Dynamical scalegenesis via multiple seesaws

Shinya Matsuzaki

Department of Physics & Institute for Advanced Research, Nagoya U.

Phys.RevD.95 (2017) H.Ishida, S.M, S.Okawa, Y.Omura

Based on

and also Phys.RevD.94(2016); 1610.07137, H.Ishida, S.M, Y.Yamaguchi

@ PPP2017 07/31 - 08/04/2017 \cancel{x} Discovery of Higgs boson in 2012

--- last piece of particles predicted in SM

--- very successful SM pheno. so far

 \Rightarrow It's **NOT** the end of the story!...

- --- still lots of stuff left needed to account for
- e.g. neutrino masses (mixing), dark matter, baryon asymmetry, etc

☆ In particular, unsatisfactory stuff on theoretical ground:

--- origin of mass is given "by hand"

Higgs potential: $V = \lambda_H (H^{\dagger} H)^2 + m_H^2 (H^{\dagger} H)$ $H = (0, \frac{1}{\sqrt{2}}(v_H + h))^T$ $\begin{array}{c}
m_H^2 > 0 \\
m_H^2 < 0 \\
m_H^2 < 0 \\
m_H^2 < 0 \\
m_H^2 & h
\end{array}$ symmetric phase h

--- why mH² <0 (dynamical origin?) and O(100 GeV)²? (related to gauge hierarchy problem)

broken phase

--- No answer in SM

☆ Typical ideas to access the origin of mass (or gauge hierarchy problem)

i) eliminate Higgs, replace fully by strong dynamics
 e.g. Technicolor-like scenario

ii) protect Higgs by some symmetrye.g. SUSY, composite Higgs, scale symmetry

☆ Typical ideas to access the origin of mass (or gauge hierarchy problem)

Well... it's on break

i) eliminate Higgs, replace fully by strong dynamics

e.g. Technicolor-like scenario

ii) protect Higgs by some symmetry

e.g. SUSY, composite Higgs, scale symmetry

--- Today, let's take scale symmetry! (classical scale-inv.)

i) Coleman-Weinberg mechanism (Radiative sym. Breaking)

But, no way only within SM (vacuum instability due to large top loop) $m_{h(125)}^2\sim \frac{1}{8\pi^2 v^2}(9m_W^4-12m_t^4)$

--- Call for Beyond SM

i) Coleman-Weinberg mechanism (Radiative sym. Breaking)

Extensions w/ Higgs portal term $V = \kappa |\phi|^2 (H^\dagger H)$

(a) $\kappa = O(1)$, and >0; Φ loop effect included

-- assume Φ-symmetric phase: <Φ>=0

-- requires Φ mass > O(EW) or large # of Φ to stabilize EW vacuum:

$$m_{\phi}^2 \sim \kappa v^2$$
 $m_{h(125)}^2 \sim \frac{1}{8\pi^2 v^2} (9m_W^4 - 12m_t^4 + N_{\phi}m_{\phi}^4)$
K.Endo, et al (2016); K.Hashino, et al(2016)

i) Coleman-Weinberg mechanism (Radiative sym. Breaking)

Extensions w/ Higgs portal term $V = \kappa |\phi|^2 (H^\dagger H)$

(b) $\kappa \ll O(1)$, and $\ll O$; Φ effect decoupled, but

- -- if Φ is U(1)' (e.g. U(1)_B-L) charged, then CW mechanism works for the U(1)' sector
- -- nonzero Φ-VEV generates Higgs mass term <0, triggers EWSB

$$V=-|\kappa|v_{\phi}^2(H^{\dagger}H)$$

S.Iso, et al (2009,2013); N.Okada, et al(2012,2016); I.Oda (2013); V.V.Khoze, et al(2013); M.Hashimoto, et al (2014); J.Guo, et al(2015)

ii) Strong gauge dynamics (hidden/dark QCD) (nonperturbative sym. Breaking)

