LHCでのヒッグス研究の最新 結果

増渕達也 東京大学 素粒子物理国際研究センター 基研研究会 素粒子物理学の進展2017

東京大学 素粒子物理国際研究センター International Center for Elementary Particle Physics The University of Tokyo

目次

・イントロ

- ・LHCの状況
- ・ボソニック崩壊チャンネル(精密測定)
 - ·質量測定
 - Coupling
 - Differential cross section measurement
- ・フェルミオン崩壊/生成(探索)
 - тт/bb decay
 - ttH production
- Rare decay, BSM Higgs Search

LHC Higgs Run1 Achievement

LHC Higgs Run1 Achievement

・重いヒッグスの直接探索, Anomorous coupling

Run1でBSMヒッグスの有意な証拠は見つからず。。。

LHC Run2 (2015-2017) Status

- Run2 2015+2016ラン: 13TeVで約43fb⁻¹のデータを 取得(Good Run ~36fb⁻¹)
- ・2017ランは順調にスタート 13TeVデータを取得中(~9.2fb⁻¹)
- ・最高瞬間ルミノシティー: 1.7×10³⁴cm⁻²s⁻¹(すでに 2016年から20%向上)
- ・実験的には大きなアップグレード前の2018年までが1 つの正念場
 - ・ すでに瞬間ルミノシティーは設計値(1×10³⁴cm⁻²s⁻¹)を大 きく超えている
 - 2016 : Pile up <µ> = ~25
 - ・2017 : Pile up <µ> ~33(現在) , µ_{max} = 51
- トリガー、Particle-ID/tagに厳しい環境だが、ATLAS は順調にデータを取得
 - 2016 : 93-95% 2017 : ~91%

Mean Number of Interactions per Crossing

Key Performances for Higgs analysis

<u>MET trigger algorithmをPile-upに強く</u>

2016 : Calibrateしたhadronic jet (missing HT)+pile-up subtractionから計算 2017 : pile-upとhard scatterのカロリメータータワー からpile-up由来のタワーを"推定"してMETを補正

b-tagging efficiency scale factor

ttbarを使ってefficiencyを較正 data/MC, pile-up依存性をよく理解出来ている ttH, VH→bbの解析に重要

Run2 Higgs Physics Strategy

・LHCでのヒッグス生成断面積

・ヒッグスの崩壊分岐比

Decay	bb	WW	тт	ZZ
BR	58%	21%	6.2%	2.6%
	γγ	Ζγ	μμ	СС
	0.23%	0.15%	0.022%	2.9%

Run2 Higgs Physics Strategy

- I. Higgsの物理は精密測定の時代へ
 - ・発見したヒッグスボソン(m_h~125 GeV)の精密測定から新物理を探る
- Ⅱ. 次のスカラー粒子・新物理を直接探索

Run: 280464 Event: 517140616 2015-09-28 04:21:57 CEST

Higgs Bosonic Decay mode

素粒子物理学の進展2017

$H \rightarrow ZZ \rightarrow 4I$ analysis Overview

- ・ヒッグス粒子精密測定のGolden Channel:終状態に4つのレプトン
 - ・背景事象がかなり少ない S/B >2
 - ・高分解能(σ(m_H)~1-2%)でヒッグスの質量再構成が可能, ヒッグスの崩壊生成物がすべて観 測可能
 - ・統計が少ない BR(H→ZZ→4I)~0.01%

素粒子物理学の進展2017

$H \rightarrow \gamma \gamma$ analysis Overview

- ・2光子の質量ピークが観測可能
 - ・高い質量分解能(1-2%)
 - ・背景事象は質量のside-bandから外挿(MCに依存しない)
 - ・信号の統計は比較的多い BR(H→γγ)~0.2%

Higgs 質量精密測定

・質量分解能が良いH→ZZ→4I, H→γγチャンネルで質量測定

<u>H→ZZ→4I</u>

 $m_{H}^{ZZ^{*}} = 124.88 \pm 0.37(stat) \pm 0.05(syst)$ GeV Leading systeamtic source : Muon momentum scale (40 MeV) まだ統計誤差が支配的

 $m_H^{\gamma\gamma} = 125.11 \pm 0.21(stat) \pm 0.36(syst)$ GeV Leading systeamtic source : LAr cell non-linearly, layer calibration (~200 MeV) すでに系統誤差が支配的

Higgs 質量精密測定

ZZ→4I, γγでコンビネーション

124.98±0.28GeV (Run1 ATLAS 125.36±0.41 GeV)

