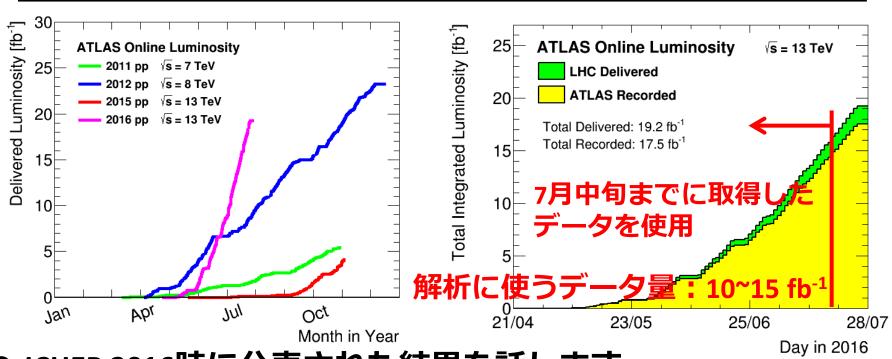


SUSY 探索

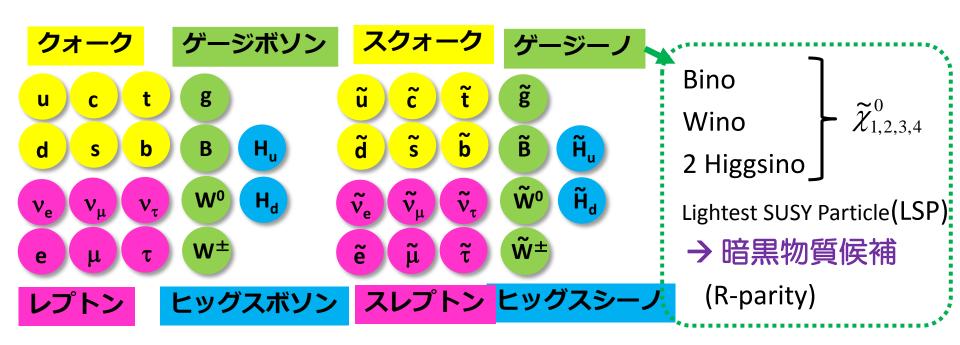
齋藤 智之 (東京大学 ICEPP)

SUSYが現れ ますように


2016年9月5日 基研研究会 京都大学 基礎物理学研究所

- 1. SUSY探索@LHCのポイント
- 2. ICHEP 2016の結果
 - グルイーノ探索
 - ストップ探索
- 3. まとめ

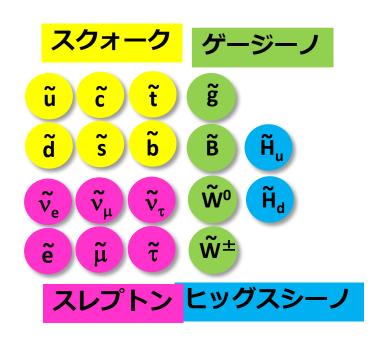
LHC-ATLAS



● ICHEP 2016時に公表された結果を話します

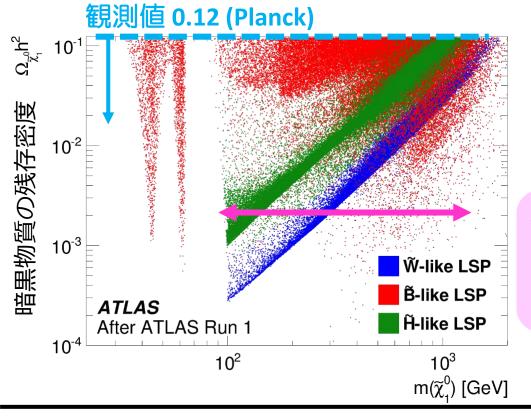
- ▶ LHCは7月絶好調。追いつくのが一苦労。
- ▶ データ取得してから2週間(実質1週間もない)で最終結果を 出すのが使命
- ▶解析はギリギリ(当日?)まで続いた→ SUSYは15の新結果!

超対称性 (SUSY)


超対称性:フェルミオンとボソンを統一

Why SUSY?

- ▶ 暗黒物質の良い候補を持つ
- ▶ ヒッグス質量125 GeV (MSSMの予言 < ~130 GeV)
- ▶ 大統一理論 (電磁気力、弱い力、強い力の統合)


何をどう探す?

他の観測結果からの示唆から何が探しやすいか? LHCが何が得意か?

Dark Matter

- <u>Lightest SUSY Particle (LSP)がDM候補</u>
 - ullet $(\widetilde{B},\widetilde{W},\widetilde{H})$ が混じって、質量固有状態($\widetilde{\chi}_{1,2,3,4}^0,\widetilde{\chi}_{1,2}^\pm$)
 - ▶ 混じり具合でDMの残存密度が変わる

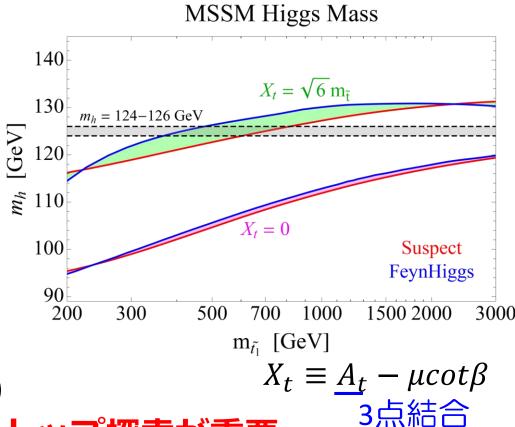
消滅断面積が大きいほど 残存量少

観測値より多くならないため には、**LSPは O(0.1 - 1) TeV** にある。

EWゲージーノは軽そう?