Extensions w/ Higgs portal term $V = \kappa |\phi|^2 (H^\dagger H)$

* к <<O(1), and <O

* Φ = a scalar with strong coupling to hidden/dark QCD --- below the dynamical scale, dark QCD generates scalar condensation:

$$\langle \phi^{\dagger} \phi \rangle \simeq \Lambda_{\mathrm{dQCD}}^{2}$$

 $\longrightarrow V = -|\kappa| \Lambda_{\mathrm{dQCD}}^{2}(H^{\dagger}H)$

F.Wilczek (2008); T.Hur, et al(2011); M.Holthausen, et al (2013); J.Kubo, et al(2014)

iii) Strong gauge dynamics (vectorlike-SM gauging)
 = vectorlike confinement (hypercolor: HC)
 --- "bosonic seesaw mechanism"

N.Haba et al (2009,2016,2017); O.Antipin, et al (2015); H.Ishida, S.M., Y.Yamaguchi (2016); H.Ishida, S.M., S.Okawa, Y.Omura (2017)

Extensions w/ Yukawa term & HC fermions (F_{L/R})

 $\mathcal{L} = -y(\bar{\chi}H\psi) + \text{h.c.}$

	$SU(N)_{\rm HC}$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$
$\chi_{L/R}$	N	1	2	1/2
$\psi_{L/R}$	N	1	1	0

N.Haba et al (2016,2017); H.Ishida, S.M., Y.Yamaguchi (2016)

iii) Strong gauge dynamics (vectorlike-SM gauging)
 = vectorlike confinement (hypercolor: HC)
 --- "bosonic seesaw mechanism"

N.Haba et al (2009,2016,2017); O.Antipin, et al (2015); H.Ishida, S.M., Y.Yamaguchi (2016); H.Ishida, S.M., S.Okawa, Y.Omura (2017)

Extensions w/ Yukawa term & HC fermions (F_{L/R})

$\mathcal{L} = -y(\bar{\chi}H\psi) + \text{h.c.}$	$\xrightarrow{(@\Lambda_{\mathrm{HC}})} -\Lambda_{\mathrm{HC}}^2 (y \cdot \Theta^{\dagger} H + \Theta ^2) + \cdot$
---	---

	$SU(N)_{\rm HC}$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$
$\chi_{L/R}$	N	1	2	1/2
$\psi_{L/R}$	N	1	1	0

N.Haba et al (2016,2017); H.Ishida, S.M., Y.Yamaguchi (2016) $\Theta \sim \bar{\psi} \chi$ composite Higgs

 Λ_{HC} :

"chiral" $SU(3)_{F_{L/R}}$ breaking scale

Slide of this part borrowed from Y.Yamaguchi

HC-quark condensate occurs at $\mu = \Lambda_{\text{HC}}$. $\Rightarrow \langle \overline{F}F \rangle = \langle \overline{\chi}\chi \rangle = \langle \overline{\psi}\psi \rangle \neq 0 \quad (\langle \overline{\chi}\psi \rangle = \langle \overline{\psi}\chi \rangle = 0 \text{ by Vafa-Witten's theorem})$ $\overline{\psi}_L \chi_R \text{ and } \overline{\psi}_R \chi_L \text{ couple to a composite Higgs doublet } \Theta \sim \overline{\psi}\chi$

Then, "bosonic seesaw mechanism" can work:

Classically scale invariance $(H^{\dagger}, \Theta^{\dagger}) \begin{pmatrix} 0 \leftarrow y \Lambda_{\rm HC}^2 \\ y \Lambda_{\rm HC}^2 & M_{\Theta}^2 \end{pmatrix} \begin{pmatrix} H \\ \Theta \end{pmatrix}$ $\approx \left(H_1^{\dagger}, H_2^{\dagger}\right) \left(\begin{array}{cc} -\frac{y^2}{M_{\Theta}^2} \Lambda_{\rm HC}^4 & 0\\ 0 & M_{\Theta}^2 \end{array}\right) \left(\begin{array}{c} H_1\\ H_2 \end{array}\right)$ where we have used $y \ll 1$. $(M_{\Theta} \simeq \Lambda_{\rm HC})$ Negative mass term is naturally generated: $m_H^2 pprox - rac{y^2}{M_\odot^2} \Lambda_{
m HC}^4$ $\approx -(y\Lambda_{\rm HC})^2$ N.Haba et al (2009,2016,2017); O.Antipin, et al (2015); H.Ishida, S.M., Y.Yamaguchi (2016);

