LHCでのHiggs研究 東大ICEPP 江成祐二

基研研究会 素粒子物理学の進展2016

2016年9月5日 - 9月9日 於京都大学基礎物理学研究所

目次

イントロ –LHCとATLASの運転状況 SM Higgsの最新結果 –Bosonic channel : H→γγ, H→ZZ –Fermionic channel : H→bb, ttH

- VV/VH resonance search
- まとめ

LHC 13 TeV run (2015-)

- ICHEP前はまさに絶好調!
 - ICHEPのデータセットは最大15 fb⁻¹
 - 現在までの積分ルミノシティーは23 fb⁻¹.
 - 瞬間ルミノシティーは 1.2 x 10^34 cm⁻²s⁻¹
 - 一回のFillで700 pb⁻¹を貯めた。
 - 今年は落雷などによる停電もなく、素晴らしいパフォーマンス。

LHC加速器

	2015年(11月)	2016年(8月)	LHC の設計値
エネルギー [TeV]	6.5	6.5	7
バンチ間隔 [ns]	25	25	25
陽子数 [1014]	~2.5	~2.5	1.15
衝突バンチ数	2232 (18トレイン)	2160 (23トレイン)	2736
beta* [cm]	80	40	50
ピークルミノシティ [10 ³⁴ cm ⁻² s ⁻¹]	~0.5	~1.2	1

- 設計値を越えつつある。
- ピークルミノシティーは まだ伸びる予定。
- 実験側は。。

ATLASの運転状況

ATLAS pp 25ns run: April-July 2016

Inne	er Tracker Calorimeters Muon Spe		cker Calorimeters Muon Spectrometer			eter	Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
98.9	99.9	100	99.8	100	99.6	99.8	99.8	99.8	99.7	93.5

Good for physics: 91-98% (10.1-10.7 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at \sqrt{s} =13 TeV between 28th April and 10th July 2016, corresponding to an integrated luminosity of 11.0 fb⁻¹. The toroid magnet was off for some runs, leading to a loss of 0.7 fb⁻¹. Analyses that don't require the toroid magnet can use that data.

 検出器側も大きなトラブ ルはなく、好調と言える。

物理解析への影響

- 沢山データが貯まるのはうれしいのです。が、
- 実験側は戦い。
 - トリガー
 - MET
- 今のところ大丈夫。
 まだ50%程上がる可能性があり、準備を進めている。

Mean Number of Interactions per Crossing

Higgsの物理

- SM Higgsの詳細測定
 - プロパティ
 - 結合定数
- BSM Higgs
 - MSSM: H→tautau, charged Higgs
- VV/VH/HH resonance
 - 2HDM
 - Heavy Vector Triplet

Discovery to measurement

- 2012 July : discovery
 - 7 TeV(5 fb⁻¹)+ 8 TeV (5.8 fb⁻¹)
 - $-H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
- Run 1
 - 7 TeV 5 fb⁻¹
 - 8 TeV 20 fb⁻¹
- Run-2 has started at 13 TeV!
 2015: 3.2 fb⁻¹
 - 2016: 13.2 fb⁻¹ + α (~ 1.5 fb⁻¹).

From Run-1

Run-1 to Run-2

$H \rightarrow VV$ at Run-2

$H \rightarrow VV$ at Run-2

ttH and VH

- Due to multi-jet background, Leptons (e, μ or $\nu\nu$) need to be final state.
- For $H \rightarrow bb$, VH production is most sensitive

- W→eν, μν. Z→ee, μμ, νν

- For ttH, we try to use all mode
 - H \rightarrow bb is the main analysis
- Backgrounds
 - Common: W+jets, Z+jets, s-top, ttbar, Multi-jets
 - VH case: Diboson
 - ttH case: ttbar+heavy flavor (bb/cc), ttbar+vector boson(s)
- <u>b-jet identification and reconstruction is the key for these analysis</u>.

b-Jet tagging

ATLAS-FTAG-2016-001 ATL-PHYS-PUB-2015-022

Improvement on b-tagging at Run-2

33.25 mn

- IBL
 - Additional Pixel layer
 - Resolution of impact param.
 for track pT range of 5-10 GeV
 → 30-60% improvement
- MVA training scheme

- Run-1 training: b-jet vs light jet
 - → Run-2: b-jets vs (80% light + 20% charm)