Total Cross Section Measurement • Inclusive m_{vv}, m₄₁ distirubtionから計算 $\sigma_{pp ightarrow H}$ [pb] **ATLAS** Preliminary $--- \sigma_{pp \rightarrow H} \quad m_H = 125.09 \text{ GeV}$ QCD scale uncertainty H→ZZ Total uncertainty (scale \oplus PDF+ α_{s}) combined data 80 68.0^{+11.4}_{-10.4}pb systematic uncertainty H→yy 60 47.9^{+9.1}₋₈₆pb Combined (ZZ, yy) 40 $57.0^{+6.0}_{-5.9}(\text{stat})^{+4.0}_{-3.3}(syst)\text{pb}$ **SM Prediction** 20 $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ 55.6^{+2.4}_{-3.4}pb $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ 0 √s = 13 TeV, 36.1 fb⁻¹ 12 13 8 9 10 11 *√s* [TeV]

Differential Cross Section(ZZ \rightarrow 4I, $\gamma\gamma$)

- ・p_T^H(4l or γγ): 摂動QCD計算に感度
 - ・重い新粒子がloopに入る寄与→high p_Tで分布がズレる
 - ・bottom/charmの寄与→low p_Tにズレ

Differential Cross Section(ZZ \rightarrow 4I, $\gamma\gamma$)

• Number of jets: 生成過程の組成, Gluon emissionに感度

・m_{ii}: VBF生成過程に感度 (p-value 1.9-3.6%)

Cross Section Measurement(γγ, ZZ→4I)

・H→γγ, H→ZZ→4I事象を生成過程のkinematicsでカテゴリー分け

・統計が少ないのでVH, ttHは感度なし

2017/7/31

素粒子物理学の進展2017

素粒子物理学の進展2017

Higgs Fermionic Decay/production mode

H→bb探索

- Run1 ATLAS+CMS : 2.6σ (exp. 3.7σ)
- ・Run2 2016年までのデータ(36.1fb⁻¹)でH→bb崩壊モードの探索
- ・QCD(Multi-Jet)の背景事情が膨大 (ggF, VBFは困難) → VHが有望

・Vの崩壊モードによって0,1,2 leptonに分類して最適化

H→bb探索

Variable

 E_{T}^{miss}

1-lepton 2-lepton

Х

X

X

Х

X

X

0-lepton

Х

Х

H→bb探索

- ・統計解析後のBDT分布 (最も発見感度が高い, p_T^V>150 GeV, 2 b-tag信号領域)
 - ・8信号領域と背景事象を見積もるための6コントロール領域(W+jets, top)を同時フィットする
 - ・BDTを使うことでm_{bb}のみよりも感度が10-20%向上

1 lepton 0 lepton 2 lepton 0.13 📥 Data 0.1 - Data 📥 Data 0.1 **ATLAS** Preliminary **ATLAS** Preliminary ATLAS Preliminary 10⁴⊨ VH \rightarrow Vbb (μ =1.20) **VH** \rightarrow Vbb (μ =1.20) **VH** \rightarrow Vbb (u=1.20) Events / ents / $\sqrt{s} = 13 \text{ TeV}$, 36.1 fb⁻¹ Diboson Events / Diboson $\sqrt{s} = 13 \text{ TeV}$, 36.1 fb⁻¹ Diboson ŧŦ. Z+(bb,bc,cc,bl) 0 lepton, 2 jets, 2 b-tags 1 lepton, 2 jets, 2 b-tags 2 leptons, 2 jets, 2 b-tags Single top Single top 10^{4} Z+cl W+(bb,bc,cc,bl) $p_{\tau}^{V} \geq 150 \; GeV$ $p_{\tau}^{V} \ge 150 \; GeV$ Multijet $p_{-}^{V} \ge 150 \; GeV$ Z+II W+(bb,bc,cc,bl) W+cl tŧ. W+cl W+II Single top W+II Z+(bb.bc.cc.bl) W+(bb,bc,cc,bl) 10° Z+cl Z+(bb,bc,cc,bl) Uncertainty 10 Z+II Uncertainty Pre-fit background Uncertainty Pre-fit background SM VH \rightarrow Vbb \times 10 SM VH \rightarrow Vbb \times 20 Pre-fit background SM VH \rightarrow Vbb \times 10 10^{2} 10² 10 10 1.5 Data/Pred eq ata/Pred ata/ 0.5 -0.6 -0.4 -0.2 0 -0.8 0.2 0.4 -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.6 0.4 0.8 BDT_{VH} output BDT_{VH} output BDT_{VH} output 信号領域に有意なデータの超過を観測