H.Ishida, S.M., S.Okawa, Y.Omura (2017)

☆Constraint on scenarios of scalegenesis ~ asymptotic safety condition ~

- -- scale/trace anomaly (quadratic, quartic divergence) should be generated at quantum level
- -- which may, however, be cancelled by gravitational effects at Planck scale

M. Shaposhnikov, et al (2010); C. Wetterich, et al (2016); A. J. Helmboldt, et al (2016)

---- Hence, to keep the classical scale-inv. theory has to be safe up to Planck scale (i.e. free from Landau poles) \clubsuit This talk introduces a bosonic seesaw model, shows that

- * single HC dynamics explains all masses for existing particles
 - -- SM particles including 125 GeV Higgs,
 - -- active (RH) neutrinos,
 - -- dark matter candidate (composite or elementary), by EWSB and U(1)_{B-L} breaking
- rich pheno. at TeV is predicted:
 More interesting than other scale-inv. models
 - -- HC hadrons (pions, scalar mesons, baryons,...)
 - -- B-L Higgs, gauge boson
 - -- a "new" production process for DM in thermal history, DM detection exp. , etc.

<u>Contents</u>

0. Introduction

- Bosonic seesaw model w/ multiple seesaws
 -- dynamical scalegeneration
- 2. Summary

1. Bosonic seesaw model w/ multiple seesaws -- dynamical scalegeneration Phys.RevD.95 (2017) H.Ishida, S.M, S.Okawa, Y.Omura

* SM gauges x U(1)	3-L				-	
x SU(3)HC x CSI	S	$SU(3)_c$	$SU(2)_W$	U	$(1)_{Y}$	$U(1)_{B-L}$
٦	q_L^{lpha}	3	2	1	/6	-1/3
quarks -	u_R^{α}	3	1	2	2/3	-1/3
L	d_R^{lpha}	3	1	_	1/3	-1/3
leptons 🚽	l_L^{lpha}	1	2	-	1/2	1
	e_R^{α}	1	1	-	-1	1
elementary EW Higgs	Н	1	2	1	/2	0
RHMv (3 generations)	N_R^{α}	1	1		0	1
elementary B-L Higgs	ϕ	1	1		0	-2
HC fermions (x4)	$F_{L/R}$	$SU(3)_{HC}$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_{B-L}$
SU(2) doublet	$\chi = (\chi_1, \chi_2)$	т 3	1	2	1/2 + q	q'
SU(2) singlet	ψ_1	3	1	1	q	q'
SU(2) singlet	ψ_2	3	1	1	q	-2 + q'

* Criterion for modeling HC sector:

$F_{L/R}$	$SU(3)_{HC}$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_{B-L}$
$\chi = (\chi_1, \chi_2)^T$	3	1	2	1/2 + q	q'
ψ_1	3	1	1	q	q'
ψ_2	3	1	1	q	-2 + q'

Making "mirror" Higgses by HC strong dynamics

$$\Theta_1 \sim \overline{\psi_1} \chi, \qquad \Phi \sim \overline{\psi_1} \psi_2,$$

H ~ (1,2,1/2,0) φ~ (1,1,0,-2)

to be seesaw partners via HC-fermion Yukawa terms:

 $y_H(\bar{\chi}H\psi_1 + \text{H.c.}) + y_\phi(\overline{\psi_2}\phi\psi_1 + \text{H.c.})$

 -- approximate "chiral"
 SU(4) x SU(4) sym. in HC sector (explicitly broken by gauges and HC-fermion Yukawa ints.)