ヒッグス質量からの示唆

- MSSMでヒッグス質量を125 GeVにするには、
 - ①ストップ質量を大きくする

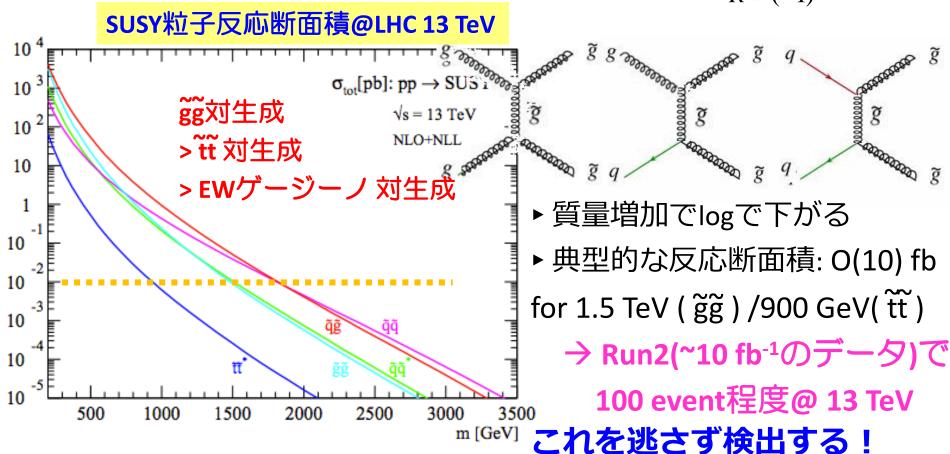

[Heavy scalar SUSY]

- →スクォークは重い
- → ゲージーノ探索が有望
- ② ストップ-ヒッグス3点結合を大きくすることで ストップは軽くできる。

[Maximal mixing]

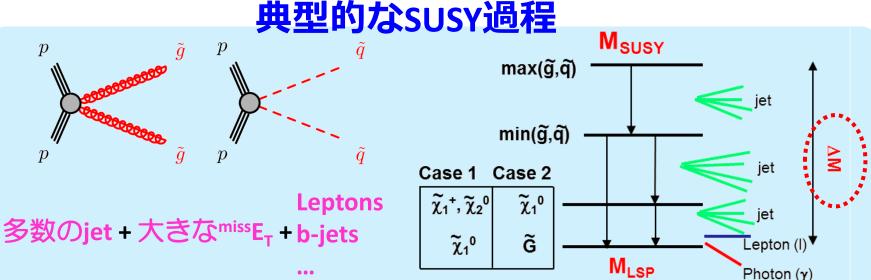
→軽いストップ

(③ NMSSM等のおまけがある)


ゲージーノ、ストップ探索が重要

JHEP04(2012)131

SUSY粒子生成@LHC

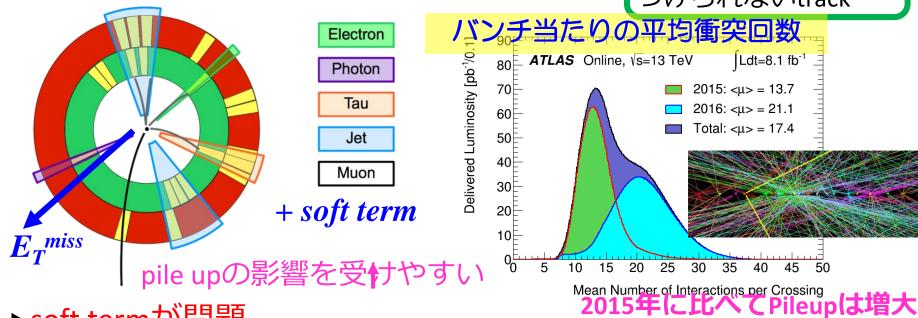

- LHCではColored SUSYの反応断面積が大きい(グルイーノ,スクォーク)
 - ► SUSY粒子は対生成で作られる (R-parity保存)

$$R \equiv (-1)^{2S+3(B-L)}$$

SUSY 粒子崩壊過程@LHC

● 重いグルイーノ/スクォークはより軽い粒子へ崩壊

特徴 (SUSY探索のポイント)

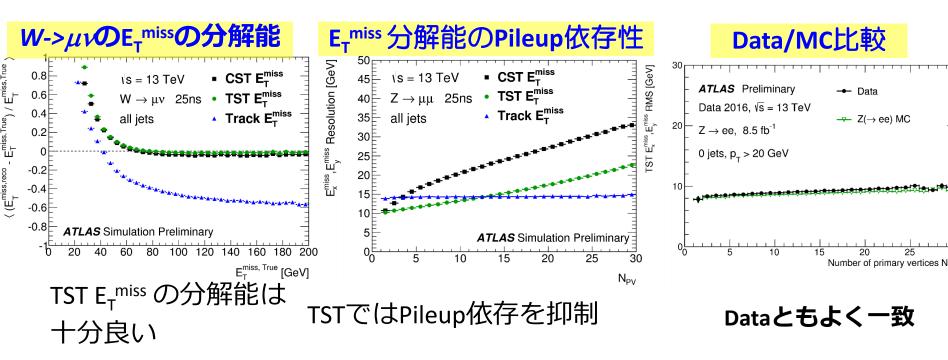

- ① 終状態に多数のjetと大きなE_Tmiss→ jetとE_Tmiss<mark>测定重要</mark>
- ②信号はmissing 2つでピークを作らない、分布のテイルに出現
- ③ kinematicsは各粒子の質量差(ΔM)に依存

SUSYに特化した探索が必要(次ページから①②③のコメント)

1 E₋miss Pileup対策

- <u>SUSY探索ではE_Tmiss</sub>測定が重要</u>
 - ▶ 「識別されたObjects」と「Soft term」の negative vector sum
 - ▶ 問題はPileupによるresolutionの悪化

識別したObjectと関連 づけられないtrack

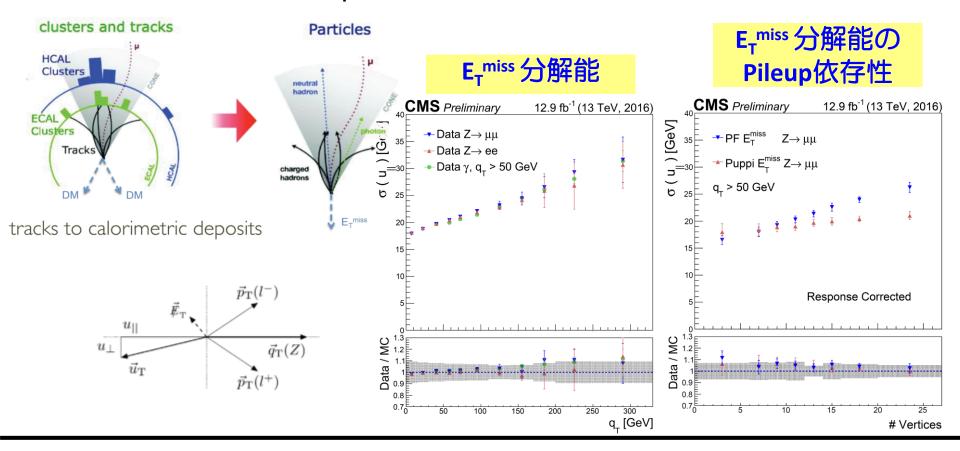

- ▶ soft termが問題
 - Calorimeter-based method (CST) → CST E_T^{miss} (Run1)
 - track-based method (TST)
- → TST E_Tmiss (Run2 Pileup対策)

