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1 Cosmological Constant Problem

Dark Clouds hanging over the two well-established theories

Quantum Field Theory <= Einstein Gravity Theory

We know the recently observed Dark Energy Ay, which looks like a small
Cosmological Constant (CC):

Present observed CC 10™gr/em® ~ 10747GeV* = A, (1)

We do not mind this tiny CC, which will be explained after our CC problem
is solved. However, we use it as the scale unit Ay of our discussion.



Jo0oo0oooooon
Essential point: multiple mass scales are involved!
There are several dynamical symmetry breakings and they are necessarily
accompanied by vacuum condensation energy:
In particular, we are confident from the success of the Standard Model of
the existence of at least two symmetry breakings:
Higgs Condensation ~ (200 GeV )* ~ 10°GeV* ~ 1074,
QCD Chiral Condensation <(jq>4/3 ~  (200MeV )* ~ 107°GeV* ~ 10M A,

Nevertheless, these seem not contributing to the Cosmological Constant!

It is a Super fine tuning problem:
¢ : initially prepared CC (> 0)
¢ —10°°A, : should cancell, but leaving 1 part per 10'2; i.e., ~ 10MA,

)

¢ — 10°°Ag — 10" A, : should cancell, but leaving 1 part per 10*: i.e., ~ Ag

¢ — 10°°Ag — 10"Ay ~ Ay : present Dark Energy



¢ = initially prepared CC

654321, 098765 4321, 0987654321, 0987654321, 0987654321, 0987654321 x Ay ~ 10°9A,
1210

C + VHiggs

4321, 0987654321, 0987654321, 0987654321, 0987654321 x Ay ~ 10% A,
440
¢ + Vhiges + Voep = present Dark Energy
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Note that the vacuum energy is almost totally cancelled at each stage of
spontanecous breaking as far as the the relevant energy scale order.
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Vacuum Energy in QFT:

Z %hwk - Z hEk (2)

Vacuum Condensation Energy:
V(¢.) : potential (3)

They are separately stored in our (or my, at least) memory, but actually, almost the same

object, as we see now.
J00dooooodoooooodoooooobuooobibOdOOdmassless
JO0o0ooooooooo supersymmetry 0000000000 0O0OO0OOOOONO
Oooon

massless 00 00000000 0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O
00000 V(g,) OO DOODOO0ODO O Consider the chiral quark condensation in QCD.

For simplicity, consider NJL model as a parallel model for the realistic QCD:
o G, _ .
L = 47" 0uq + 7 [(q9)” + (qivsq)”]
1
— @0, — o —iyT)q — 5(02 + 72)
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The effective potential V (o, 7) is a function of 0% + 7% and can be computed at the 7 = 0
section V(o) = V(o,m = 0):

_10'2— d4p ndae — 0
Vo)== /i<2w)41 det(p — o)

But the second term is nothing but the vacuum energy

d4
_ / TG In det(p Z hy/p? + 0% 4 (o-independent const)

implying that
(@q) condensation energy ~ Dirac sea vacuum energy (4)

Moreover, in a Shwinger-Dyson approach to realistic QCD, the quark mass is calculated
as a function X(p) possessing the support only < Agcep, and the condensation energy is

computed finite.



3 Quantum Gravity is irrelevant
CC problem is to be considered in Einstein Gravity theory:.

Einstein gravity is a unique Low Energy Effective Theory (5)

Just like Chiral Lagrangian

L= f2tr (8,U70"0)
U=explin/fz), m=n"(x)T"

is a unique Effective Theory in the low energy region ' < fr, i.e., in the lowest (second) or-
der in the derivative. We know that the fundamental theory describing the strong interaction
is QCD. But, whatever the dynamical theory is beyond E' > f,, the sysytem is described by
the the Nambu-Goldstone (NG) bosons 7 based on the coset SU(3); x SU(3)r/SU(3)y,
and the dynamics is uniquely described by this non-linear sigam model. The non-linearly
realized chiral symmetry uniquely determines the dynamics of the NG bosons, self-coupling
and coupling to other matters in the low energy regime. Moreover, even the quantum

correction in this system can be computed by this Lagrangian in the sense of Weinberg,.
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In exactly the same manner, the general coordinate (GC) invariance uniquely determine
the Lagrangian in the lowest (second) order in the derivative; that is, it is the Einstein-

Hilbert action. In this analogy, it is worth noticing

Graviton is a NG tensor boson corresponding to GL(4) — SO(3,1)
Nakanishi-Ojima (1979)

So the Einstein-Hilbert action is exactly analogous to the chiral Lagrangian, and Mp; is the

counterpart of the pion decay constant f,:

Sef = / d'x \/_—g{coMf%l + MR+ coR* + c3R,, R + - - }
G = Muv + hW/MPl

The CC term (with no derivatives) is consistent with GC invariance and its natural scale is
O(M})

Below the Planck energy scale Mp, the dynamics is uniquely described by the E-H action
plus interaction terms with matter fields. The quantum gravity is quite irrelevant to any
problem in much lower energy region than Planck sacale, £ < Mpj, in particular, to the
CC problem associated with the spontaneous breaking of Electro-weak symmetry and chiral

symmetry.