$F_{L/R}$	$SU(3)_{HC}$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_{B-L}$
$\chi = (\chi_1, \chi_2)^T$	3	1	2	1/2 + q	q'
ψ_1	3	1	1	q	q'
ψ_2	3	1	1	q	-2 + q'

up to HC-fermion axial U(1) (anomaly)

-- spontaneously broken at Λ_{HC} (say, O(TeV) – O(10TeV)) $\langle \bar{F}^i F^j \rangle \sim \Lambda_{\text{HC}}^3 \delta^{ij} \qquad SU(4)_{F_L} \times SU(4)_{F_R} \rightarrow SU(4)_{F_V}$

-- as well as CSI, simultaneously

- -- theory below HC scale, described by HC hadrons
- -- (ref. QCD) low-lying spectra include:
- HC pions x 15 (pNG bosons) {+ HC eta'}
- HC scalar mesons x 16
- HC spin ½ baryons x 20 (→incl. DM), {and vector (axialvector) mesons}

$\mathcal{M} = \mathcal{S} + i\mathcal{P}$	constituent	$SU(2)_W$	$U(1)_{Y}$	$U(1)_{B-L}$
$(f_0^{\mathrm{HC}}, a_0^{\mathrm{HC}} + i\mathcal{P}_{a_0^{\mathrm{HC}}})_{ij}$	$\overline{\chi_i} \chi_j$	(1, 3)	0	0
$(\Theta_1 + i\mathcal{P}_{\Theta_1})_i$	$\overline{\psi_1} \chi_i$	2	1/2	0
$(\Theta_2 + i\mathcal{P}_{\Theta_2})_i$	$\overline{\psi_2} \chi_i$	2	1/2	2
$\Phi + i \mathcal{P}_{\Phi}$	$\overline{\psi_1} \ \psi_2$	1	0	-2
$\varphi_1 + i \mathcal{P}_{\varphi_1}$	$\overline{\psi_1} \ \psi_1$	1	0	0
$\varphi_2 + i\mathcal{P}_{\varphi_2}$	$\overline{\psi_2} \ \psi_2$	1	0	0

HC					
baryon	constituent	$SU(2)_W$	I_3	Y	B-L
p_{HC}^{2+3q}	$\chi_1\chi_1\chi_2$	2	1/2	3/2 + 3q	3q'
$n_{ m HC}^{1+3q}$	$\chi_1\chi_2\chi_2$	2	-1/2	3/2 + 3q	3q'
$\Lambda^{1+3q}_{(1)}$	$\chi_1\chi_2\psi_1$	1	0	1 + 3q	3q'
$\Sigma_{(1)}^{2+3q}$	$\chi_1\chi_1\Psi_1$	3	1	1 + 3q	3q'
$\Sigma_{(1)}^{1+3q}$	$\chi_1\chi_2\Psi_1$	3	0	1 + 3q	3q'
$\Sigma_{(1)}^{3q}$	$\chi_2\chi_2\Psi_1$	3	-1	1 + 3q	3q'
$\Xi_{(11)}^{1+3q}$	$\chi_1 \psi_1 \psi_1$	2	1/2	1/2 + 3q	3q'
$\Xi_{(11)}^{3q}$	$\chi_2 \psi_1 \psi_1$	2	-1/2	1/2 + 3q	3q'
$\Lambda^{1+3q}_{(2)}$	$\chi_1\chi_2\Psi_2$	1	0	1 + 3q	-2 + 3q'
$\Omega_{(12)}^{3q}$	$\psi_1\psi_1\psi_2$	1	0	3q	-2 + 3q'
$\Sigma_{(2)}^{2+3q}$	$\chi_1\chi_1\psi_2$	3	1	1 + 3q	-2 + 3q'
$\Sigma_{(2)}^{1+3q}$	$\chi_1\chi_2\Psi_2$	3	0	1 + 3q	-2 + 3q'
$\Sigma_{(2)}^{3q}$	$\chi_2\chi_2\Psi_2$	3	-1	1 + 3q	-2 + 3q'
$\Xi^{1+3q}_{(12)}$	$\chi_1 \psi_1 \psi_2$	2	1/2	1/2 + 3q	-2 + 3q'
$\Xi_{(12)}^{3q'}$	$\chi_2 \psi_1 \psi_2$	2	-1/2	1/2 + 3q	-2 + 3q'
$\Omega^{3q}_{(22)}$	$\psi_1\psi_2\psi_2$	1	0	3q	-4 + 3q'
$\Xi_{(22)}^{1+3q}$	$\chi_1 \psi_2 \psi_2$	2	1/2	1/2 + 3q	-4 + 3q'
$\Xi^{3q}_{(22)}$	$\chi_2 \psi_2 \psi_2$	2	-1/2	1/2 + 3q	-4 + 3q'