① E_Tmiss 測定 性能評価

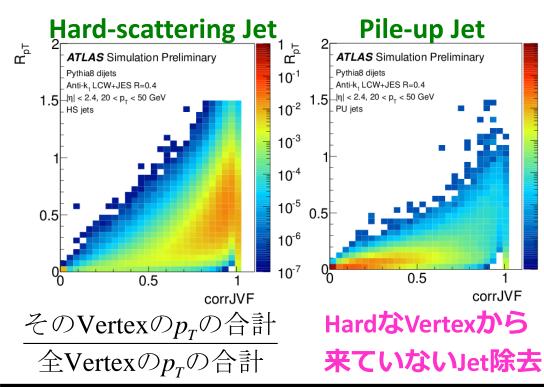
● Performance 比較

- ► Calorimeter-based method (CST) → CST E_T^{miss} (Run1)
- Track-based method (TST)

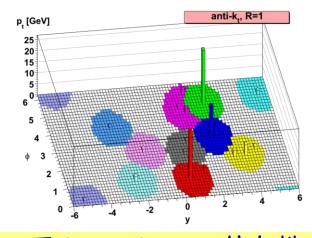
→ TST E_T^{miss} (Run2 Pileup対策)

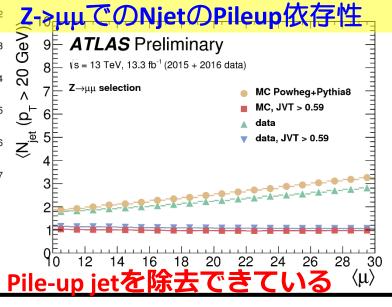


Run2ではTST E_Tmiss を採用


● CMSは基本はRun1と同じ手法

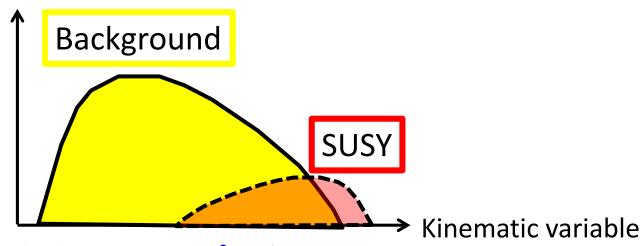
▶ Particle Flowを使った再構成でE_T^{miss}を粒子レベルで計算しているので、基本Pileupには強い




① Jet再構成 Pileup対策

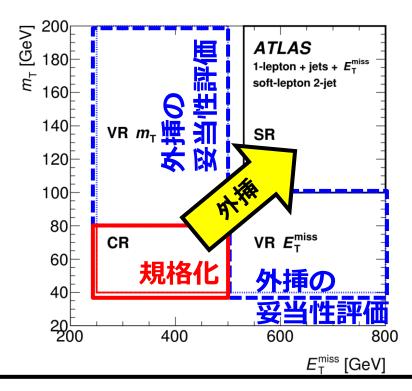
- <u>Jet再構成 (</u>anti-kt algorithm with R=0.4)
 - ▶距離と運動量を考慮
- <u>Pile-up jetの除去</u>
 - ▶ HardなVertex由来のJetであることを要求

カロリメータのクラスタの様子



10⁻¹

② SUSY信号


● 信号は鋭いpeakを作らない & 基本的に分布のテイルに出現

- ▶ 信号はいつも数イベントでピークなし
 - → 信号領域の背景事象をとても正確に評価しなければいけない
- ▶ テイルの評価
 - → 背景事象評価の際に信号領域のSide-bandを使えない
- ▶ ▶ 背景事象評価がChallenging

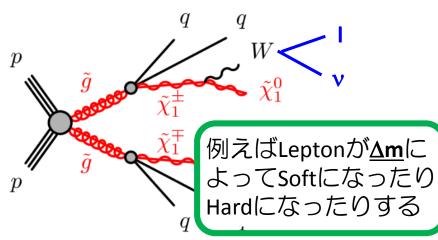
② SUSY信号: 背景事象の評価

- 信号領域は極端なPhase spaceなのでMCをそのまま使うのは危険
 - ▶ データ(Control Region)で規格化する
 - ▶ MCのmodelingを使ってSRへ外挿
 - ▶ 外挿の妥当性はValidation Regionを使って評価

③ SUSY 終状態のKinematics

● 終状態のkinematicsは各SUSY粒子の質量差(△m)に依存

▶ EW SUSY質量差はLSPのタイプによって決まる

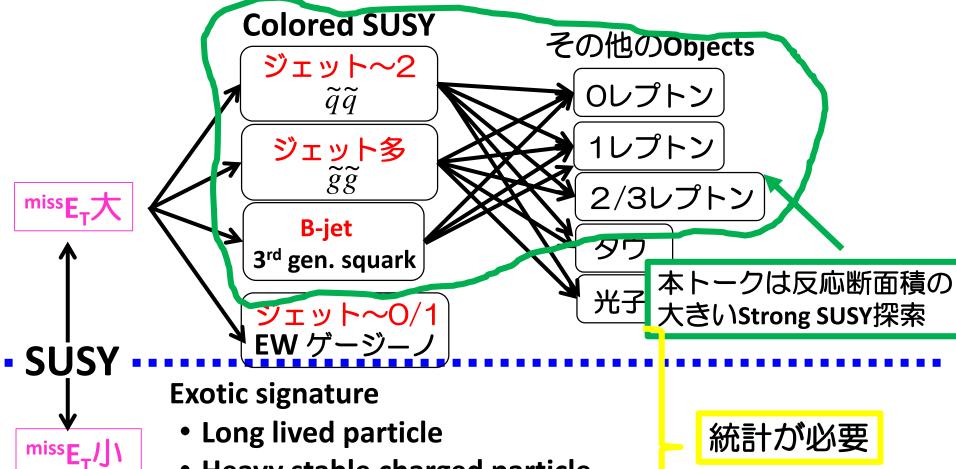

極端な場合のSUSY EW質量スペクトル

$$\widetilde{H} = \widetilde{\chi}_{3}^{0} \widetilde{\chi}_{4}^{0} \widetilde{\chi}_{2}^{\pm} \widetilde{H} = \widetilde{\chi}_{3}^{0} \widetilde{\chi}_{4}^{0} \widetilde{\chi}_{2}^{\pm} \widetilde{W} = \widetilde{\chi}_{4}^{0} \widetilde{\chi}_{2}^{\pm}$$

$$\widetilde{W} = \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{1}^{\pm} \quad \widetilde{B} - \widetilde{\chi}_{2}^{0} \quad \widetilde{B} - \widetilde{\chi}_{3}^{0}$$

$$\widetilde{R}$$
 — $\widetilde{\chi}_1^0$ \widetilde{W} \Longrightarrow $\widetilde{\chi}_1^0 \widetilde{\chi}_1^{\pm}$ \widetilde{H} \Longrightarrow $\widetilde{\chi}_1^0 \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0$

