(t),\,\varphi(t)) \left[\ln \frac{M_i^2(\phi(t),\,\varphi(t))}{\mu^2(t)} - c_i\right] \\ &\qquad \qquad (t: \text{running parameter}) \end{split}$$

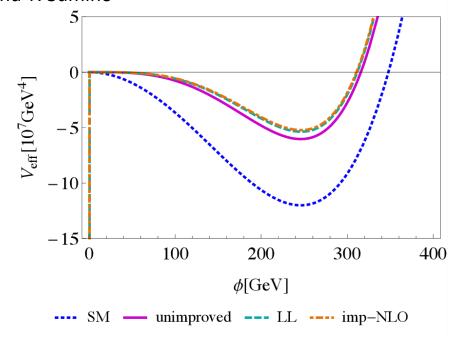
<u>Using both</u>, we can compare the "shape" around the vacuum and can confirm the validity of perturbation there.

3. Couplings of the Higgs and singlets

Results: N = 1 case

N = 1				
$\overline{\mu}$	$v_H = 246 \text{ GeV}$			
$\overline{y_t(v_H)}$	0.919			
$g(v_H)$	0.644			
$g'(v_H)$	0.359			
$\overline{\lambda_H(v_H)}$	-0.059			
$\lambda_{HS}(v_H)$	$\boxed{4.5}$			
$\lambda_S(v_H)$	0.10			
$\langle H angle$	$246 \; \mathrm{GeV}$			
m_h	$126 \; \mathrm{GeV}$			
$\langle S \rangle$	0			
m_s	527 GeV			
Landau pole	4.1 TeV			

K.E. and Y. Sumino



Almost the same as the previous work (R. Dermisck et.al. [1308.0891]).

ightarrow Our analysis is valid around the VEV $\langle \phi \rangle = 246 {
m GeV}$.

Results: N = 4 and 12 cases

N = 4					
$\overline{\mu}$	$v_H = 246 \text{ GeV}$				
$\overline{y_t(v_H)}$	0.919				
$g(v_H)$	0.644				
$g'(v_H)$	0.359				
$\overline{\lambda_H(v_H)}$	-0.061				
$\lambda_{HS}(v_H)$	2.3				
$\lambda_S(v_H)$	0.10				
$\overline{\hspace{1cm}\langle H \rangle}$	246 GeV				
m_h	126 GeV				
$\langle S \rangle$	0				
m_s	378 GeV				
Landau pole	19 TeV				

N = 12				
$\overline{\mu}$	$v_H = 246 \text{ GeV}$			
$\overline{y_t(v_H)}$	0.919			
$g(v_H)$	0.644			
$g'(v_H)$	0.359			
$\lambda_H(v_H)$	-0.063			
$\lambda_{HS}(v_H)$	1.4			
$\lambda_S(v_H)$	0.10			
$\overline{\hspace{1cm}\langle H \rangle}$	$246 \; \mathrm{GeV}$			
m_h	126 GeV			
$\langle S \rangle$	0			
m_s	293 GeV			
Landau pole	37 TeV			

K.E. and Y. Sumino

As N increases,

- •portal coupling λ_{HS} decreases
- •and Landau pole goes far away,
- •singlet mass decreases ($m_s^2 = \lambda_{HS} v_H^2$).

Results: Couplings of the Higgs and Singlets

	N=1	N=4	N = 12
$\lambda_{hhh}/\lambda_{hhh}^{ m (SM)}$	1.8	1.7	1.6
$\lambda_{hhhh}/\lambda_{hhhh}^{ m (SM)}$	4.3	3.2	2.8
λ_{hss}	20	10	5.9
λ_{hhss}	13	5.7	3.2
λ_{ssss}	8.3	1.9	0.9

K.E. and Y. Sumino

$$V_{\text{eff}} = \text{const.} + \frac{1}{2} m_{\text{h}}^2 h^2 + \frac{1}{2} m_{\text{s}}^2 \vec{s} \cdot \vec{s} + \frac{\lambda_{\text{hhh}}}{3!} v_{\text{H}} h^3 + \frac{\lambda_{\text{hhhh}}}{4!} h^4 + \frac{\lambda_{\text{hss}}}{2} v_{\text{H}} h \vec{s} \cdot \vec{s} + \frac{\lambda_{\text{hhss}}}{4} h^2 \vec{s} \cdot \vec{s} + \frac{\lambda_{\text{ssss}}}{4!} (\vec{s} \cdot \vec{s})^2 + \dots,$$

Comparison with GW's method

E. Gildener and S. Weinberg [*PRD*13, 3333 (1976)]

N = 1	λ_{hhh}	λ_{hhhh}	λ_{hss}	λ_{hhss}	λ_{ssss}
SM prediction	0.78	0.78	none	none	none
GW's framework	1.3	2.9	$2\lambda_{HS} = 9.6$	$2\lambda_{HS} = 9.6$	$6\lambda_S = 0.6$
our analysis (LL)	1.4	3.4	10.2	13.0	6.5

