
RK(*) anomaly comes from
vector-like compositeness

Kenji Nishiwaki (KIAS)

니시와키, 켄지

Talk @ the workshop ‘Progress in Particle Physics 2017’, Kyoto, Japan; 
1st August 2017

based on collaboration with

Shinya Matsuzaki (Nagoya Univ.),
Ryoutaro Watanabe (Montréal Univ.) 

[arXiv:1706.01463]

‘my diagram’

inspired by

Mawatari-san



Points

1. Hidden “QCD” ⇒ multiple vector candidates for B anomaly.

2. Various virtues in the vector-like compositeness

3. Large part of parameter space waits for being explored.



Introduction



B anomalies [review]

A brief summary for R

K

(⇤) anomaly

Kenji Nishiwaki *

School of Physics, Korea Institute for Advanced Study
Ver. 26 May 2017, (11h 50min in Korean ST)

In this writeup, we provide a brief summary for R

K

(⇤) anomaly.

1 Introduction
Very recently (18th April 2017) at a seminar in CERN [1], the LHCb experimental group announced the
flavor measurement as
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where q

2 means the di-muon invariant mass, where it shows a similar trends in the LHCb R

K

measure-
ment [2]
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In the kinetic region q

2 � m

2

µ, the ratios, if the Standard model (SM) is completely correct, should be
very close to unity due to lepton flavor universality in the SM. Thereby, the 2.4� and 2.6�-deviated
results may indicate physics beyond the SM, which violates the lepton flavor universality.

2 A basic setup
When we consider that the R

K

(⇤) anomaly1 originates from interactions of a new Z

0 gauge boson, it should
couple (at least) with ¯µµ and ¯

bs like in [4] (see also [5–7])

L
Z

0 3
f
�L

µµµ�
µ
P

L

µ +
⇣
�L

sb

s�µP
L

b + h.c.
⌘ g

Z

0
µ + [L ! R

] , (2.1)

where P

R/L ⌘ (1± �
5

)/2 shows the chiral projectors and we take into account of not only the left-handed,
but also right-handed ones. The spinor fields represent mass eigenstates of the SM fermions.

In general, the e�ective interaction of an electromagnetic-neutral vector particle should be defined as
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where M

Z

0 means the mass of the vector boson. Here, the overall minus sign originate from the vector-
boson propagator, and the factor two is introduced to compensate the combinatoric factor of two from
expanding the quadratic form of J

0
µJ

µ or deriving corresponding Feynman rules.
* e-mail: nishiken@kias.re.kr
1 A recent comprehensive review article on rare B decays is available [3].
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Table 1: The signal yields for B0

s

! �µ+µ� decays, as well as the di↵erential branching fraction
relative to the normalisation mode and the absolute di↵erential branching fraction, in bins of q2.
The given uncertainties are (from left to right) statistical, systematic, and the uncertainty on the
branching fraction of the normalisation mode.

q2 bin [GeV2/c4] N
�µµ

dB(B0
s!�µµ)

B(B0
s!J/ �)dq
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�
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5.44+0.68
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± 0.13 5.85+0.73

�0.69

± 0.14± 0.44

2.0 < q2 < 5.0 60+10

�9

2.38+0.39

�0.37

± 0.06 2.56+0.42

�0.39

± 0.06± 0.19

5.0 < q2 < 8.0 83+12

�11

2.98+0.41

�0.39

± 0.07 3.21+0.44

�0.42

± 0.08± 0.24

11.0 < q2 < 12.5 70+10

�10

4.37+0.64

�0.61

± 0.14 4.71+0.69

�0.65

± 0.15± 0.36

15.0 < q2 < 17.0 83+10

�10

4.20+0.53

�0.50

± 0.11 4.52+0.57

�0.54

± 0.12± 0.34

17.0 < q2 < 19.0 54+8
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3.68+0.53