Bino-like LSP Wino-like LSP Higgsino-like LSP



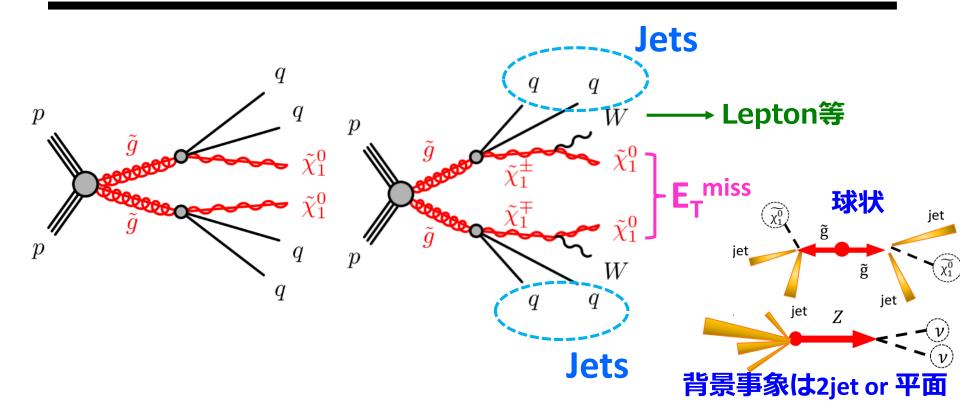
	$\Delta m \equiv \widetilde{\chi}_1^{\pm} - \widetilde{\chi}_1^{0}$	終状態		
Bino-like	大	Hard Objects→LHC得意		
Wino-like	小	$\widetilde{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle \pm}$ 長寿命 $oldsymbol{ o}$ 測定可		
Higgsino-like	1 1/	ĩ, 中寿命→測定困難		

様々な終状態が可能であるため、幅広い探索が必要

SUSY 探索

- SUSY 探索は様々な特殊な終状態を探す必要がある
 - ▶ あらゆる信号をカバーするために終状態のトポロジーで分類

Heavy stable charged particle ...

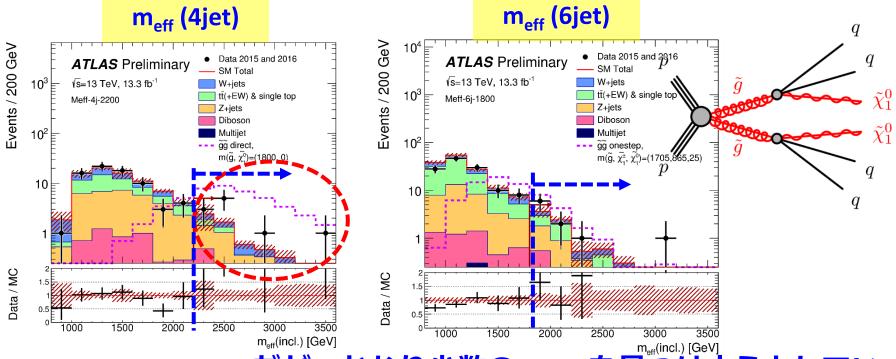

ICHEP Strong SUSY Results

2015年までのリスト(2σ以上): グルイーノ、ストップ探索

終状態		ターゲット	Run1		Run2 2015	
		ין עילי – פי	ATLAS	CMS	ATLAS	CMS
0L 1L		グルイーノ対生成				
		グルイーノ対生成			2.1σ Excess	
Z+ ^{miss} E-	on-shell Z	グルイーノ対生成	3.0♂ Excess		2.2σ Excess	
Z+************************************	off-shell Z	グルイーノ対生成		2.6σ Excess	/	
Multi-Leptons		グルイーノ対生成				
Multi-bjet		グルイーノ対生成				
Stop 0L		ストップ対生成				
Stop 1L		ストップ対生成			2.3 σ Excess	
Stop 2L		ストップ対生成				

これらを中心に話していく

グルイーノ探索



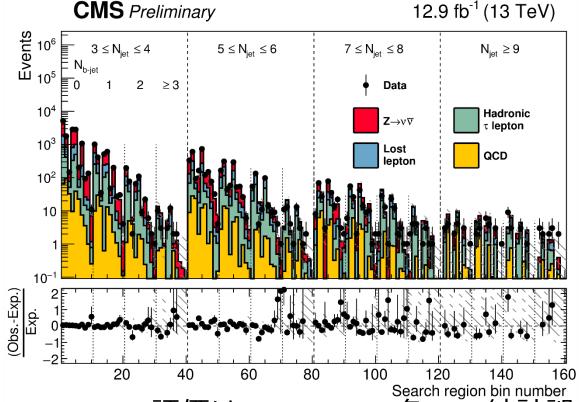
- <u>Topology</u>:重いグルイーノからのHardなEventという特徴を使う
 - ▶ 4本以上のjet、大きな^{miss}E_T, 大きな m_{eff} (=^{miss}E_T+Σp_{Tjet})(+レプトン,...)
 - ▶ Event shape (Aplanarity): 球状になりやすい

ATLAS: Jets + missE_T (0-Lepton)

● グルイーノ対生成からの all hadronic 終状態

- ▶ 最もシンプル。特殊な信号でなければまずこれで見えるべき。
- ▶ 4本以上のjet、大きな^{miss}E_T(>200 GeV), 大きな m_{eff} (=^{miss}E_T+Σp_{Tjet})

No Significant Excess だが、かなり少数のSignalを見つけようとしているので分布をチェックすることが大事 → 4jet領域が少し気になる

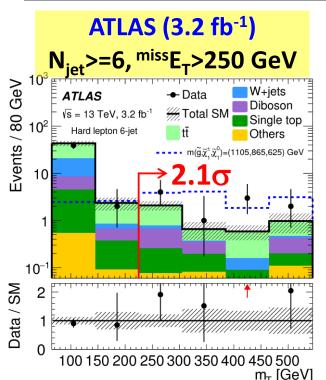

4 jet 信号領域のkinematics分布

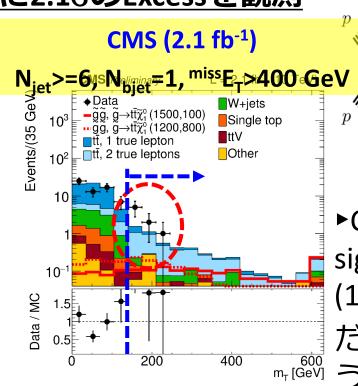
Dataがある領域に集中しているということはない 大きく背景事象の分布の形からはずれているEventは見当たらない

