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There are two unknown degree of freedom in the   CDM. 
(except for the origin of    .)

⇤

⇤

1. Introduction

•Inflaton

•Dark matter

Both are neutral and occupied a significant fraction of 
the energy density of the Universe. 

Very flat potential  
for slow-roll inflation.

Cold, neutral, 
and long-lived.
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Thermal history

Inflaton decays and produce 
radiation, while DM must be 
produced somehow.
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Inflaton = DM ?

cf. Kofman, Linde, Starobinsky `94, Mukaida, Nakayama 1404.1880, Bastero-Gil, Cerezo, Rosa,1501.05539 
see also  Lerner, McDonald 0909.0520, Okada, Shafi 1007.1672, Khoze 1308.6338 for inflaton WIMP.

If the reheating is incomplete,  
some of inflaton condensate  
may remain.

DM=inflaton

radiation

Incomplete 
reheating!

inflaton
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Scale factor
The remnant inflaton condensate due to incomplete  
reheating can be dark matter. 



What we did

•Inflaton = DM = Axion-like particle (ALP)

•The observed CMB and LSS data fix the relation 
between the ALP mass and decay constant.

•Successful reheating and DM abundance point to 
specific values

within the reach of IAXO.

g��� = O(10�11)GeV�1
m� = O(0.01) eV ,



2. Axion and Inflation
Axion is a pseudo NG boson, and enjoys a discrete shift 
symmetry.

� ! �+ 2⇡nf

Since dangerous radiative corrections are naturally suppressed, 
axion is compatible with inflation. 

n 2 Z

V (�) = V (�+ 2⇡f)

and can be expressed as Fourier series, �� = 2⇡f
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The axion potential is periodic, i.e.
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・Super-Planckian decay constant 
is required.

Axion and Inflation

The simplest model is the  
natural inflation.

Freese, Frieman, Olinto `90

・Large field inflation

・Predicted            are not favored 
by recent observations.

•Natural inflation

(ns, r)



•Axion hilltop inflation

• Inflaton is light both during inflation 
and in the true min.

Flatness=longevity
m2

� = V 00(�
min

) = �V 00(�
max

)

Hilltop inflation can be realized with two cosine terms.
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•Axion hilltop inflation
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Spectral index

The typical inflaton mass: m� ⇠ ✓
1
3
⇤2

f
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Relation between        and m� f

The Planck normalization of density perturbation and  
the spectral index fix the relation between        and    ,m� f

: Planck normalization

: Friedman eq.

: Scalar spectral index
cf. ns ' 1 + 2⌘(�⇤)
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Mass and coupling to photons



The inflaton oscillates about                 in a quartic potential.�min = ⇡f
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later times.
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Incomplete reheating

3. Reheating and ALP DM
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3. Reheating and ALP DM
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・Reheating
✓The decay rate into two photons:
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      ⇢The remnant inflaton condensate is 
expressed by

⇠ ⌘ ⇢�
⇢� + ⇢R

����
after reheating

・Reheating

g��� & 10�11 GeV�1

Solving following equations, we found

⇠ . O(0.01)for successful reheating                  .
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Quadratic

Quartic

After the reheating,       decreases like radiation 
until the potential becomes quadratic.

⇢�

•ALP condensate as CDM

w ⌘ P
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zc & O(105) by SDSS and Ly-alphaDM should be formed before

SM radiation
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•ALP condensate as CDM
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Summary

•Inflaton = DM = Axion-like particle (ALP)

•The observed CMB and LSS 
data fix the relation between 
the ALP mass and decay const.

•Successful inflation, 
reheating and DM  
abundance point to

within the reach of IAXO.

g��� = O(10�11)GeV�1
m� = O(0.01) eV ,
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