�0.50

± 0.13 3.96+0.57

�0.54

± 0.14± 0.30

1.0 < q2 < 6.0 101+13

�12

2.40+0.30

�0.29

± 0.07 2.58+0.33

�0.31

± 0.08± 0.19

15.0 < q2 < 19.0 136+13

�13

3.75+0.37

�0.35

± 0.12 4.04+0.39

�0.38

± 0.13± 0.30
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Figure 4: Di↵erential branching fraction of the decay B0

s

! �µ+µ�, overlaid with SM predic-
tions [4,5] indicated by blue shaded boxes. The vetoes excluding the charmonium resonances are
indicated by grey areas.

measurement is evaluated by varying the Wilson coe�cient C
9

used in the generation
of simulated signal events. By allowing a New Physics contribution of �1.5, which is
motivated by the global fit results in Ref. [38], the resulting systematic uncertainty is

7

[LHCb, arXiv:1506.08777]

5

(Mbc < 5.27 GeV/c

2). For each measurement in q

2, the
signal fraction is derived as a function of Mbc. The back-
ground angular distribution is described using the direct
product of kernel density template histograms [22] for
�, ✓` and ✓K while the shape is predetermined from the
Mbc sideband. Acceptance and e�ciency e↵ects are ac-
counted for in the fit by weighting each event by the
inverse of its combined e�ciency, which is derived from
the direct product of the e�ciencies in �, ✓`, ✓K and
q

2. The individual reconstruction e�ciency for each ob-
servable is obtained by extracting the ratio between the
reconstructed and generated MC distributions.

All methods are tested and evaluated in pseudo-
experiments using MC samples for each measurement
and the results are compared to the input values. Sys-
tematic uncertainties are considered if they introduce an
angular- or q2-dependent bias to the distributions of sig-
nal or background candidates. Small correlations be-
tween ✓` and q

2 are not considered in the treatment of
the reconstruction e�ciency. The deviation between a
fit based on generator truth and an MC sample after
detector simulation and reconstruction reweighted with
e�ciency corrections is evaluated for a bias. The di↵er-
ence between the two fits (0.045 on average) is taken as
the systematic uncertainty for the e�ciency correction;
this is the largest systematic uncertainty. Peaking back-
grounds are estimated for each q

2 bin using MC. In total,
fewer than six (one) such background events are expected
in the muon (electron) channels. The impact of the
peaking component is simulated by performing pseudo-
experiments with MC samples for signal and background
according to the measured signal yields, replacing six ran-
domly selected events from the signal class with events
from simulated peaking background in each measure-
ment. The observed deviation from simulated values
(0.02 on average) is taken as the systematic uncertainty.
An error on the background parametrization is estimated
by repeating all fits with an alternative background de-
scription using third-order polynomials and taking the
observed deviation (0.028 on average) as the systematic
error. Finally, an error on the signal parametrization
is considered by repeating the fit with the signal shape
parameters adjusted by ±1�, leading to systematic un-
certainties of order 10�4. Signal cross-feed is evaluated
for all signal decay channels and found to be insignificant.
The parametrization in Eq. 1 does not include a possi-
ble S-wave contribution under the K

⇤(892) mass region.
With the expected fraction of 5% [1, 20], we estimate
the S-wave contribution for each measurement to be less
than one event and the resulting e↵ects to be negligible.
Statistically equal numbers of B and B̄ candidates in the
signal window are found; consequently, CP-asymmetric
contributions to the measured CP-even parameters are
neglected. The total systematic uncertainty is calculated
as the sum in quadrature of the individual values.

The result of all fits is presented in Table I and dis-

FIG. 2. P 0
4 and P 0

5 observables for combined, electron and
muon modes. The SM predictions are provided by DHMV
[9] and lattice QCD [24] and displayed as boxes for the muon
modes only. The central values of the data points for the
electron and muon modes are shifted horizontally for better
readability.

played in Fig. 2 where it is compared to SM predictions
by DHMV, which refers to the soft form-factor method
of Ref. [23]. Predictions for the 14.18 GeV2

/c

2
< q

2
<

19.00 GeV2
/c

2 bin are calculated using lattice QCD with
QCD form factors from Ref. [24]. The predictions include
the lepton mass, leading to minor corrections between
the SM values for the electron and muon modes. For the
electron mode, fits in the region 10.09 GeV2