$m_{eff} = 2.8 \text{ TeV}$

CMS: Jets + missE_T (0-Lepton)

●N_{jet}, N_{bjet}, H_T, E_T^{miss}で分けて合計160 SRs


		-
Bin	$H_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	H_{T} [GeV]
1	300–350	300-500
2	300-350	500-1000
3	300-350	> 1000
4	350-500	350-500
5	350-500	500-1000
6	350-500	> 1000
7	500-750	500-1000
8	500-750	> 1000
9	> 750	750-1500
10	> 750	> 1500


No Excess

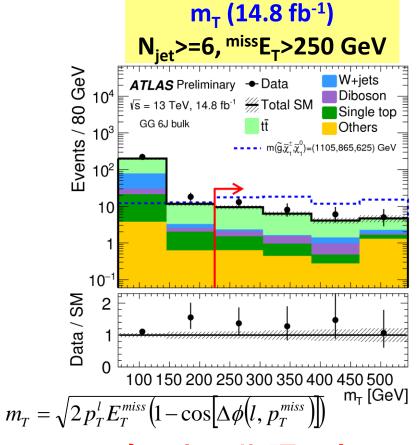
- ▶ Background評価はdata-driven : 各CRの統計誤差が大きい
 - Z+jets : γ+jets CRから
 - ttbar, W+jets (Hadronically decaying tau, Missing-lepton): 1-Lep CRから

グルイーノ探索 : 1-Lepton 2015

● 2015年のDataでATLASに2.1gのExcessを観測

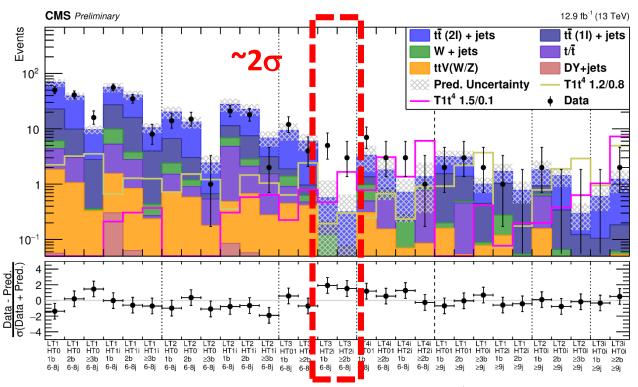
►CMS: No significant excess (1o以内)

だが少し多いよ うに見える

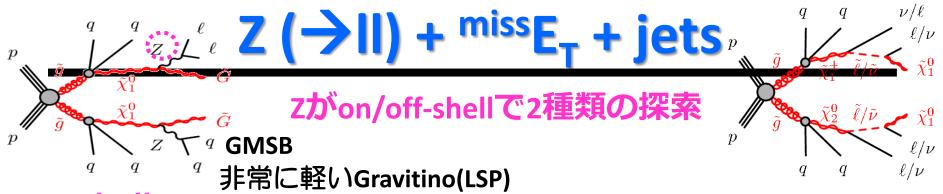

- ▶ ATLAS: 3.2 fb⁻¹のデータで2.1σ Excess
 - Muon(Electron): 8(2) events
 - Low E_Tmiss, m_Tは比較的高い, bjet 多め

2016年のデータで

要確認だった

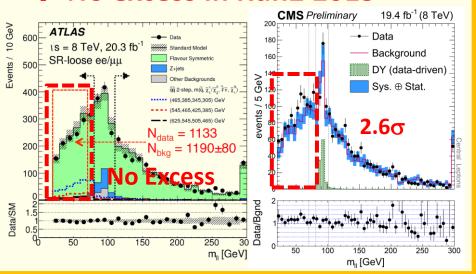

ATLAS: Jets + missE_T + 1-Lepton

● ATLASでは2015と同じSRを2016もキープしてExcessをチェック

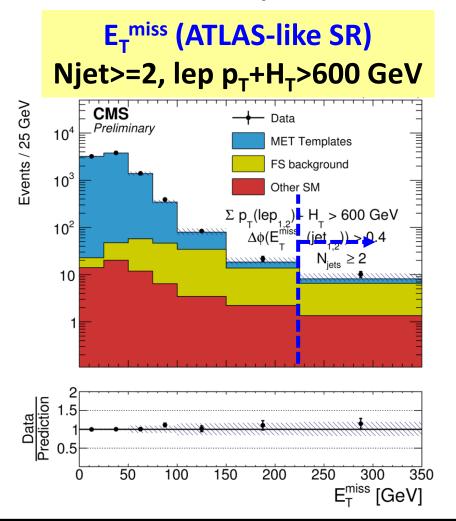


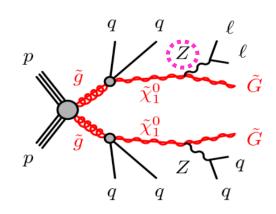
- ▶ 2016年最初は順調に育っていたが、結局減った.....(~1.5_o)
- ▶ 他の領域も特にExcessなし


CMS: Jets + missE_T + 1-Lepton


- ► No significant excessとは言っているが、High H_T(>1250 GeV), High L_T (450-600 GeV), Njet=6-8, nb>=1に2σ程度は見える
 - ATLAS 2015でExcess見えていた領域と似ている
- ▶ まだまだ注意が必要

- On-shell Z (81 GeV< m_{II}<101 GeV)
 - ► 3σ excess in ATLAS Run1
 - \rightarrow 2.2 σ excess in Run2 2015
 - ▶ No excess in CMS

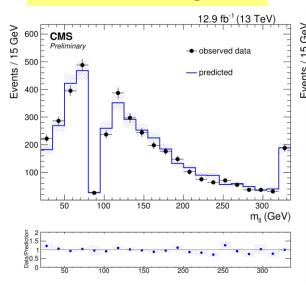

- Off-shell Z (low, high m_{II})
- No excess in ATLAS
- ► 2.6σ excess in CMS Run1
 - → No excess in Run2 2015



