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1. Introduction

There are two unknown degree of freedom in the ACDM.
(except for the origin of A.)

- Inflaton M

Very flat potential
for slow-roll inflation.

o

-Dark matter

Cold, neutral,
and long-lived.

Both are neutral and occupied a significant fraction of
the energy density of the Universe.



Thermal history

P

ST Inflaton decays and produce
inflaton radiation, while DM must be
produced somehow.
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Inflaton = DM ?

If the reheating is incomplete,
some of inflaton condensate

Inflaton .
may remain.
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Incomplete
reheating!
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The remnant inflaton condensate due to incomplete

reheating can be dark matter.

cf. Kofman, Linde, Starobinsky "94, Mukaida, Nakayama 1404.1880, Bastero-Gil, Cerezo, Rosa,1501.05539
see also Lerner, McDonald 0909.0520, Okada, Shafi 1007.1672, Khoze 1308.6338 for inflaton WIMP.



What we did

-Inflaton = DM = Axion-like particle (ALP)

. The observed CMB and LSS data fix the relation
between the ALP mass and decay constant.

- Successful reheating and DM abundance point to
specific values

My = O(0.0l) eV, Gopyy = 0(10_11) GeV ™!

within the reach of [AXO.



Axion is a pseudo NG boson, and enjoys a discrete shift
symmetry.
®— o+ 2mnf necZ

Since dangerous radiative corrections are naturally suppressed,
axion Is compatible with inflation.

The axion potential i1s periodic, I.e.

V(p) =V(¢+2nf)

and can be expressed as Fourier series, Aé — 2 f

V(g) =3 epe?

necZ
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-Natural inflation |
Freese, Frieman, Olinto 90 /:

1.5

The simplest model is the
natural inflation.

D)

- Large field inflation

- Super-Planckian decay constant
is required. f 2 bMp
+ Predicted (ns, 7) are not favored =]

by recent observations.




Axion and Inflation
'AXion hl"tO |nf|at|0n giz:z’,L?;:i?sgk;ﬁ;ﬁ]4%3.041o,1403.5883

Hilltop inflation can be realized with two cosine terms.
(Minimal extension)

Vint (@) = A* (COS (? + 9) — % COS (n?)) +C
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- The decay constant can be sub-

symmetric Planckian. f < Mp

- Inflaton is light both during inflation
and in the true min.

. e b/ f m?s — V”(¢min) — _V”(¢max)
Odd n Flathess=longevity




- - - - Czerny, Takahashi 1401.5212,
° AXIOn h I I Ito Inflatlon Czerny, Higaki, Takahashi 1403.0410, 1403.5883

Hilltop inflation can be realized with two cosine terms.
(Minimal extension)

Vint (@) = A* (COS (? +9> — %COS( ?)) +C
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Planck normalization
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Spectral index
ng >~ 1+ 2n(¢d,) ~ 1
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The typical inflaton mass: | mg ~ 03 e O(0.1) Hing



The Planck normalization of density perturbation and
the spectral index fix the relation between Mg and I/,

4
A\ ~ <é> ~ 10713 : Planck normalization

f
4 2 2 : Fried .
A% ~ HinfMpl rreaman e€qg
mg ~ 0.1Hiyy . Scalar spectral index

cf. ng >~ 14+ 2n(¢y)

1/2 / 41 N 0.51
~5x107GeV (3) (7o)
» J oo x107GeV (3 eV




Mass and coupling to photons
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m [€V] RD, Takahashi, and Yin 1702.03284
¢ Limits taken from Essig et al 1311.0029



3. Reheating and ALP DM

The inflaton oscillates about ¢min = ™f In a quartic potential.

The effective mass, mZz(t) = V" (Gamp) = 12A@5,,, decreases
with time, and so, decay and dissipation become inefficient at
later times.

* Incomplete reheating

V(g)/A*




3. Reheating and ALP DM

Photons,
SM particles

' Inflaton (ALP) |

Remnant

after reheating

¢ = Po + PR : ALP Dark Matter



* Reheating

v The decay rate into two photons:

v The dissipation rate is roughly estimated as
cf. Moroi, Mukaida, Nakayama and Takimoto,1407.7465




- Reheating

The remnant inflaton condensate is

A

expressed by Inflation

Radiation

e= 1t
P + PR

EPtot frmmmmmmmmmaas .

after reheating

H ~1'4.c +1'ais Scale factor

Solving following equations, we found

ps +4Hpy = —Lioipe 11 1
| gy~ Z 10 GeV
Pr + 4HP7‘ — Ftotpqi

for successful reheating £ < 0(0.01) .
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After the reheating, P¢ decreases like radiation
until the potential becomes quadratic.
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radiation
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Scale factor

Zc Zeq ™ 3000 Sarkar, Das, Sethi, 1410.7129

DM should be formed before z. > O(10°) by SDSS and Ly-alpha
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-Inflaton = DM = Axion-like particle (ALP)

. The observed CMB and LSS
data fix the relation between
the ALP mass and decay const.

- Successful inflation,
reheating and DM
abundance pomt to

mq; = O(O 01) eV gqﬁvv — O( 0 11)G6V L

mgp [eV]

W|th|n the reach of IAXO