/c

2
< q

2
<

12.90 GeV2
/c

2 are excluded because it overlaps with the
 (2S) veto range, leading to insu�cient statistics for sta-
ble fit results. In total, all measurements are compatible
with SM predictions. The strongest tension of 2.6� (in-
cluding systematic uncertainty) is observed in P

0
5 of the

muon modes for the region 4 GeV2
/c

2
< q

2
< 8 GeV2

/c

2;
this is in the same region where LHCb reported the so-
called P

0
5 anomaly [1, 20]. In the same region, the elec-

tron modes deviate by 1.3� and all channels combined
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Figure 10: The measured values of FL , S3, S4, S5, S7, S8 compared with predictions from the theoretical calculations
discussed in the text (Section 8). Statistical and total uncertainties are shown for the data, i.e. the inner mark
indicates the statistical uncertainty and the total error bar the total uncertainty.
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deviations being observed in
associated variables
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Suggestions from global fit(s) [review]

Interpreting Hints for Lepton Flavor Universality Violation

Wolfgang Altmannshofer,1, ⇤ Peter Stangl,2, † and David M. Straub2, ‡

1Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
2Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

We interpret the recent hints for lepton flavor universality violation in rare B meson decays. Based on
a model-independent e↵ective Hamiltonian approach, we determine regions of new physics parameter
space that give a good description of the experimental data on RK and RK⇤ , which is in tension
with Standard Model predictions. We suggest further measurements that can help narrowing down
viable new physics explanations. We stress that the measured values of RK and RK⇤ are fully
compatible with new physics explanations of other anomalies in rare B meson decays based on the
b ! sµµ transition. If the hints for lepton flavor universality violation are first signs of new physics,
perturbative unitarity implies new phenomena below a scale of ⇠ 100 TeV.

Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ+µ�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K⇤µ+µ�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q2 ⇠ 4m2

` .
Over a very broad range of q2 the SM accurately pre-
dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z 0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2 <

q2 < 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K⇤`+`� angular distibutions [5]. We do
not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
VtbV

⇤
ts

e2

16⇡2

X

i,`

(C`
i O

`
i + C 0 `

i O0 `
i ) + h.c. ,

(5)
with the following four-fermion contact interactions,

O`
9 = (s̄�µPLb)(¯̀�µ`) , O0 `

9 = (s̄�µPRb)(¯̀�µ`) , (6)

O`
10 = (s̄�µPLb)(¯̀�µ�5`) , O0 `

10 = (s̄�µPRb)(¯̀�µ�5`) , (7)
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We interpret the recent hints for lepton flavor universality violation in rare B meson decays. Based on
a model-independent e↵ective Hamiltonian approach, we determine regions of new physics parameter
space that give a good description of the experimental data on RK and RK⇤ , which is in tension
with Standard Model predictions. We suggest further measurements that can help narrowing down
viable new physics explanations. We stress that the measured values of RK and RK⇤ are fully
compatible with new physics explanations of other anomalies in rare B meson decays based on the
b ! sµµ transition. If the hints for lepton flavor universality violation are first signs of new physics,
perturbative unitarity implies new phenomena below a scale of ⇠ 100 TeV.

Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ+µ�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K⇤µ+µ�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q2 ⇠ 4m2

` .
Over a very broad range of q2 the SM accurately pre-
dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z 0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2 <

q2 < 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K⇤`+`� angular distibutions [5]. We do
not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
VtbV
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`
i + C 0 `

i O0 `
i ) + h.c. ,

(5)
with the following four-fermion contact interactions,

O`
9 = (s̄�µPLb)(¯̀�µ`) , O0 `

9 = (s̄�µPRb)(¯̀�µ`) , (6)

O`
10 = (s̄�µPLb)(¯̀�µ�5`) , O0 `

10 = (s̄�µPRb)(¯̀�µ�5`) , (7)
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Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K⇤`+`� decays.
The di↵erent contributions to the decay rate are also illustrated. For B ! K`+`� decays there is no photon pole enhancement
due to angular momentum conservation.

short lifetime – in contrast to the pseudoscalar mesons ⇡ and K, K⇤ and � are not stable under the strong
interactions. The finite lifetime is neglected in the lattice simulation and represents a source of systematic
uncertainty. Overcoming this limitation is in the focus of current e↵orts [196]. As for the B to pseudoscalar
transitions, combined fits of lattice and LCSR results valid in di↵erent kinematical regimes lead to increased
precision and less dependence on extrapolation models [131].

