

The ALP miracle

@PPP2017

Ryuji Daido Tohoku Univ.

collaboration with F. Takahashi & W. Yin 1702.03284 JCAP05(2017)044

1. Introduction

There are two unknown degree of freedom in the Λ CDM. (except for the origin of Λ .)

Inflaton

Very flat potential for slow-roll inflation.

• Dark matter

Cold, neutral, and **long-lived**.

Both are neutral and occupied a significant fraction of the energy density of the Universe.

Thermal history

Inflaton = DM ?

The remnant inflaton condensate due to incomplete reheating can be dark matter.

cf. Kofman, Linde, Starobinsky `94, Mukaida, Nakayama 1404.1880, Bastero-Gil, Cerezo, Rosa,1501.05539 see also Lerner, McDonald 0909.0520, Okada, Shafi 1007.1672, Khoze 1308.6338 for inflaton WIMP.

What we did

Inflaton = DM = Axion-like particle (ALP)

- The observed CMB and LSS data fix the relation between the ALP mass and decay constant.
- Successful reheating and DM abundance point to specific values

$$m_{\phi} = \mathcal{O}(0.01) \,\mathrm{eV}$$
, $g_{\phi\gamma\gamma} = \mathcal{O}(10^{-11}) \,\mathrm{GeV}^{-1}$

within the reach of IAXO.

2. Axion and Inflation

Axion is a pseudo NG boson, and enjoys a discrete shift symmetry.

$$\phi \to \phi + 2\pi n f \qquad n \in \mathbf{Z}$$

Since dangerous radiative corrections are naturally suppressed, axion is compatible with inflation.

The axion potential is periodic, i.e.

$$V(\phi) = V(\phi + 2\pi f)$$

and can be expressed as Fourier series,

$$V(\phi) = \sum_{n \in \mathbf{Z}} c_n e^{in\frac{\phi}{f}}$$

Axion and Inflation

Natural inflation

Freese, Frieman, Olinto `90

The simplest model is the natural inflation.

$$V = \Lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right) \right)$$

 \cdot Super-Planckian decay constant is required. $f\gtrsim 5M_P$

• Predicted (n_s, r) are not favored by recent observations.

Axion and Inflation

Axion hilltop inflation

Czerny, Takahashi 1401.5212, Czerny, Higaki, Takahashi 1403.0410, 1403.5883

Hilltop inflation can be realized with two cosine terms.

(Minimal extension)

$$V_{inf}(\phi) = \Lambda^4 \left(\cos\left(\frac{\phi}{f} + \theta\right) - \frac{\kappa}{n^2} \cos\left(n\frac{\phi}{f}\right) \right) + C$$
$$= V_0 - \lambda \phi^4 - \Lambda^4 \theta \frac{\phi}{f} + (\kappa - 1) \frac{\Lambda^4}{2f^2} \phi^2 + \dots$$

- \cdot The decay constant can be sub-Planckian. $f \ll M_P$
- Inflaton is light both during inflation and in the true min.

 $m_{\phi}^2 = V''(\phi_{\min}) = -V''(\phi_{\max})$ Flatness=longevity

Axion and Inflation

Axion hilltop inflation

Czerny, Takahashi 1401.5212, Czerny, Higaki, Takahashi 1403.0410, 1403.5883

Hilltop inflation can be realized with two cosine terms.

(Minimal extension)

$$V_{inf}(\phi) = \Lambda^4 \left(\cos\left(\frac{\phi}{f} + \theta\right) - \frac{\kappa}{n^2} \cos\left(n\frac{\phi}{f}\right) \right) + C$$
$$= V_0 - \lambda \phi^4 - \Lambda^4 \theta \frac{\phi}{f} + (\kappa - 1) \frac{\Lambda^4}{2f^2} \phi^2 + \dots$$

Planck normalization

$$\lambda \simeq 7.5 \times 10^{-14} \left(\frac{N_*}{50}\right)^{-3}.$$
$$N_* \simeq 61 + \ln\left(\frac{H_*}{H_{\text{inf}}}\right)^{\frac{1}{2}} + \ln\left(\frac{H_{\text{inf}}}{10^{14} \text{GeV}}\right)^{\frac{1}{2}}$$

Spectral index

$$n_s \simeq 1 + 2\eta(\phi_*) \simeq 1 - \frac{3}{N_s}$$

Spectral index

Relation between m_{ϕ} and f

The Planck normalization of density perturbation and the spectral index fix the relation between $\,m_{\phi}$ and f ,

$$\lambda \sim \left(\frac{\Lambda}{f}\right)^4 \sim 10^{-13} \text{ : Planck normalization}$$

$$\Lambda^4 \sim H_{\inf}^2 M_{pl}^2 \qquad \text{: Friedman eq.}$$

$$m_{\phi} \sim 0.1 H_{\inf} \qquad \text{: Scalar spectral index}$$

$$\text{cf. } n_s \simeq 1 + 2\eta(\phi_*)$$

Mass and coupling to photons

3. Reheating and ALP DM

The inflaton oscillates about $\phi_{\min} = \pi f$ in a quartic potential.

The effective mass, $m_{\rm eff}^2(t) = V''(\phi_{\rm amp}) = 12\lambda\phi_{\rm amp}^2$ decreases with time, and so, decay and dissipation become inefficient at later times.

3. Reheating and ALP DM

Reheating

✓ The decay rate into two photons:

✓ The dissipation rate is roughly estimated as

cf. Moroi, Mukaida, Nakayama and Takimoto, 1407.7465

$$\Gamma_{\text{dis},\gamma} = C \frac{c_{\gamma}^2 \alpha^2 T^3}{8\pi^2 f^2} \frac{m_{\text{eff}}^2}{e^4 T^2}$$

 $V(\phi)/\Lambda^4$

Solving following equations, we found

for successful reheating $\xi \lesssim \mathcal{O}(0.01)$.

ALP condensate as CDM

After the reheating, ρ_{ϕ} decreases like radiation until the potential becomes quadratic.

ALP condensate as CDM

DM should be formed before $z_c \gtrsim \mathcal{O}(10^5)$ by SDSS and Ly-alpha

ALP condensate as CDM

HDM constraint

HDM constraint

HDM constraint

Summary

•Inflaton = DM = Axion-like particle (ALP)

- The observed CMB and LSS data fix the relation between the ALP mass and decay const.
- Successful inflation, reheating and DM abundance point to

$$m_{\phi} = \mathcal{O}(0.01) \,\mathrm{eV}$$
 $g_{\phi\gamma\gamma} = \mathcal{O}(10^{-11}) \,\mathrm{GeV}^{-1}$

within the reach of IAXO.