"First" Evidence for H→bb

• Run1(4.7fb⁻¹+20.3fb⁻¹)+Run2(36.1fb⁻¹) combination

Evidence for H→bb

BDTはm_{bb}もインプットに使っているためm_{bb}を直接観測できない
 m_{bb}をフィットする解析でH→bbの信号も観測

 $\frac{\text{Run2 only}}{\mu_{VH}(m_{bb})} = 1.30^{+0.28}_{-0.27}(stat)^{+0.37}_{-0.29}(syst)$ $\mu_{VH}(MVA) = 1.20^{+0.24}_{-0.23}(stat)^{+0.34}_{-0.28}(syst)$

Observed significance 3.5σ (Expected 2.8σ)

2017/7/31

Inclusive H→bb探索

- boosted H→bbを使ったinclusive探索
 - High- $p_{T}^{(H)} > 450 \text{ GeV}$
 - ・fat-jetの中に2つのb-hadronがいることを要求 $(H \rightarrow bb \text{ eff } 33\%, \text{QCD jet rejection } 1/100)$

H→TT Observation (Run2)

- ・Yrの直接測定
- Categorization
 - $(e\tau_{h}, \mu\tau_{h}, \tau_{h}\tau_{h}, e\mu) \times (0jet, boosted p_{T}(\tau\tau), VBF)$

ee/μμ eμ 6% 6% th th 23% mu th 23%

ττ decays

Observed

Z→μμ/ee

tt+jets

W+jets

QCD multijet Others

Total unc.

Obs. - bkg. Bkg. unc.
H→ττ Bkg. unc.

Bkg. unc.

Η→ττ (μ = 1.06)

Ζ→ττ

H→ττ (μ = 1.06)

H→TT Observation

- Observed significance 4.9σ (5.9 σ with Run1)
- µ=1.06^{+0.25}-0.24(Run2)

Search for ttH (multi-lepton)

・Y_tの直接探索が可能

- 13TeVでttHの断面積は4倍!!
- ・終状態にleptonを含む(WW, ZZのdecay)

Dominant backgrounds

- ttW/ttZ : MC
- non-prompt (ttbar) : data-driven
- Diboson : MC

素粒子物理学の進展2017

Search for ttH (multi-lepton)

- Run1+Run2 combination
 - ・ $\mu = 1.5^{+0.5}_{-0.5} (tot) = 1.5^{+0.3}_{-0.3} (stat)^{+0.4}_{-0.4} (syst) ← すでに系統誤差が支配的$ Observed significance 3.3σ (exp. 2.5σ)

Summary of ttH search

・Y_tの直接探索は難しい。。。(実験屋の腕の見せ所)

ttH CMS	Data	sensitivity	μ
bb	12.9fb ⁻¹	-	-0.19 ± 0.8
multi-lepton	Full 2015+2016+Run1	3.3σ (exp. 2.5σ)	1.5 ± 0.5
тт	Ful 2015+2016	1.4σ (exp. 1.8σ)	0.72+0.62
ΥY	Full 2015+2016	3.3σ (exp. 1.5σ)	2.2+0.9-0.8

ttH ATLAS	Data	sensitivity	μ
bb	13.2fb ⁻¹	-	2.1 ^{+1.0} -0.9
multi-lepton, тт	13.2fb ⁻¹	2.2σ (exp. 1.3σ)	$2.5 \pm 0.7^{+1.1}_{-0.9}$
ΥY	Full 2015+2016	1.0σ (exp. 1.8σ)	0.5 ^{+0.6} -0.6

- 全体的にµが高めに出ている(系統誤差が大きい) 2015+2016のFull dataの結果がもうすぐ出揃う
- → 全チャンネルをコンバインしてATLAS,CMSともに(Expected) 30は超えるはず
- → 5oに到達するためには系統誤差を抑える必要あり(主にbackground由来)

3(

3

Higgs rare decay Di-Higgs, BSM Higgs search

素粒子物理学の進展2017

Search for $H \rightarrow \mu \mu$

- ・Y_µ(2nd generation)の直接探索
 - ・BR(H→µµ)~0.02%:信号はかなり少ない
 - ・m_{µµ}質量ピーク(σ(m_H)~2-3%)をとして観測
- ・VBF (BDT high/low score), ggF(p_{T^{μμ}},η_μ)でカテゴリー分け

Run1+Run2 combination 95% C.L. upper limit **Observed 2.8 × SM** (Expected 2.9 × SM)

<u>統計のみの改善で</u> <u>Run3(~300fb⁻¹)までに3σい</u> <u>けるか。。。(ATLAS+CMS)</u>

32

Resonant HH探索: 2HDM, WED...