Beyond the form-factors, the next most significant uncertainties are hadronic uncertainties associated
to non-factorisable corrections. These are illustrated in Fig. 6. Diagrams (a) and (b) represent the leading
order short-distance contributions from the operators Q7...10 that factorise “naively” into a hadronic and
leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9 .
Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.

27

[T.Blake et al., arXiv:1606.00916]

2

Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K⇤`+`� angular observ-
ables DP 0

4,5
(see below), we construct a �2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �2

SM = 24.4 for 5
degrees of freedom.

Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in Cµ

9 and Cµ
10 (top), in Cµ

9 and
Ce

9 (center), or in Cµ
9 and C 0 µ

9 (bottom), assuming the
remaining coe�cients to be SM-like.

The fit prefers NP in the Wilson coe�cients corre-
sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative Cµ

9 and positive Cµ
10 decrease

both B(B ! Kµ+µ�) and B(B ! K⇤µ+µ�) while pos-

FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.

[global fit result for new physics]
[W.Altmannshofer et al., arXiv:1704.05435]

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444,
 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, 1704.08168]

(C9SM = -C10SM ~ 4)

[in the SM]

 (effective) vector interaction
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We interpret the recent hints for lepton flavor universality violation in rare B meson decays. Based on
a model-independent e↵ective Hamiltonian approach, we determine regions of new physics parameter
space that give a good description of the experimental data on RK and RK⇤ , which is in tension
with Standard Model predictions. We suggest further measurements that can help narrowing down
viable new physics explanations. We stress that the measured values of RK and RK⇤ are fully
compatible with new physics explanations of other anomalies in rare B meson decays based on the
b ! sµµ transition. If the hints for lepton flavor universality violation are first signs of new physics,
perturbative unitarity implies new phenomena below a scale of ⇠ 100 TeV.

Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ+µ�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K⇤µ+µ�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q2 ⇠ 4m2

` .
Over a very broad range of q2 the SM accurately pre-
dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z 0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2 <

q2 < 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K⇤`+`� angular distibutions [5]. We do
not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp

2
VtbV

⇤
ts

e2

16⇡2

X

i,`

(C`
i O

`
i + C 0 `

i O0 `
i ) + h.c. ,

(5)
with the following four-fermion contact interactions,

O`
9 = (s̄�µPLb)(¯̀�µ`) , O0 `

9 = (s̄�µPRb)(¯̀�µ`) , (6)

O`
10 = (s̄�µPLb)(¯̀�µ�5`) , O0 `

10 = (s̄�µPRb)(¯̀�µ�5`) , (7)
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a model-independent e↵ective Hamiltonian approach, we determine regions of new physics parameter
space that give a good description of the experimental data on RK and RK⇤ , which is in tension
with Standard Model predictions. We suggest further measurements that can help narrowing down
viable new physics explanations. We stress that the measured values of RK and RK⇤ are fully
compatible with new physics explanations of other anomalies in rare B meson decays based on the
b ! sµµ transition. If the hints for lepton flavor universality violation are first signs of new physics,
perturbative unitarity implies new phenomena below a scale of ⇠ 100 TeV.

Introduction. The wealth of data on rare leptonic
and semi-leptonic b hadron decays that has been accu-
mulated at the LHC so far allows the Standard Model
(SM) CKM picture of flavor and CP violation to be
tested with unprecedented sensitivity. Interestingly, cur-
rent data on rare b ! s`` decays show an intriguing
pattern of deviations from the SM predictions both for
branching ratios [1–3] and angular distributions [4, 5].
The latest global fits find that the data consistently
points with high significance to a non-standard e↵ect
that can be described by a four fermion contact inter-
action C9 (s̄�⌫PLb)(µ̄�⌫µ) [6] (see also earlier studies [7–
9]). Right now the main obstacle towards conclusively
establishing a beyond-SM e↵ect is our inability to ex-
clude large hadronic e↵ects as the origin of the apparent
discrepancies (see e.g. [10–15]).