Improvements on rejection factor

Low jet pT → IBL + algorithm

High jet pT → mainly algorithm

ttH analysis

- H→bb
 - 1-lepton, 2-lepton
- Н → үү
- H→WW,ZZ
 - Same sign 2-lepton, 3-lepton, 4-lepton
 - Channel with tau.

b-Jet tagging

In the analysis ATLAS Run2 b-tag : btag eff: b: 70%, c: 1/12, light: 1/380
 Categorize event with number b-jet (i.e. 70% OP)

ttH, H→bb

1-lepton: 6 jets with 4 b-jets2-lepton: 4 jets with 4 b-jets

- There are four true b-jets in a ttH event.
 - With reconstruction BDT
 - Correct assignment can be achieved only 12% (42%) for 1-lepton (2lepton)
 - → BDT is also use for signal extraction as final discriminant.
- Background is tt+light, tt+cc, tt+bb

ttH Hbb fit model

ATLAS-CONF-2016-080

- In order to estimate BG, perform simultaneous fit with control regions (CR)
 - 6 CRs : HT is used.
 - 3 SRs: MVA is used.
- Normalization and systematic variations are constrained by the fit.

Systematic variations for ttbar + bb

ttH, Hbb effect on systematics

2 lepton 4jet 4btag

Uncertainty source	Δ	μ
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t} + \ge 1c$ modelling	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
<i>tī</i> +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t} + \ge 1b$ normalisation	+0.34	-0.34
$t\bar{t} + \geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

ttbar + bb modeling is dominant systematic.

20

ATLAS-CONF-2016-080

ttH, Hbb result

21

CMS has 13 TeV analysis with 2.7 fb⁻¹. observed mu = -2.0 ± 1.8 .

ttH H $\rightarrow \gamma \gamma$

• Leptonic and Hadronic categories for ttbar reconstruction

CMS-PAS-HIG-16-020

ATLAS-CONF-2016-067

ttH multi leptons

ATLAS-CONF-2016-058

• $H \rightarrow WW$, ZZ,	τι
----------------------------	----

	Higg	$A \times \epsilon$			
Category	WW^*	ττ	ZZ^*	Other	$(\times 10^{-4})$
$2\ell 0 au_{\rm had}$	77%	17%	3%	3%	14
$2\ell 1\tau_{\rm had}$	46%	51%	2%	1%	2.2
3l	74%	20%	4%	2%	9.2
<u>4</u> <i>l</i>	72%	18%	9%	2%	0.88

Dominant background are with: Electron charge flip, Fake lepton BG

ttW and ttZ validation region

ttH multi leptons

•	H۰	\rightarrow	W	W,	ZZ,	ττ
---	----	---------------	---	----	-----	----

	Higg	$A \times \epsilon$			
Category	WW^*	ττ	ZZ^*	Other	$(\times 10^{-4})$
$2\ell 0 au_{\rm had}$	77%	17%	3%	3%	14
$2\ell 1\tau_{\rm had}$	46%	51%	2%	1%	2.2
3l	74%	20%	4%	2%	9.2
4 <i>l</i>	72%	18%	9%	2%	0.88

Summary on ttH analyses (σ_{obs}/σ_{SM})

CMS	CMS	EXPE		ATLAS	(Ru	n-2)	
ttH Channel	$\mu = \sigma / \sigma_{SM}$		ATLAS	Preliminary	√s=13 T	eV, 13.2-13	3.3 fb ⁻¹
	$(m_H = 125.7 \text{ GeV})$		-total	-stat.	(to	t.) (stat.,	syst.)
$\gamma\gamma$	$1.9^{+1.5}_{-1.2}$	t̄tH(H→γγ) (13 TeV 13.3 fb ⁻¹)		•	-0.3 _	$\begin{array}{c} 1.2 \\ 1.0 \end{array} \left(\begin{array}{c} +1.2 \\ -1.0 \end{array}\right),$	+0.2)
$b\overline{b}$	-2.0 ± 1.8 (2.7 fb ⁻	¹) _{tĪH(H→} WW/ττ/ZZ)			2.5	$\begin{array}{c} 1.3 \\ -0.7 \\ 1 \end{array}$	+1.1)
au au	$-1.4^{+6.3}_{-5.5}$ (Run1)	(13 TeV 13.2 fb ⁻¹)					0.0
41		tĪH(H→bb̄) (13 TeV 13.2 fb ⁻¹)		⊢⊢●	2.1 +	$\begin{array}{c} 1.0\\ 0.9 \end{array} \left(\begin{array}{c} +0.5\\ -0.5 \end{array} \right),$	+0.9)
31	- 2.0 + 0.8 - 0.7	tīH combination (13 TeV)		H●H	1.8 ⁺⁰	$\begin{array}{c} 0.7 \\ 0.7 \end{array} \left(\begin{array}{c} +0.4 \\ -0.4 \end{array} \right),$	+0.6 -0.5)
Same-sign 2l	·	till som bisstics			1 7 +	0.8 (+0.5	+0.7
Combined	$+2.5^{+1.1}_{-1.0}$ (Run1)	(7-8TeV, 4.5-20.3 fb ⁻¹)	0	2	1. 7 _(4	0.8 (_0.5 , 6 8	-0.6)
Combination	for run2 is not yet done.			b	est fit µ	for m _H =12	5 GeV