Among HC hadrons, focus on "mirror" composite Higgses

$$\Theta_1 \sim \overline{\psi_1} \chi, \qquad \Phi \sim \overline{\psi_1} \psi_2,$$

via HC-fermion Yukawa terms:

$$y_H(\bar{\chi}H\psi_1 + \text{H.c.}) + y_\phi(\overline{\psi_2}\phi\psi_1 + \text{H.c.})$$

trigger two seesaws: $\begin{pmatrix} 0 & y_{H/\phi}\Lambda_{\rm HC}^2 \\ y_{H/\phi}\Lambda_{\rm HC}^2 & \Lambda_{\rm HC}^2 \end{pmatrix} \qquad y_{H/\phi} \ll 1$ $m_H^2 \simeq -y_H^2 \Lambda_{\rm HC}^2 \text{ and } m_\phi^2 \simeq -y_\phi^2 \Lambda_{\rm HC}^2 \text{ realize EWSB \& U(1)B-L breaking w/}$

$$-\,\lambda_H(H^\dagger H)^2 - \lambda_\phi (|\phi|^2)^2$$

$$m_{h_1} \simeq \sqrt{2\lambda_H} v_{\rm EW} \simeq 125 \,{\rm GeV}$$

$$m_{\phi_1} \simeq 2\sqrt{2\lambda_{\phi}}v_{\phi_1} \\ = \mathcal{O}(10) \text{ TeV}$$

 $v_{\phi} = \mathcal{O}(\Lambda_{\mathrm{HC}})$ and $\lambda_{\phi} = O(1)$

Furthermore, via RH Majorana v-Yukawa terms:

$$y_{lN}^{\alpha\beta}\overline{l_L^{\alpha}}\tilde{H}N_R^{\beta} + y_N^{\alpha\alpha}(\phi\overline{N_R^{c\alpha}}N_R^{\alpha} + \text{H.c.})$$

trigger neutrino seesaw (Type I):

$$\begin{pmatrix} 0 & y_{lN}v_{\rm EW} \\ y_{lN}^T v_{\rm EW} & m_{N_R} \end{pmatrix}$$

-- active and heavy RHM neutrino masses $m_{\nu} \approx y_{lN}^2 v_{EW}^2 / m_{N_R} = \mathcal{O}(0.1 \text{eV}) \quad \text{for } y_{lN} = \mathcal{O}(10^{-5})$ $m_{N_R}^{\alpha\alpha} = \mathcal{O}(y_N^{\alpha\alpha} \Lambda_{\text{HC}}) = \mathcal{O}(5\text{--}10\text{TeV}) \text{ with } y_N^{\alpha\alpha} = \mathcal{O}(1)$ $v_{\phi} = \mathcal{O}(\Lambda_{\text{HC}})$

DM candidates

	HC baryon	constituent	$SU(2)_W$	I_3	Y	B-L
(1)	$\Lambda^{1+3q}_{(1)}$	$\chi_1\chi_2\Psi_1$	1	0	1 + 3q	3q'
(1)	$\Lambda^{1+3q}_{(2)}$	$\chi_1\chi_2\Psi_2$	1	0	1 + 3q	-2 + 3q'
(11)	$\Omega^{3q}_{(12)}$	$\psi_1\psi_1\psi_2$	1	0	3q	-2 + 3q'
\··/	$\Omega^{3q}_{(22)}$	$\psi_1\psi_2\psi_2$	1	0	3q	-4 + 3q'

DM candidate = SM-gauge singlet, lightest HC baryons (TeV- O(10) TeV) (I) q = -1/3 and (II) q = 0. * This charge choice is consistent w/ asymptotic safety Other baryons decay to DMs + weak bosons(*) + HC pions (*)

$$p_{\mathrm{HC}}^+ \to n_{\mathrm{HC}}^0 + W^{+(*)} \qquad n_{\mathrm{HC}}^0 \to \mathcal{P}_{\Theta_2}^0 + \Lambda_{(2)}^0$$