In this respect, observables in b ! s`` transitions that
are practically free of hadronic uncertainties are of partic-
ular interest. Among them are lepton flavor universality
(LFU) ratios, i.e. ratios of branching ratios involving
di↵erent lepton flavors such as [16–18]

RK =
B(B ! Kµ+µ�)

B(B ! Ke+e�)
, RK⇤ =

B(B ! K⇤µ+µ�)

B(B ! K⇤e+e�)
.

(1)
In the SM, the only sources of lepton flavor universality
violation are the negligibly small neutrino masses, the
masses of the charged leptons and their interactions with
the Higgs. Higgs interactions do not lead to any ob-
servable e↵ects in rare b decays and lepton mass e↵ects
become relevant only for a very small di-lepton invari-
ant mass squared close to the kinematic limit q2 ⇠ 4m2

` .
Over a very broad range of q2 the SM accurately pre-
dicts RK = RK⇤ = 1, with theoretical uncertainties of
O(1%) [19]. Deviations from the SM predictions can be
expected in various models of new physics (NP), e.g. Z 0

models based on gauged Lµ �L⌧ [20–22] or other gauged
flavor symmetries [23–25], models with partial compos-
iteness [26–28], and models with leptoquarks [29–34].

A first measurement of RK by the LHCb collabora-
tion [35] in the di-lepton invariant mass region 1 GeV2 <

q2 < 6 GeV2,

R
[1,6]
K = 0.745+0.090

�0.074 ± 0.036 , (2)

shows a 2.6� deviation from the SM prediction. Very
recently, LHCb presented first results for RK⇤ [36],

R
[0.045,1.1]
K⇤ = 0.660+0.110

�0.070 ± 0.024 , (3)

R
[1.1,6]
K⇤ = 0.685+0.113

�0.069 ± 0.047 , (4)

where the superscript indicates the di-lepton invariant
mass bin in GeV2. These measurements are in tension
with the SM at the level of 2.4 and 2.5�, respectively.
Intriguingly, they are in good agreement with the recent
RK⇤ predictions in [6] that are based on global fits of
b ! sµµ decay data, assuming b ! see decays to be
SM-like.

In this letter we interpret the RK(⇤) measurements us-
ing a model-independent e↵ective Hamiltonian approach
(see [37–43] for earlier model independent studies of RK).
We also include Belle measurements of LFU observables
in the B ! K⇤`+`� angular distibutions [5]. We do
not consider early results on RK(⇤) from BaBar [44] and
Belle [45] which, due to their large uncertainties, have
little impact. We identify the regions of NP parameter
space that give a good description of the experimental
data. We show how future measurements can lift flat di-
rections in the NP parameter space and discuss the com-
patibility of the RK(⇤) measurements with other anoma-
lies in rare B meson decays.
Model independent implications for new physics. We

assume that NP in the b ! s`` transitions is su�ciently
heavy such that it can be model-independently described
by an e↵ective Hamiltonian, He↵ = HSM

e↵ + HNP
e↵ ,

HNP
e↵ = �4 GFp
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(5)
with the following four-fermion contact interactions,

O`
9 = (s̄�µPLb)(¯̀�µ`) , O0 `

9 = (s̄�µPRb)(¯̀�µ`) , (6)

O`
10 = (s̄�µPLb)(¯̀�µ�5`) , O0 `

10 = (s̄�µPRb)(¯̀�µ�5`) , (7)
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Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K⇤`+`� decays.
The di↵erent contributions to the decay rate are also illustrated. For B ! K`+`� decays there is no photon pole enhancement
due to angular momentum conservation.

short lifetime – in contrast to the pseudoscalar mesons ⇡ and K, K⇤ and � are not stable under the strong
interactions. The finite lifetime is neglected in the lattice simulation and represents a source of systematic
uncertainty. Overcoming this limitation is in the focus of current e↵orts [196]. As for the B to pseudoscalar
transitions, combined fits of lattice and LCSR results valid in di↵erent kinematical regimes lead to increased
precision and less dependence on extrapolation models [131].

