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Introduction



Scattering amplitude theory

• Scattering amplitude program tries to construct amplitudes from 
analytical properties, not relying (heavily) on Feynman diagrams.

• Scattering amplitude is of central importance in particle physics.

• It sometimes shows a surprising simplicity that is not obvious from the 

standard Feynman diagrammatic method.

ex. 6pt Maximally Helicity Violated (MHV) amplitude of pure YM:

A6[1
�2�3+4+5+6+] =

h1 2i4

h1 2ih2 3ih3 4ih4 5ih5 6ih6 1i

after summing over 220 (!) diagrams.



Goal of this talk

• Show that tree-level YM/gravity amplitudes are recursively 

constructible, with leading soft theorem being an input.

• We also review basic ingredients of modern scattering 

amplitude theory.



Outline

1. Introduction 

2. Review A: spinor helicity formalism 

3. Review B: on-shell recursion 

4. Review C: soft theorems 

5. Idea (and explicit computation) 

6. Summary



Outline

1. Introduction 

2. Review A: spinor helicity formalism 

3. Review B: on-shell recursion 

4. Review C: soft theorems 

5. Idea (and explicit computation) 

6. Summary



Spinor helicity formalism
• Consider 4-dim theory with only massless particles.

• The momentum product in this language is

Amplitudes are constructed from these products.

• The momentum                            satisfiespȧb ⌘ pµ (�̄
µ)ȧb

det p = �pµp
µ = 0 pȧb = � |piȧ [p|b .

2p · q = hp qi[p q] hp qi ⌘ ✏ȧḃ|pi
ȧ|qiḃ [p q] ⌘ ✏ab[p|a[q|b.where and

• Little group keeps momentum intact.

In terms of angle/square brackets: |pi ! t|pi, |p] ! t�1|p].

• Amplitude transforms due to the external lines as:

An

�
..., {ti|ii, t�1

i |i], hi}, ...
�
= t�2hi

i An (..., {|ii, |i], hi}, ...) .

• Three point amplitude is determined solely from little group scaling.
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Complex momentum shift

• Poles: associated with on-shell intermediate particle (Locality).

• Consider the following complex momentum shift:

p̂i(z) ⌘ pi + zqi, where                               on-shell condition of pi · qi = q2i = 0 : p̂i(z)

and                      momentum conservation of          .
X

i

qi = 0 : p̂i(z)

Shifted amplitude is a function of z : Ân(z)

(original amplitude is                      ).An = Ân(0)

• Amplitude factorizes near the poles as
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ÂR(zI), P̂ 2
I (z) / (z � zI).

[Britto, Cachazo, Feng, 04; Britto, Cachazo, Feng, Witten, 05]



On-shell recursion
• From the standard complex analysis, we obtain

• Two (or more) ways to achieve on-shell constructibility:

(a)
(b)

•      : products of lower point on-shell amplitudes.(a)

|z| = 1,(b)•      : contribution from                 which vanishes when lim
|z|!1

Â(z) = 0.

[Cheung, Kampf, Novotny, Shen, Trnka, 15]

(1) Invent a good momentum shift (such as BCFW shift)

(2) Modify the integrand as
Â(z)

z
! Â(z)

zf(z)
.

(We should know how the amplitude behaves as                  )f(z) ! 0.

[Britto, Cachazo, Feng, 04; Britto, Cachazo, Feng, Witten, 05]

on-shell constructibility of the theoryB1 = 0 ,

Â(0) =
1

2⇡i

I

|z|=0

dz

z
Â(z) = � 1

2⇡i

X

I

I

|z�zI |=0

dz

z
ÂL(zI)

1

P̂ 2
I (z)

ÂR(zI) +B1.
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Â(z) = � 1

2⇡i

X

I

I

|z�zI |=0

dz

z
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(Anti-)holomorphic shift

• We will stick to the following complex momentum shifts.

Holomorphic shift:                                               with |̂ii = |ii � aiz|Xi, |̂i] = |i]
X

ai|i] = 0.

Anti-holomorphic shift:                                               with |̂ii = |ii, |̂i] = |i]� aiz|X]
X

ai|ii = 0.

• We will take                   or                   in the following.|Xi = |1i |X] = |1]

corresponds to the soft limit of the particle 1.z = 1/a1

*                                                          for holomorphic shift.

** Similar relation holds for anti-holomorphic shift.

qi = �ai|Xi[i| ! q2i = qi · pi = 0

[Cohen, Elvang, Kiermaier, 10]



Large z behavior
• If coupling dimension is unique, amplitude is An = g

P
h...ian [...]snP
h...iad [...]sd

.

*          : common due to little group scaling and mass dimension.ai, si

a ⌘ an � ad, s ⌘ sn � sd.Let us define

• Dimensional analysis:

a+ s = 4� n� [g] where          mass dimension of coupling [g] : g.

• Little group scaling:

a� s = �
X

i

hi where         helicity of i-th particle.hi :

Hol shift: lim
z!1

Ân(z) ! O(za) with 2a = 4� n� [g]�
X

i

hi.

withlim
z!1

Ân(z) ! O(zs)Anti-hol shift: 2s = 4� n� [g] +
X

i

hi.

* YM:                Einstein gravity:[g] = 0, [g] = �n+ 2.