DM production in early universe

-- lightest HC baryons (B= $\Lambda^0_{(1)}(q'=0)$ or $\Lambda^0_{(2)}(q'=2/3)$ for q=-1/3 case I)

- -- generated @ T = HC baron mass scale O(1) O(10) TeV:
 DM=nonrelativistic; might have never been thermalized
 (* HC pions can be as heavy as HC baryons;
 HC pions might have never been in thermal EQ as well.)
- -- dominant source for DM production = bosonic seesaw portal process $1 \quad \overline{D} D O^{\dagger} O \qquad y_{H}^{2} \overline{D} D U^{\dagger} U$

$$\frac{1}{\Lambda_{\rm HC}} \bar{B} B \Theta_1^{\dagger} \Theta_1 \to \frac{y_H}{\Lambda_{\rm HC}} \bar{B} B H^{\dagger} H$$
$$\Theta_1 - H \text{ mixing } y_H \ll 1$$

H.Ishida, S.M, Y.Yamaguchi (2016)

-- non-thermal production like "freeze-in" scenario (FIMP, E-WIMP)

-- non-thermal production like "freeze-in" scenario (FIMP, E-WIMP)

<u>@</u> DM dete	ction experiments	$F_{L/R}$		$SU(3)_{HC}$	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_{B-L}$
(I) $a = -1/3$ and (II) $a = 0$		$\chi = (\chi$	$(\chi_1,\chi_2)^T$	3	1	2	1/2 + q	q'
$(\mathbf{I}) \mathbf{q} = \mathbf{I} \mathbf{I} \mathbf{J}$	and (ii) $q = 0$	ψ_1		3	1	1	q	q'
Ref: $q' = 0$	Ref: q' = 1	ψ_2		3	1	1	q	-2 + q'
$\frac{g \cdot g_Y}{\sqrt{2}} \sqrt{2} \sigma = B^{\mu\nu} \Lambda^C$	$a_{\rm P}$ $_{\rm I} \bar{\Omega}^0 \gamma_{\rm I} Z^{\prime \mu} \Omega^0$	(HC baryon	constituent	t $SU(2)_W$	I_3	Y	B-L
$2m_{\Lambda 0}$ $m_{0} \mu \nu D$ m_{0}	g_{B-L} μ_{L}		$\Lambda^{1+3q}_{(1)}$	$\chi_1\chi_2\Psi_1$	1	0	1 + 3q	3q'
DM DM	DM DM	(1)	$\Lambda^{1+3q}_{(2)}$	$\chi_1\chi_2\psi_2$	1	0	1 + 3q	-2 + 3q'
$\sum_{n=7}^{\infty}$	<pre>< z'</pre>	/	$\Omega^{3q}_{(12)}$	$\psi_1\psi_1\psi_2$	1	0	3q	-2 + 3q'
γ , Ζ		(11) ($\Omega^{3q}_{(22)}$	$\psi_1\psi_2\psi_2$	1	0	3q	-4 + 3q'
N N' mag.moment int. w/g-factor:g~1	N N' B-L gauge int.: $g_{B-L}^2/m_{Z'^2}$ = $1/v\phi^2$ (I)	Curr (LUX2	ent $m_{\rm DM}$	$\begin{array}{l} { m cound} \\ { m xenon1} \\ { m t} > {\cal O}({ m c}) \end{array}$	s on T) (10) [<mark>SI cro</mark> ГеV	ss sec	ctions
preference to	be clarified (II) $m_{]}$	DM >	$> \mathcal{O}(10)$)) Te	V for	$v_{\phi} >$	$5 { m TeV}$
in future expe	s. L							

* Bosonic seesaw models:

- -- interesting scenario giving dynamical explanation for origin of mass, solving gauge hierarchy problem
- -- can provide rich pheno. for TeV scale physics HC composite spectra: incl natural DM candidate

* We discussed a dynamical scalegenesis:

-- all particle masses generated by a single HC

* Future direction --- HC hadron collider signatures at LHC

- --- effect on flavor physics
- -- GW detectability of HC phase transition, etc.
- \rightarrow under consideration