Beyond the form-factors, the next most significant uncertainties are hadronic uncertainties associated
to non-factorisable corrections. These are illustrated in Fig. 6. Diagrams (a) and (b) represent the leading
order short-distance contributions from the operators Q7...10 that factorise “naively” into a hadronic and
leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9 .
Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.
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Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
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For the numerical analysis we use the open source code
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4,5
(see below), we construct a �2 function that
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Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
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2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
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Ce
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10 decrease
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FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.

[W.Altmannshofer et al., arXiv:1704.05435]

 (effective) vector interaction

 s and b should be left-handed
(right-handed is irrelevant).

 Lepton part is ambiguous
(vector-like, left-handed,...).

[see also e.g., arXiv:1704. 15340,1704.05435,1704.05438,1704.05444,
 1704.05446,1704.05447, 1704.05672, 1704.7347, 1704.07397, 1704.08168]
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Figure 7: Cartoon illustrating the dimuon mass squared, q2, dependence of the di↵erential decay rate of B ! K⇤`+`� decays.
The di↵erent contributions to the decay rate are also illustrated. For B ! K`+`� decays there is no photon pole enhancement
due to angular momentum conservation.
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leptonic current. The size of the non-factorisable e↵ects and the theoretical methods required to compute
them vary strongly with q2 (see Fig. 7 for a cartoon of the q2 dependence of the di↵erential branching ratio
and the relevant hadronic e↵ects).

At intermediate q2, around the masses of the J/ and  (2S), the charm loop in diagram (c) goes on
shell, the decays turn into non-leptonic decays, e.g. B ! KJ/ (! `+`�), and quark-hadron duality breaks
down [197]. These regions are typically vetoed in the experimental analyses.

At low q2, the relevant non-factorisable e↵ects include weak annihilation as in diagram (f) and hard
spectator scattering as in diagram (g). They have been calculated for b ! s and b ! d transitions involving
vector mesons in QCD factorisation to NLO in QCD [135, 136] as well as in soft-collinear e↵ective theory [198]
and shown to be negligible in B ! K`+`� decays [199, 200]. Weak annihilation and spectator scattering
involving Q8 have been computed also in LCSR [139, 140]. Diagram (c) corresponds to the contribution
of four-quark operators that is usually written as a contribution to the “e↵ective” Wilson coe�cient Ce↵

9 .
Perturbative QCD corrections to the matrix elements of Q1,2 as in diagram (d) are numerically sizeable and
are known from the inclusive decay as discussed above. The main challenge in exclusive b ! s decays at
low q2 is represented by soft gluon corrections to the charm loop shown in diagram (e). These have been
estimated in LCSR [138, 201] but remain a significant source of uncertainty.
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How about Z’? [review]

 

a straightforward candidate: Z’ vector boson What is quantum number?

[W.Altmannshofer et al., arXiv:1403.1269]
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FIG. 1. Example diagrams in the high energy theory that lead to flavor-changing e↵ective couplings of the Z0 to SM quarks.

breaking the U(1)0 symmetry, for example through the
Higgs portal operator |H|2|�|2. The e↵ects, however,
are more model dependent and we do not study them in
this work.