[Cohen, Elvang, Kiermaier, 10]
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Leading soft theorems
• Leading soft theorem:

An

�{p✏|1i,p✏|1], h1}, ...
�
=

1

✏
S(0)An�1({|2i, |2], h2}, ...) +O(✏0)

for positive helicity gluon (color-ordered).S

(0) =
hx 2i

hx 1ih1 2i �
hx 4i

hx 1ih1 4iand

where for positive helicity gravitonS

(0) =
nX

k=2

[1 k]hx kihy ki
h1 kihx 1ihy 1i

[Low 58; Weinberg 65; …]

• From little group scaling, it behaves under hol/anti-hol soft limit as

and

An ({✏|1i, |1], h1}, ...) = ✏�1�h1S(0)An�1({|2i, |2], h2}, ...) +O(✏�h1)

An ({|1i, ✏|1], h1}, ...) = ✏�1+h1S(0)An�1({|2i, |2], h2}, ...) +O(✏h1).



Outline

1. Introduction 

2. Review A: spinor helicity formalism 

3. Review B: on-shell recursion 

4. Review C: soft theorems 

5. Idea (and explicit computation) 

6. Summary



What we learned so far
• Integrand should fall off at large z for on-shell 

constructibility.

• Under holomorphic or anti-holomorphic shift:

and                               at worst for Einstein gravity.lim
z!1

M̂n(z) ! z

for pure YM theorylim

z!1
ˆA4[1

+
2

+
3

�
4

�
] ! const

• Under holomorphic/anti-holomorphic soft limit:

and

An ({✏|1i, |1], h1}, ...) = ✏�1�h1S(0)An�1 +O(✏�h1)

An ({|1i, ✏|1], h1}, ...) = ✏�1+h1S(0)An�1 +O(✏h1).



Idea
• Main idea: use soft theorem to take better integrand.

Under anti-holomorphic soft shift,

lim
z!1

Â4(z) ! z0 lim
z!1

M̂n(z) ! z1large z behavior is                               for YM and                                for gravity.

Soft limit is                                                        for YM Â4(z) = Ŝ(0)Â3|z=1/a1
+O(✏1)

M̂n(z) = ✏Ŝ(0)M̂n�1|z=1/a1
+O(✏2)and                                                               for gravity with ✏ ⌘ 1� a1z.

Take integrand as
I

dz

z

Â4(z)

1� a1z

I
dz

z

M̂n(z)

(1� a1z)2for YM and                               for gravity!

Integrand falls off rapidly enough at large z.

Residue at                 is nothing but the leading soft term.z = 1/a1

• Consider the worst case                   and assume
X

hi = 0 h1 > 0.



Computation: gluon 4pt
• Consider 4pt (color-ordered) YM amplitude A4[1

+2+3�4�].

• Under anti-holomorphic soft shift, pole is only at z = 1/a1.

* (p̂i(z) + p̂j(z))
2 / (1� a1z) (pi + pj)

2 .

We need to consider only the soft factor (soft limit is ``exact’’):

3pt from little group

where                                                           Schouten identity is used.|1ih2 4i+ |2ih4 1i+ |4ih1 2i = 0 :

A4[1
+2+3�4�] = Ŝ

(0)
Â3[2

+3�4�]|z=1/a1

=

✓
hx 2i

hx 1ih1 2i �
hx 4i

hx 1ih1 4i

◆
h3 4i4

h2 3ih3 4ih4 2i

=
h3 4i4

h1 2ih2 3ih3 4ih4 1i ,

It correctly reproduces the Parke-Taylor MHV amplitude.
[Parke and Taylor 86]



Computation: graviton 4pt
• Consider 4pt gravity amplitude M4(1

+2+3�4�).

• Again we only need to consider the soft factor:

M4(1
+2+3�4�) = Ŝ

(0)
M̂3(2

+3�4�)|z=1/a1

=

0

@
X

k=2,3,4

[1 k]hx kihy ki
h1 kihx 1ihy 1i

1

A h3 4i8

h2 3i2h3 4i2h4 2i2 .

3pt from little group

(*)

• (*) is simplified after using Schouten identity as (⇤) = [1 4]h2 4ih3 4i
h1 2ih1 3ih1 4i .

We finally obtain

M4(1
+2+3�4�) = (p1 + p4)

2A4[1
+2+3�4�]A4[1

+3�2+4�].

It reproduces the KLT relation:                                    (gravity) = (gauge)2

[Kawai, Lewellen, Tye, 86]



Comparison
There are of course other recursion methods.

• BCFW shift: |1̂i = |1i � z|2i, |2̂] = |2] + z|1]

Our recursion relation is new, but otherwise…

Large z behavior is non-trivial (analyzed by Feynman diagrams).

Recursion relation is simple, especially for MHV amplitudes.

[Britto, Cachazo, Feng, 04; Britto, Cachazo, Feng, Witten 05]

[1,m� 1i•                -line shift: |̂ii = |ii+ zci|1i (i 6= 1), |1̂] = |1]� z
X

i 6=1

ci|i]
[Cheung, Shen, Trnka, 15]

• For m = n, large z behavior analysis can be simple.

• Recursion relation is not so simple compared to BCFW.

No need for soft theorem.

No need for soft theorem.

For instance,
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Summary

• We demonstrate (tree-level) on-shell constructibility of 
YM/Einstein gravity with soft theorem being an input. 

• It is important to control large z behavior to achieve 
on-shell constructibility of a given theory.

• Recursion with soft theorems can be extended to other 
theories.