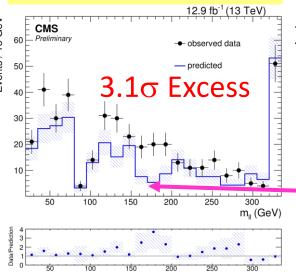
今回はCMSのみ結果を公表

CMS: On-shell Z Search

● ATLASでExcess (Run1 3g, Run2 2015 2.2g)を観測した探索


- ► CMSもATLASとほぼ同じSRを チェック
- No Excess

CMS: Off-shell Z Search

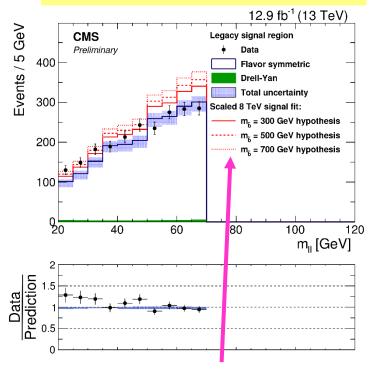


- ightharpoonup m_{II}>20 GeV, N_{iet}>=2, E_T^{miss}>150 GeV
- ▶ 背景事象はttbar di-leptonic decayが支配的
- E_T^{miss}, dilepton system p_T, ∆ϕ(leptons)等で組んだlikelihoodでttbarを分離

Non-ttbar-like Region

- ▶ しかし、Predictionの形状 がおかしい
- 支配的なttbar等はdatadriven (eμ CR)で算出

この凹みは物理ではないはず


▶ CMSのAnalyzerに確認した ところ...

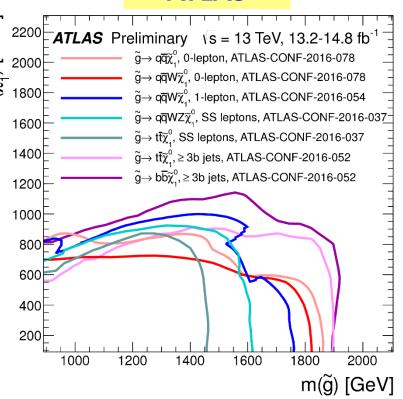
"it is what it is, and it seems that this is as much of a OF under-fluctuation as it is a SF over-fluctuation; so it looks like statistics, but we'll have to see what happens with more data."

CMS: Z+E_Tmiss+jets:Run1 Excess Region

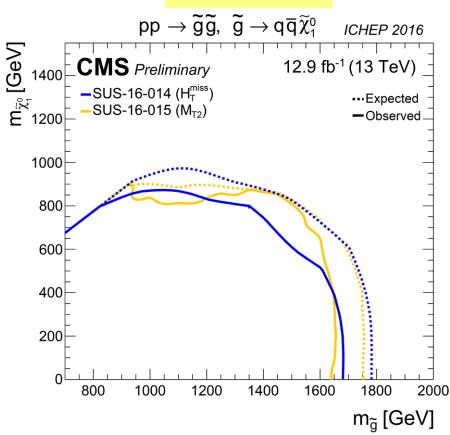
● CMS Run1 Excess(2.6σ)と今回のExcess(3.1σ)の関係は?

CMS Run1 Excess Region

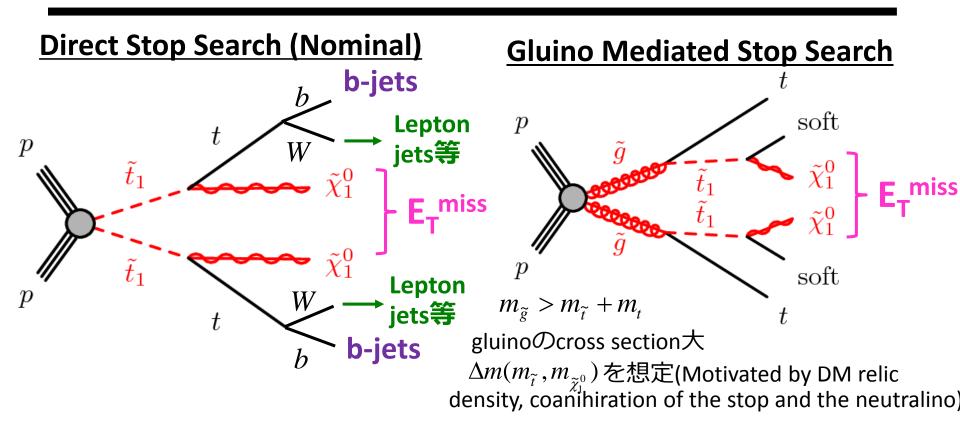
- ▶今回Excessが見えている領域と Run1の領域は異なる
- ▶実際、Run1のExcessは2015のデータでほぼexcludeされている
- **←2016年のデータでRun1 Excess領域を**見た時やはり何も見えない


今回ExcessとRun1のものは別物である

Run1 Excessを仮にsbottom pair production だと解釈して、luminosityとcross section (8/13 TeV)でscaleしたのが赤

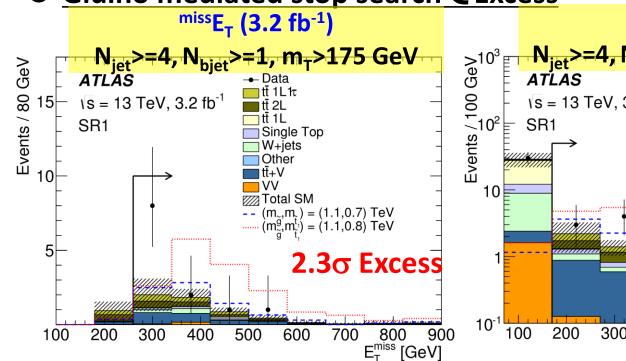

ちなみに、0-Lepton SR for Z+E_Tmiss excess

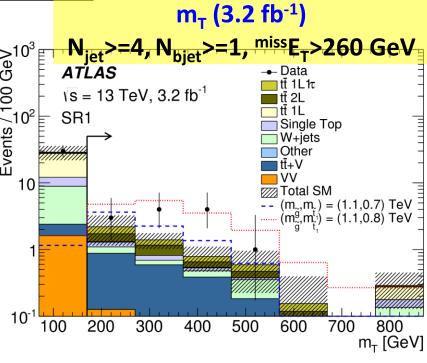
グルイーノ探索制限



CMS

- ▶ 2015のグルイーノ制限は~1500 GeV
- ► グルイーノ質量制限は~1.8 TeV(m_{x0}<~600 GeV)