III. THE B ! K⇤µ+µ� ANOMALY AND
ADDITIONAL FLAVOR CONSTRAINTS

Before discussing the various constraints on the
hadronic current of Eq. (7), we match the Wilson co-
e�cients relevant for the B ! K⇤µ+µ� anomaly,
Eqs. (2a,2b) with the corresponding terms in the Z 0 cur-
rents. Working in the approximation that the Z 0 is heavy
compared to the B meson1, so as to neglect the momen-
tum exchange in the semi-leptonic decay of the B, we
have

C9 = �(q)
bs

1

⇤2
=

YQbY ⇤

Qs

2m2
Q

, (16a)

C 0

9 = �(d)
bs

1

⇤2
= �YDbY ⇤

Ds

2m2
D

, (16b)

with the relative minus sign arising from the opposite
U(1)0 charges of Q̃R and D̃L (see Eqs. (9a,9b)). We note
that in this approximation the Wilson coe�cients C9 and
C 0

9 are completely independent of the Z 0 mass and the
U(1)0 gauge coupling. Therefore, these relations deter-
mine the mass scale for the exotic quarks,

mQ,D ' 25 TeV ⇥
⇣
Re(Y(Q,D)bY

⇤

(Q,D)s)
⌘1/2

, (17)

in order to address the anomaly in the B ! K⇤µ+µ�

decay (see Eqs.(2a,2b)). This scale is su�ciently high
that current collider constraints on new colored particles
(& 1 TeV) do not result in useful bounds. However, other
flavor processes are easily sensitive to such high scales.
While they do not rule out the combinations leading to
the operators corresponding to C9 and C 0

9, they do place

1 If the Z0 is lighter than the B meson, it would show up as
a resonance in the di-muon invariant mass spectrum of the
B ! K⇤µ+µ� decay rate. We reserve the analysis to another
publication [22].

constraints on the general mixing coe�cients as we now
discuss.
Meson mixing: Tree level exchange of the Z 0 con-

tributes to neutral meson mixing. In particular, the cou-
plings required to explain the B ! K⇤µ+µ� anomaly
will lead to contributions to Bs mixing. Additional con-
tributions to Bs mixing arise from the flavor-changing
e↵ects associated with the scalar �. Both real and imag-
inary parts of � (the latter is equivalent to the longitudi-
nal part of the Z 0) mediate SM�vector-like quark tran-
sitions, and the box diagram with � exchange therefore
leads to an additional contribution to �B = 2 transi-
tions.

The modifications to the mixing amplitude M12 read

M12

MSM
12

= 1 +
h
CLL + CRR + 9.7CLR

i

⇥
✓

g42
16⇡2

1

m2
W

(V ⇤

tsVtb)
2S0

◆
�1

, (18)

where we used the hadronic matrix elements collected
in [24], and the SM loop function is S0 ' 2.3. The Wilson
coe�cients CLL, CRR, CLR are given by

CLL = (YQbY
⇤

Qs)
2

 
v2�
m4

Q

+
1

16⇡2

1

m2
Q

!
, (19a)

CRR = (YDbY
⇤

Ds)
2

✓
v2�
m4

D

+
1

16⇡2

1

m2
D

◆
, (19b)

CLR = (YQbY
⇤

Qs)(YDbY
⇤

Ds)

⇥
 

v2�
m2

Qm
2
D

� 1

16⇡2

log(m2
Q/m

2
D)

m2
Q � m2

D

!
, (19c)

where the O(v2�) terms originate from tree level Z 0 contri-
butions, and the 1/(16⇡2) suppressed contributions orig-
inate from the scalar box diagrams. Note that the Z 0

contribution to the mixing amplitude does not depend
on the Z 0 mass and the U(1)0 gauge couplings separately,
but only through the combination v� = mZ0/g0. The
good agreement of the SM prediction for Bs mixing with
the experimental data sets an upper bound on the U(1)0

symmetry breaking VEV, v�.
In the plots of Fig. 2 we show the limit on v� as a

function of the masses of the vector-like quarks, mD and

U(1)’ breaking
(by a new scalar)