4 Scale Invariance solves the problem!

Our world is almost scale invariant: that is, the standard model Lagrangian is scale
invariant except for the Higgs mass term!
If the Higgs mass term comes from the spontaneous breaking of scale invariance at higher

energy scale physics, the total system can be really be scale invariant.
4.1 Classical Scale Invariance

Suppose that our world has no dimensionful parameters.

Suppose that the effective potential V' of the total system looks like

Vig) = W(®) + Vi(Q,h) + VA(D,h, o)

\J \J )
M > 4 > m

and it is scale invariant. Then, classically, it satisfies the scale invariance relation :

56 V(o) = 1V (6) ©)

so that the vacuum energy vanishes at any stationary point <gb2> = @)

V(go) = 0.
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Important point is that this holds at every stages of spontancous symmetry breaking.

In the above potential V', we can retain only V4(®) when discussing the physics at scale
M, since @ and ¢ are expected to get VEVs of order i or lower. Then the scale invariance
guarantees V(®Pg) = 0.

If we discuss the next stage spontaneous breaking at energy scale p, we should take
Vo(®) + Vi(D, h), and can conclude Vy(Dp) + Vi (D), hy) = 0.

Similarly, at scale m, we have the potential Vo(®) + Vi(®, h) + Vo(P, h, ), and can
conclude V() + Vi(®f, hh) + Vo(®4. b dxpo) = 0.

This miracle is realized since the scale invariance holds at each energy scale of spontaneous
symmetry breaking.

For the help of understanding, we now write a toy model of potentials.
1
Vo(®) = 5/\0(@% — 0®5)?,
in terms of two real scalars ®g, ®;, to realize a VEV
(@) = M and () = /ZM. (7)

This M is totally spontaneous and we suppose it be Planck mass giving the Newton coupling
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constant via the scale invariant Einstein-Hilbert term

Seff - /d4517 \ —g{Clq)g R+ CQR2 —+ CngjR/W + ... }
g/ﬂ/ — 77/1/1/ + h,u,V/MPl

If GUT stage exists, £p may be a constant as small as 10~* and then ®; gives the scalar
field breaking GUT symmetry.
Vi(P, h) causes the electroweak breaking:

1 2
Vl(q)a h) = 5)\1 (hTh — 51<D%) ;

with very small parameter £; ~ 10~?*. This reproduces the Higgs potential when A is the
Higgs doublet field and ;®7 term is replaced by the VEV e160M?* = 12 /1.
Vo (D, h, ) causes the chiral symmetry breaking, SU(2), xSU(2)g — SU(2)y. Using the

2 X 2 matrix scalar field ¢ = o + 77 - 7, we may similarly write the potential
2
Vo(®,h, @) = A2 (tr(nggp) - 52@%) + Vireak (P, h, )

with another small parameter 5. The first term reproduces the linear o-model potential
invariant under the chiral SU(2), xSU(2)g transformation ¢ — gr@gr when £9®7 is re-
placed by the VEV g9egM? = m? /A2. The last term Vjear stands for the chiral symmetry

breaking term which is caused by the explicit quark mass terms appearing as the result of
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tiny Yukawa couplings of u, d quarks, v, y4, to the Higgs doublet h; e.g.,

1
‘/break(q)a h, 90) = §5Zq)% tr (SO]L (yueh* ydh) + hC)

4.2 Quantum Mechanically

However, we have neglected the scale invariance anomaly in quantum field theory. Actu-

ally, if we take account of the renormalization point u, we have the RGE

(u% + z@: Ba()‘>ai)\a + Z %(M@%) V(g) =0

and the dimension counting identity

( —+Z¢Za¢l> 6) = 4V (9)

From these we obtain

(Z(l — (A qz— - Zﬁa

l

) (6) = 4V(9)

This is the correct equation in place of the above naive one:

> b V(6) = 1V(6)
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This shows the anomalous dimension 7;(A) is not the problem.

Ba(A) terms may be problematic:

— V) == Y Ay V(e

S0, an obvious possibility is that all the coupling constants go to the Infrared Fixed Points:
5a(>\IR) = 0. But,

What does this equation really imply?

dVv
We argue that the potential value V' (¢g) at the stationary point ¢ = ¢y, 0 o = 0,
=®0

is zero at any g, even before reaching the IR limit p = 0.
The potential value V(¢g) = Vo(\; 4?) at stationary points satisfies the RGE:

0 0
(/ua_lu + ; 6&()\) a)\a

(The first term pd/0p may be replaced by 4 since Vg = p'v(N).)