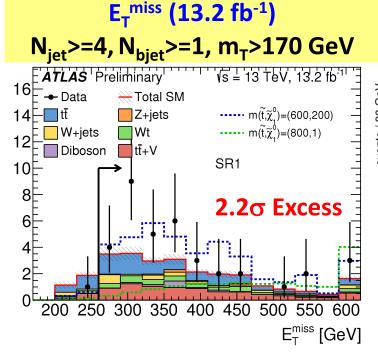

ストップ探索

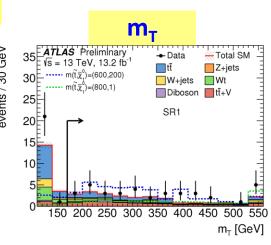


- <u>Topology</u>: 重いストップからのHardなEvent
- ▶ 多数のjet、b-jet、大きな^{miss}E_T (+レプトン)
- ▶ 支配的な背景事象ttbarの抑制の変数:asymmetric m_{т2}, topness

Stop Search 2015

● Gluino mediated stop search CExcess

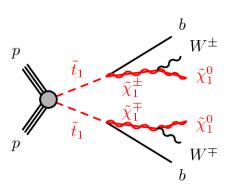



- ▶ ATLAS: 3.2 fb⁻¹のデータで2.3σ Excess
 - Low E_T^{miss}, m_Tは比較的高い
 - Muon(Electron): 8(4) events
 - $-N_{jet}(4,5,6,7) = (3,2,5,2)$ events
 - $-N_{Bjet}(1,2,3)=(7,4,1)$ events
- ▶ CMS: 2.3 fb⁻¹のデータでNo Excess

グルイーノ探索1-Lepの 2015のExcessと似ている (10 event) → 重複は2 event

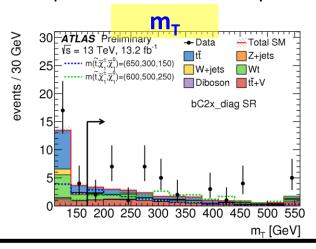
ATLAS Stop1Lep: 1 2015 Excess Region

● 2015年に2.3sのExcessを観測したSR

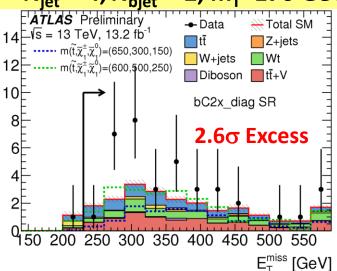


Variable	SR1
Number of (jets, b-tags)	$(\geq 4, \geq 1)$
$Jet p_{T} > [GeV]$	(80 50 40 40)
$E_{\rm T}^{\rm miss}$ [GeV]	> 260
$E_{T,\perp}^{\mathrm{miss}}$ [GeV]	_
$H_{\mathrm{T, sig}}^{\mathrm{miss}}$	> 14
m_{T} [GeV]	> 170
am_{T2} [GeV]	> 175
topness	> 6.5
m_{top}^{χ} [GeV]	< 270
$\Delta R(b,\ell)$	< 3.0
Leading large-R jet p_T [GeV]	_
Leading large-R jet mass [GeV]	_
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, 2^{\mathrm{nd}} \mathrm{large-R jet})$	_

- > 2.3σ(2015) → 2.2σ
- ▶ E_Tmiss(は低め&m_TはBroad
- ▶ Lepton p_⊤大きめ


ATLAS Stop1Lep: 2 Stop Onestep Decay

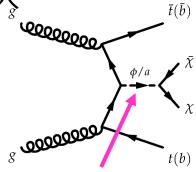
Stop One Step SR


Variable	bC2x_diag	
Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 2)$	Ge\
$Jet p_{T} > [GeV]$	(70 60 55 25)	
b -tagged jet $p_T > [GeV]$	(25 25)	30
$E_{\rm T}^{\rm miss}$ [GeV]	> 230	_ \
$H_{ m T, sig}^{ m miss}$	> 14	events
$m_{\rm T}$ [GeV]	> 170	ě
am_{T2} [GeV]	> 170	
$ \Delta\phi(\mathrm{jet}_i, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) (i=1)$	> 1.2	
$ \Delta\phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=2)$	> 0.8	
Leading large-R jet mass [GeV]	_	
$\Delta\phi(ec{p}_{ m T}^{ m miss},\ell)$	_	

- 2.6σ Excess
- ▶ E^{miss}は低め&m_Tは大きめ

E_T^{miss} (13.2 fb⁻¹)

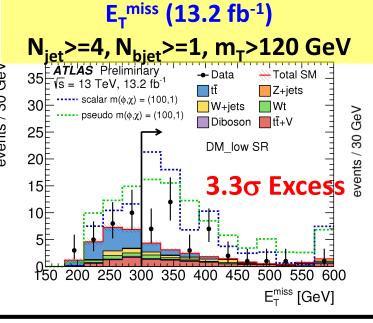
 $N_{iet}>=4$, $N_{biet}>=2$, $m_T>170$ GeV

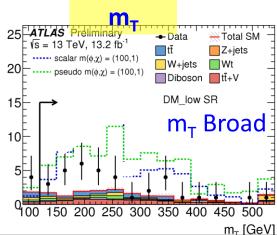


ATLAS Stop1Lep: ③ DM探索

● <u>DM探索からMotivateされるシナリオ(m_yが低めを狙った領域)</u>

▶ SMの単純な拡張でU(1)を導入


- ▶ *ϕ /aが*SMとDMを媒介
- ► SRの特徴:
 - E_Tmiss高め
 - E_Tmissとlep, jetが離れている

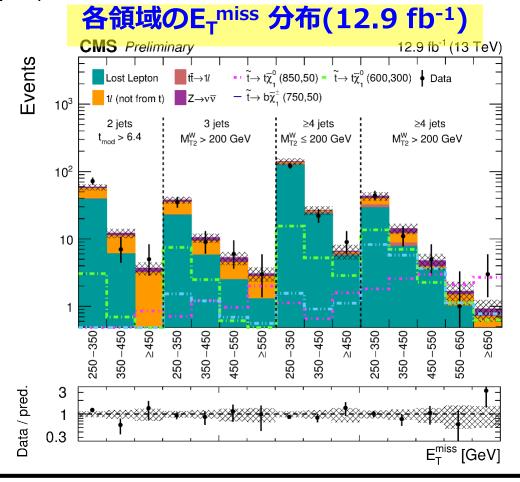


Additional U(1) gauge boson (spin0)

[arXiv:1507.00966]