N=4	λ_{hhh}	λ_{hhhh}	λ_{hss}	λ_{hhss}	λ_{ssss}
SM prediction	0.78	0.78	none	none	none
GW's framework	1.3	2.9	$2\lambda_{HS} = 4.8$	$2\lambda_{HS} = 4.8$	$6\lambda_S = 0.6$
our analysis (LL)	1.3	2.5	5.0	5.7	1.9

N = 12	λ_{hhh}	λ_{hhhh}	λ_{hss}	λ_{hhss}	λ_{ssss}
SM prediction	0.78	0.78	none	none	none
GW's framework	1.3	2.9	$2\lambda_{HS} = 2.8$	$2\lambda_{HS} = 2.8$	$6\lambda_S = 0.6$
our analysis (LL)	1.3	2.2	3.0	3.2	0.92

4. Veltman's condition for the Higgs mass

Is Veltman's condition favoured?

[Veltman's condition]

Coefficient of quadratic divergence

in quantum corrections for Higgs mass vanishes.

→ If it is, there is no fine-tuning.

Cutoff-regularised quantum correction:

$$V_1(\phi) = \frac{1}{64\pi^2} STr \left[\Lambda^4 \left(\ln \Lambda^2 - \frac{1}{2} \right) + 2M^2(\phi) \Lambda^2 + M^4(\phi) \left(\ln \frac{M^2(\phi)}{\Lambda^2} - \frac{1}{2} \right) \right] + \text{c.t.}$$

[O. Antipin et. al, 1310.0957v3] etc.

Coefficient of quadratic divergence for Higgs mass:

$$\left. \frac{1}{2} \frac{\partial^2}{\partial h^2} STr M^2(h) \right|_{\mu=\mu_0} = \frac{1}{v_H^2} \left(6m_W^2 + 3m_Z^2 - 12m_t^2 + Nm_s^2 \right)$$

Is Veltman's condition favoured?

SM case

$$\frac{1}{v_H^2} \left[6m_W^2 + 3m_Z^2 - 12m_t^2 + m_h^2 \right] \simeq -4$$

Our model

$$\frac{1}{v_H^2} \left[6m_W^2 + 3m_Z^2 - 12m_t^2 + Nm_s^2 \right] \simeq \begin{cases} 0.3 - 0.8 & \text{for } N = 1\\ 4.9 - 5.1 & \text{for } 4\\ 12 - 13 & \text{for } 12 \end{cases}$$

based on K.E. and Y. Sumino

N = 1 case seems to be relatively and approximately favoured, so that Fine-tuning seems to be relaxed.

5. Singlets as dark matter?

Singlets as dark matter?

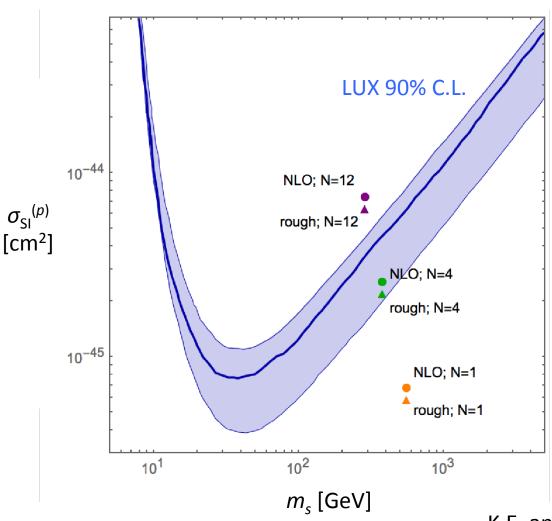
- Singlets can be the dark matter candidates.
- Their thermal relic abundance are very small.
- Spin-independent cross sections with proton are predicted.
 Precision has been improved recently.

We used the framework in *JHEP* 1506 (2015) 097 (Hisano, Ishiwata, Nagata).

N	1	4	12	
$\Omega_{s_i}/\Omega_{ m DM}$	2.01×10^{-4}	4.54×10^{-4}	8.07×10^{-4}	
$\tilde{\sigma}_{\rm SI}^{(p)} [10^{-46} {\rm cm}^2]$	6.77	25.6	74.5	

K.E. and K. Ishiwata

Singlets as dark matter?



K.E. and K. Ishiwata

6. Summary

Summary

- Can only Higgs self couplings deviate (significantly) from SM predictions? → classically scale-inv. model
- •We found perturbatively valid vacuum taking into account consistent order counting.
- Higgs self couplings: $\lambda_{3h}/\lambda_{3h}^{\rm SM}\sim 1.7,~\lambda_{4h}/\lambda_{4h}^{\rm SM}\sim 3.0-4.0$
- Singlet scalars get mass around 300-500GeV and are only pair-produced.
- N = 1 case
 - Singlet can be dark matter;
 although relic abundance is small, it is detectable.
 - may approximately satisfy Veltman's condition.

Thank you for your attention.