ATLAS-CONF-2016-068

<u>CMS-PAS-HIG-16-022</u> <u>CMS-PAS-HIG-16-020</u> <u>CMS-PAS-HIG-15-008</u>

Run-1の感度を超えている。2016年の全データを使えば見えるか。

VH, $H \rightarrow bb$ analysis

VH, $H \rightarrow$ bb analysis

ATLAS-CONF-2016-091

• Reconstruction on $H \rightarrow bb$

VH, $H \rightarrow bb$ analysis

• In order to maximize sensitivity, MVA is used.

Input variables:

- Most sensitive variable is Mbb
- Mtop, scalar sum of jets
- Angles between objects.

Result: ATLAS VH Hbb 13 TeV (13.2 fb⁻¹)

Cross check on VZ cross section measurement $\mu_{VZ} = 0.91 \pm 0.17 (stat)^{+0.32}_{-0.23} (sys)$ $\rightarrow \text{Observed significance: } 3.2 \sigma$ ATLAS-CONF-2016-091

- Expected sensitivity is 1.9 σ
- Low mu value was observed (again)

- Run1: μ = 0.52 ± 0.40

- CMS result is not released yet.
- Systematic uncertainty is comparable with stat uncertainty.

Systematic on VH Hbb

ATLAS-CONF-2016-091

Systematic on VH Hbb

High mass resonance search!

VV / VH searches

Boson tagging

- カロリーメータベースのジェットでEnergy, Massを測定
 - Grooming後のクラスタから。
- トラックベースのジェットで b-タグする。
 - 小さいサイズのJetを再構成出来る。
 - B-hadronの方向とjet軸が近くなり、性能 向上。
- Resonance searchに非常に有効。

200

180

160 140

120

100 80

60

40

20

Boson tagging

• HiggsのpTが高くなると…

- カロリーメータベースのジェットでEnergy, Massを測定
 - Grooming後のクラスタから。
- トラックベースのジェットで b-タグする。
 - 小さいサイズのJetを再構成出来る。
 - B-hadronの方向とjet軸が近くなり、性能 向上。
- Resonance searchに非常に有効。

2015 result

Zγ, 2-lepton, 1-lepton, 0-lepton (vv+jet, JJ)

VV reso search : 2-lepton

VV reso search : 1-lepton

- ATLAS, CMSともに13 fb⁻¹の解析。
- BG予想と良く一致
- 2.2 TeV以下はExcessなし。^흫
 - Modelによってはttbar threshold 以下は可能性 はある。

VV reso search : 0-lepton (JJ)

<u>8 TeVの解析</u>では2TeVに3 σのExcess。

13 TeVは2 σ以下

VV resonance search with 13-15 fb-1

残念ながら、2.3 TeVまではExcess無し。

$Z' \rightarrow ZH, W' \rightarrow WH$ with JJ

まとめ

- ヒッグス粒子発見後、舞台は測定に。
- クオークとの結合の直接測定はもう少しデータが必要。
 - HbbはRun-1とのCombinedで
 - ttHはすべてのFinal stateを足すことで 2016年のデータで「発見」可能か?
- Run-2で観測されたHiggsの数がRun-1を越えた。
 - 最初の結合測定もICHEPで発表された
 - ATLASとCMSで共通のFrameworkを決め、Fiducial cross section, Differential cross sectionを測定していく。
- VV/VH resonance searchが進行中
 BGモデルはHiggsの解析からの影響大
 今のところ、Excess無し(2.2 TeVくらいまで)。
- 2018年終わりまでに今の10倍のデータが手に入る