- SM $\sigma(ggF \rightarrow HH) = 33 fb (NNLO+NNLL) @13 TeV$
 - ・生成断面積はかなり低い
 ✓bb(BR=58%)で断面積を稼ぐ
 ✓γγ, тт (bb, WW)で背景事象
 を落とす→王道

Decay	bb	γγ	тт	WW
bb	4b (34%)			
YY	bbγγ (0.27%)	4γ(0.0005%)		
тт	bbтт (7.2%)	ттүү(2.9%)	4тт(0.4%)	
ww	bbWW (24%)	γγWW(0.1%)	ттWW(2.6%)	4W(4.4%)

10

10⁻¹

10⁻²

-10

10

 $\lambda_{\rm HHH}/\lambda_{\rm HHH}^{\rm SM}$

-L0

SM

0

-5

- NLO

····· NNLO

・HH→γγbb(現在最高感度)

• HH→bbtt

A/H→TT BSM Search

- $g = \frac{1}{2} \frac{1}{2}$
- hMSSM scinaro (gluon fusion+b-associated production)
- Decay mode $(T_{lep}T_{had}, T_{had}T_{had}) \times Number of b-tag (>=1 b-tag, 0 b-tag)$

LFV Higgs探索

- Run1に観測されたExcess Br(H→µT)=0.84%をRun2でチェック
- ・BDTを使って解析感度を改善

	Obs limit(%)	Best fit BR (%)	Limit on Yukawa
Н→µт	<0.25%	$0.00 \pm 0.12\%$	<1.43 × 10 ⁻³
Н→ет	0.61%	$0.30 \pm 0.18\%$	<2.26 × 10 ⁻³

<u>Run1のExcessは確認されず0と無矛盾</u>

36

2017/7/31

Summary

- H→үү, ZZ→4I 精密測定
 - ・SMからの有意なズレはまだ観測できず → 微分断面積などさらに高統計が必要
- H→bb, тт, ttH
 - ・H→bbがATLASで初観測 3.6σ
 - ttH(multi-lepton) : 3.3σ
 - ・
 ・
 今後Cross sectionやCouplingの精密測定の時代へ
- ·BSM直接探索
 - 新物理の兆候は見えず。。。(Diboson, үү, Invisible 探索)は寺師さんのトーク
- ・Run2(2018)で>120fb⁻¹の物理データが貯まる予定

ATLAS : <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u> CMS : <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u>

Photon(electron) and muon calibration

- Muon momentum scale/resolution
 - Calibrate with $Z(J/\psi) \rightarrow \mu \mu$
 - momentum scale 0.1-0.5%
 - momentum resolution 1-2% (barrel), 10%(foward)
 - Total uncertainty ~20MeV for $Z \rightarrow \mu \mu$
- Entries / 0.6 GeV **ATLAS** Preliminary + Data $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ -MC Z→µµ 1.5 Syst. uncert. 0.5 1.1 Data / MC 0.9 80 85 90 95 100 m_{uu} [GeV]

- Photon energy scale/resolution
 - Calibrate with $Z \rightarrow ee$
 - Validate with J/ψ , $Z \rightarrow II\gamma$
 - energy scale : 0.4-0.8%
 - energy resolution : 10-20%