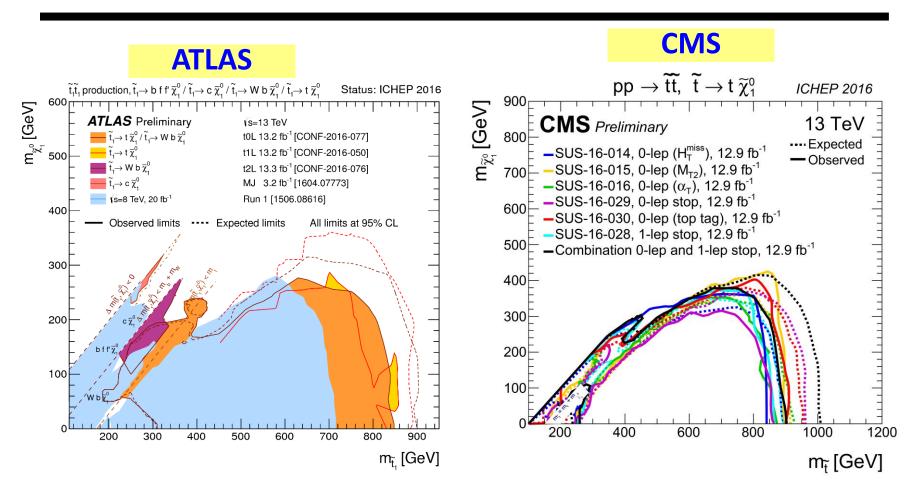
Variable	DM_low
Number of (jets, b-tags)	$(\geq 4, \geq 1)$
$Jet p_{T} > [GeV]$	(60 60 40 25)
$E_{\rm T}^{\rm miss}$ [GeV]	> 300
$H_{ m T, sig}^{ m miss}$	> 14
m_{T} [GeV]	> 120
am_{T2} [GeV]	> 140
$\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i))(i \in \{1-4\})$	> 1.4
$\Delta\phi(\vec{p}_{\rm T}^{\rm miss},\ell)$	> 0.8

ATLAS Stop1Lep: 3つのSRの重複


Variable	SR1
Number of (jets, b-tags)	$(\geq 4, \geq 1)$
$Jet p_{T} > [GeV]$	(80 50 40 40)
E _T ^{miss} [GeV]	> 260
$E_{T,\perp}^{\mathrm{miss}}$ [GeV]	_
$H_{\mathrm{T, sig}}^{\mathrm{miss}}$	> 14
$m_{\rm T}$ [GeV]	> 170
am_{T2} [GeV]	> 175
topness	> 6.5
m_{top}^{χ} [GeV]	< 270
$\Delta R(b,\ell)$	< 3.0
Leading large-R jet p_T [GeV]	_
Leading large-R jet mass [GeV]	_
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, 2^{\rm nd} {\rm large-R jet})$	_
	I

	Variable	bC2x_diag		
	Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 2)$		
<u>'</u>	$Jet p_{T} > [GeV]$	(70 60 55 25	Variable	DM_low
	b -tagged jet $p_T > [GeV]$	(25 25)	Number of (jets, <i>b</i> -tags)	$(\geq 4, \geq 1)$
	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 230	$Jet p_{T} > [GeV]$	(60 60 40 25)
	$H_{ m T, sig}^{ m miss}$	> 14	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 300
	m_{T} [GeV]	> 170	$H_{ m T, sig}^{ m miss}$	> 14
	am_{T2} [GeV]	> 170	m_{T} [GeV]	> 120
	$ \Delta\phi(\mathrm{jet}_i, \vec{p}_\mathrm{T}^\mathrm{miss}) (i=1)$	> 1.2	am_{T2} [GeV]	> 140
	$ \Delta\phi(\mathrm{jet}_i, \vec{p}_\mathrm{T}^\mathrm{miss}) (i=2)$	> 0.8	$\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i))(i \in \{1-4\})$	> 1.4
	Leading large-R jet mass [GeV]	_ [$\Delta\phi(ec{p}_{ m T}^{ m miss},\ell)$	> 0.8
_	^{Δφ(p^{miss}, ℓ)} 2016年9月5日 基	研研究会		38

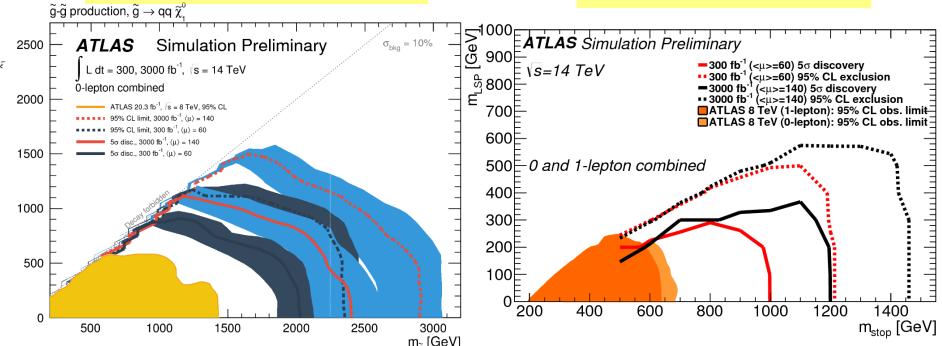
DM SRのExcess事象


一方、CMS Stop1Lep

- ●CMSも基本的にはATLASと似たような領域を見ている
- ► Njet, M_{T2}, E_T^{miss}でSRをBin分け

Excessなし

ストップ探索制限


- ▶ ATLASはExcess見えているので制限弱い
- ▶ストップ質量制限は800 GeVを超えた(m_{χ0}<~400 GeV)

Prospects

- Run2終了(2018年)にまでに100fb⁻¹をためる予定
 - ▶ 今の勢いならもっとたまる?と期待

グルイーノ探索領域

ストップ探索領域

- ▶ Run2の間、感度はどんどん伸びていく
- ▶ 今後探索範囲は2 TeV for gluino/1 TeV for stopを超えていく

まとめ: Strong SUSY Results

終状態	ターゲット	Run1		Run2 2015		Run2 2016		
	学 八忠	ター クット	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
	OL	グルイーノ						
	1L	グルイーノ			2.1σ		-	
Z+	on-shell Z	グルイーノ	3.0σ		2.2σ		/	
E _T ^{miss}	off-shell Z	グルイーノ		2.6σ	/		/	3.1σ
Mult	i-Leptons	グルイーノ					異	なる領域
Mu	ılti-bjet	グルイーノ					/	
St	top 0L	ストップ						
St	top 1L	ストップ			2.3σ		3.3σ	
St	top 2L	ストップ						/

- ▶ 小さな兆候を見逃さない
- ▶ 基本SUSY信号は複数チャンネルで見えるはずなので、チャンネル間 でのチェックが重要
- ▶ 今後もどんどん探索領域は伸びていくので、注目して下さい!