) VoA p?) =0
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The solution is given by

where ¢ = In p,

Vo 1) = VI(A(R); pPe™),

A\ (1)

- = Bu(A(t)) with A,(t =0) = A,

Or, writing Vo(\; %) = pto()), we must have

v(\) = eo(At) = v(A1) =e MoN)

Taking the IR limit ¢ — —o0 (u — 0) gives

v(AIR) = e v()\)

If v(Ar) is finite, then we have

vA) =0 — Vy(Ap?) =0

That is, provided that IR fixed point Air, as well as the theory on top of that point, exist,

then, the vanishing property of the potential value at stationary point is not injured by the

anomaly!



5 Example Calculation in A\¢?* theory
One-loop RGE-improved tree potential:

A 1
V \: AN 4
1 — In
3272 P
Or, denoting 47w¢p = ¢, %)@2 = a?, 32—% = q,
4
ap
19272V =
" 1 — 3aIn(ap?/u?)
10} }
/
— —""-/ "

0 1: y=az?/(1 —3aln(ar)), a=3/100, u=1
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= 2(1 — 3o In(- 3a) = 0

O (1—3aln(.))2(< aln(-)) + 3a)
1 1
— @ =0 or Inagy/p’) =5+ =
2 1 1
9 9 -
— @y =0 or 900——6Xp(§+3—&) — ooe as a — 04+ (8)
O0d0od

_ o O&g&% o 2 4 2 o0

‘/0(900)_0 or %(900)__(3a/2>__§900 — —o0e as a — 0+

d\
In this case of B(\) = b1 \?, the RGE - = B(A) leads to

v(A(t)) = v(N)e ™ = v())exp [b% (L _ %)]

But t — —oo0 A(t) = Mg = 0000 v(0)0 free theory D 000000000000
000000000u(\) =0.



In case of non-trivial IR fixed point, S(A\) >~ b(A — A\jr) with b > 0,

L lln AR — A()
AIR — A

17
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6 (Gauge Hierarchy
000

1 2 2
Vo= 2k (W'h—e1®3)” O VoD Iy (tr(ply) — e2®7)

0000000 parameter e ~ 10724, 5, ~ 10 0000000000 0O gauge hier-
archyD O OO0 QO0O0O0

0000000 chiral symmetry breaking scale eo 0 0 00 GUTO O OO OO OSU(3)
gauge coupling gs D OeeM OO0 00O0DO DO OO running coupling gs(p) 0 O(1)0 00O
0000 p~ Agep O chiral symmetry D O OO OeegM >~ Aqep0 000000000
000 0O Planck/GUT scale M 0 QCD scale Aqep 0000000000 MOOOOO
O000g 00000000000 00000000O00O0O

Electroweak breaking scaled 00 0 0O ¢, 0 OO O O Technicolor D O OO OO OOO O O
Oo0o0ddodooooooooooood

Bardeen 0 0 0000 OO OO OO O Higgs scalar 0 mass term [ [ Higgs [ elemen-
tary J 00 O O 0O O sacale invariance 1 0 00 400 0000000000002000
D000 lbgD 000000000000, 0000000000000e,000
OO000000000«s000000000000000Shaposhnikov-Zenhausern [
Oo0oooooooon

W. A. Bardeen, “On naturalness in the standard model,” FERMILAB-CONF-95-391-T.

M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671 (2009) 162
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0000000000 scale invariance 1 OO0 000D 00OO0OO0OO0OOOOO0O0O
E. Rabinovici, B. Saering and W. A. Bardeen, Phys. Rev. D 36 (1987) 562.

M. Shaposhnikov and D. Zenhausern,ibid

C. Wetterich, Nucl. Phys. B 302 (1988) 668.

000000 200 quantum O O exact scale invariancel OO0 00000000000
multi-step spontaneous breaking O 0 O OO0 OO OO OO

D000 200000 gravity  asymptoticsafety U D OO0 OO0 O0O0O00O0O00OOOMO
000 Planck scale D O O UVOOOOOOOOOOOOO
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1. dDilaton O O O O — Higgs 7
2. Dilaton 0 0 0 0O — anomaly O 0O
3. 0000000 A 00000000
4. 0000000000000 0000O

5. Running cosmological constant? : Loop effects of matter and graviton fields below the

Planck scale.
6. Thermal effects.

7. Scale invariant Beyond Standard Model O O O O

8. Scale Invariant Einstein Gravity: Local scale invariance will be meaningless.