ATLAS ZZ→4I

• S

Simplified Tempalate X-Sections Framework

$H \rightarrow ZZ, H \rightarrow \gamma \gamma$ Categorization

$H o \gamma \gamma$	$H \to ZZ^* \to 4\ell$
$t\bar{t}H+tH$ leptonic (two tHX and one $t\bar{t}H$ categories)	$\overline{t\bar{t}H}$
$t\bar{t}H+tH$ hadronic (two tHX and four BDT $t\bar{t}H$ categories)	VH leptonic
VH dilepton	2-jet VH
VH one-lepton, $p_{\rm T}^{\ell+{\rm MET}} \ge 150 {\rm ~GeV}$	2-jet VBF, $p_{\rm T}^{j1} \ge 200 \ GeV$
VH one-lepton, $p_{\rm T}^{\bar{\ell}+{\rm MET}}$;150 GeV	2-jet VBF, $p_{T}^{j_1}$;200 GeV
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss} \ge 150 {\rm ~GeV}$	1-jet ggF, $p_{\rm T}^{4\ell} \ge 120 \ GeV$
$VH E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$;150 GeV	1-jet ggF, 60 GeV; $p_T^{4\ell}$;120 GeV
$VH + VBF p_T^{j1} \ge 200 \text{ GeV}$	1-jet ggF, $p_{\rm T}^{4\ell}$;60 GeV
VH hadronic (BDT tight and loose categories)	0-jet ggF
VBF, $p_{\rm T}^{\gamma\gamma jj} \geq 25 {\rm GeV}$ (BDT tight and loose categories)	
VBF, $p_{\rm T}^{\gamma\gamma jj}$;25 GeV (BDT tight and loose categories)	
ggF 2-jet, $p_{\rm T}^{\gamma\gamma} \ge 200~{\rm GeV}$	基本的にSTXS frameworkをベースに
ggF 2-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j200 GeV	
ggF 2-jet, 60 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j120 GeV	利益が少ない场口は過且カナコリーをみ
ggF 2-jet, $p_{\rm T}^{\gamma\gamma} < 60 { m ~GeV}$	とめる
ggF 1-jet, $p_{\rm T}^{\tilde{\gamma}\gamma} \geq 200 {\rm ~GeV}$	
ggF 1-jet, 120 GeV $\leq p_{\rm T}^{\gamma\gamma}$ j200 GeV	
ggF 1-jet, 60 GeV $\leq p_{\rm T}^{\gamma \bar{\gamma}}$ j120 GeV	
ggF 1-jet, $p_{\rm T}^{\gamma\gamma}$; 60 GeV	
ggF 0-jet (central and forward categories)	

H→ZZ→4I VBF channel

Global Signal Strength

• γγ+ZZ→4I

 $\mu = 1.16^{+0.11}_{-0.10}(stat.)^{+0.09}_{-0.08}(sys.)^{+0.06}_{-0.05}(theo.)$

STXS Cross Section Measurement

45

Fiducial cross section

• $H \rightarrow ZZ \rightarrow 4I$ (Fiducial,total cross section)

Fiducial Volume

muon	pT>5 GeV, η <2.7
electron	pT>7 GeV, η <2.47
jets	pT>30 GV, y <4.4
lepton p_T	pT>20,15,10
m ₁₂	50 <m12<106< td=""></m12<106<>
m ₃₄	12 <m34<115< td=""></m34<115<>
m _{II}	mll>5 GeV (all SFOS lepton pair)
m _{4l}	115 GeV < m4l < 130

Fiducial selectionのAcceptance 42%@m_H=125 GeV deletector level/particle level 40-60%(lepton flavor依存)

Fiducial cross section

γγ Fiducial cross section

Fiducial Volume

-		
Objects	Definition	
Photons	$ \eta < 1.37 \text{ OR } 1.52 < \eta < 2.37, \ p_{\rm T}^{\rm iso,0.2}/p_{\rm T}^{\gamma} < 0.05$	
Jets	anti- k_t , $R = 0.4$, $p_T > 30$ GeV, $ y < 4.4$	
Leptons, ℓ	<i>e</i> or μ , $p_{\rm T} > 15$ GeV, $ \eta < 2.47$ (excluding $1.37 < \eta < 1.52$ for $\ell = e$)	
Fiducial region	Definition	
Diphoton fiducial	$N_{\gamma} \ge 2, \ p_{\rm T}^{\gamma_1} > 0.35 m_{\gamma\gamma}, \ p_{\rm T}^{\gamma_2} > 0.25 m_{\gamma\gamma}$	
VBF-enhanced	Diphoton fiducial, $N_j \ge 2$, $m_{jj} > 400$ GeV, $ \Delta y_{jj} > 2.8$, $ \Delta \phi_{\gamma\gamma,jj} > 2.6$	
$N_{\text{lepton}} \ge 1$	Diphoton fiducial, $N_{\ell} \ge 1$	
High $E_{\rm T}^{\rm miss}$	Diphoton fiducial, $E_{\rm T}^{\rm miss} > 80 \text{ GeV}, p_{\rm T}^{\gamma\gamma} > 80 \text{ GeV}$	
<i>ttH</i> -enhanced	Diphoton fiducial, $(N_j \ge 4, N_{b-jets} \ge 1)$ OR $(N_j \ge 3, N_{b-jets} \ge 1, N_{\ell} \ge 1)$	

Differential Distirbution

- y_{vv}: 生成過程のPDFに感度を持つ
- ・ |cos(θ*)| (CS frame) : Spinに感度
- ⅠΔy_{γγ}Ι: Spinに感度

素粒子物理学の進展2017

Differential Distirbution

- y₄₁: 生成過程のPDFに感度を持つ
- ・ |cos(θ*)| (CS frame) : Spinに感度

BMS in high p_T(H)

素粒子物理学の進展2017

Tensor Structure Measrement (ZZ→4I)

Check tensor structure of Higgs boson coupling

Spin/CP Measurement

Anomorous coupling measurement

 $A(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{1}^{2} + \kappa_{2}^{\text{VV}} q_{2}^{2}}{(\Lambda_{1}^{\text{VV}})^{2}} \right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right]$ $SM \qquad \text{BSM CP-even} \qquad \text{BSM CP-odd}$

・effective cross sectionの割合f_iとphaseを測定

$$f_{ai} = \left|a_i\right|^2 \sigma_i \Big/ \sum |a_j|^2 \sigma_j,$$

 $\phi_{ai} = \arg\left(a_i/a_1\right)$

- ・H→ZZ→4Iの崩壊だけでなく, VBF, VHの生成の情報も用いて感度向上
- SMから有意なズレはなし (Run2 fullで統計4倍で感度良くなる)

Evidence for H→bb decay mode

• Validation with VZ diboson and m_{bb} analysis in Run2 analysis

 $\mu_{VZ}^{b\overline{b}} = 1.11^{+0.25}_{-0.22}$ Observed significance 5.8 σ (exp. 5.3 σ)

Boosted H→bb double b-tagging

• The measured cross sections for Z+jets and Higgs for jet $p_T > 450$ GeV are:

$$\sigma_{z} = 849 + 257/-209 \text{ fb}$$

 $\sigma_{H} = 74 + 51/-49 \text{ fb}$

• Broken down into:

 $\sigma_{Z} = 849 + 155/-155 \text{ (stat.)} + 140/-205 \text{ (syst.)}$ $\sigma_{H} = 74 + 48/-48 \text{ (stat.)} + 10/-17 \text{ (syst.)}$

Н→тт

- $m_{\tau\tau}$ mass reconstruction
 - ・ dinamic likelihood algorithmで再構成
- ・インプット
 - pT(T1), pT(T2), Missing p_T, cov(MPT)
 - Maximum Likelihood Method : L= (τ decay matrix elements, angle)* (experimental resolution)

Higgs massを125 GeVに再構成可能 分解能: 15-20%

ttH Multi-lepton analysis

Kinematic discrimination

2lepton SS

3 lepton

ttH→γγ

H→µµ projection (CMS)

- ・Run3~300fb⁻¹で3σ近くまで感度伸びる
 - ・感度向上でRun3で見える可能性 (ATLAS+CMS)
- HL-LHC1200fb⁻¹ 5σ

tHq Measurement (multi-lepton analysis)

- ・2つのdiagramの干渉でк_t, к_vの正負に感度
- ・ H→WW/ZZ/TTのmulti-leptonを使う (SS 2lep or 3lep)

VH→bb Mass Resolution Improvement

- b-jet specific correction is important to improve m_{bb} resolution
 - Standard jet is calibrated for light jet
 - b-jet specific future (semileptonic decay) is not taken into account
- Specific corretion is applied
 - Muon-in-jet correction
 - PtReco Correction (0/1 lep only)
 - Kinematic likelihood fit (2lepton only)
- Final m_{bb} resolution
 - ~10% for 0/1 lepton
 - ~7% for 2lepton

m_{bb} [GeV]

Ф→тт BSM Search

Model independent cross section limit

A→Zh(→bb)

• High branching ratio in low $tan\beta$

Doubly Charged Higgs

- Several BSMで予言されている (Higgs triplet, little Higgs, Type II seesaw...
- ・m(H⁺⁺)分布で信号のExcessを探索 (same-sign dilepton mass, good mass resolution)
- ・BR(H⁺⁺→I[±]I[±])=100%としてm(H⁺⁺_{L/R})に対するリミット

Di-Higgs Cross Section

NMSSM探索

Prospect (Measurement)

Coupling

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt} = 300 \text{ fb}^{-1}; \int \text{Ldt} = 3000 \text{ fb}^{-1}$

HH Prospect