Yukawa mixing
among SM quarks
& vector-like ones

basic pheno. strategy: U(1)’Lμ-Lτ + vector-like quarks
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 Fundamental Z’ scenarios work [(with additional fermion(s) and scalar(s)].
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Eqs. (2a,2b) with the corresponding terms in the Z 0 cur-
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compared to the B meson1, so as to neglect the momen-
tum exchange in the semi-leptonic decay of the B, we
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with the relative minus sign arising from the opposite
U(1)0 charges of Q̃R and D̃L (see Eqs. (9a,9b)). We note
that in this approximation the Wilson coe�cients C9 and
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9 are completely independent of the Z 0 mass and the
U(1)0 gauge coupling. Therefore, these relations deter-
mine the mass scale for the exotic quarks,
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, (17)

in order to address the anomaly in the B ! K⇤µ+µ�

decay (see Eqs.(2a,2b)). This scale is su�ciently high
that current collider constraints on new colored particles
(& 1 TeV) do not result in useful bounds. However, other
flavor processes are easily sensitive to such high scales.
While they do not rule out the combinations leading to
the operators corresponding to C9 and C 0

9, they do place

1 If the Z0 is lighter than the B meson, it would show up as
a resonance in the di-muon invariant mass spectrum of the
B ! K⇤µ+µ� decay rate. We reserve the analysis to another
publication [22].

constraints on the general mixing coe�cients as we now
discuss.
Meson mixing: Tree level exchange of the Z 0 con-

tributes to neutral meson mixing. In particular, the cou-
plings required to explain the B ! K⇤µ+µ� anomaly
will lead to contributions to Bs mixing. Additional con-
tributions to Bs mixing arise from the flavor-changing
e↵ects associated with the scalar �. Both real and imag-
inary parts of � (the latter is equivalent to the longitudi-
nal part of the Z 0) mediate SM�vector-like quark tran-
sitions, and the box diagram with � exchange therefore
leads to an additional contribution to �B = 2 transi-
tions.

The modifications to the mixing amplitude M12 read

M12

MSM
12

= 1 +
h
CLL + CRR + 9.7CLR

i

⇥
✓

g42
16⇡2

1

m2
W

(V ⇤

tsVtb)
2S0

◆
�1

, (18)

where we used the hadronic matrix elements collected
in [24], and the SM loop function is S0 ' 2.3. The Wilson
coe�cients CLL, CRR, CLR are given by

CLL = (YQbY
⇤

Qs)
2

 
v2�
m4

Q

+
1

16⇡2

1

m2
Q

!
, (19a)

CRR = (YDbY
⇤

Ds)
2

✓
v2�
m4

D

+
1

16⇡2

1

m2
D

◆
, (19b)

CLR = (YQbY
⇤

Qs)(YDbY
⇤

Ds)

⇥
 

v2�
m2

Qm
2
D

� 1

16⇡2

log(m2
Q/m

2
D)

m2
Q � m2

D

!
, (19c)
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on the Z 0 mass and the U(1)0 gauge couplings separately,
but only through the combination v� = mZ0/g0. The
good agreement of the SM prediction for Bs mixing with
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 Fundamental Z’ scenarios work [(with additional fermion(s) and scalar(s)].

 QQ::  HHooww  aabboouutt  ccoommppoossiittee  ccaassee??



Points

0.  Introduction (finished)

1. Hidden “QCD” ⇒ multiple vector candidates for B anomaly.

2. Various virtues in the vector-like compositeness

Summary 

3. Large part of parameter space waits for being explored.



QCD as Composite scenario [Review]
 When a coupling becomes strong, composite particles appear.

[arXiv:hep-ex/0606035]
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 Chiral symmetry governs low-energy composite (meson) spectrum.

quarks

a meson qq̄

 pseudo-scalars (pions) as pseudo NG bosons

 vector mesons (rhos) as gauge bosons of hidden local symmetry (SU(3)V, gauged)

32-1=8 pions 32-1=8 rhos

[pictures from Web]

[Bando,Kugo,Uehara,Yamawaki, Phys.Rev.Lett.,54(1985)1215]
[Bando,Kugo,Yamawaki, Nucl.Phys.,B259(1985)493]
[reviewed by e.g., Harada,Yamawaki, arXiv:hep-ph/0302103]
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 pseudo-scalars (pions) as pseudo NG bosons

 vector mesons (rhos) as gauge bosons of hidden local symmetry (SU(3)V, gauged)

[reviewed by e.g., Harada,Yamawaki, arXiv:hep-ph/0302103]

32-1=8 pions 32-1=8 rhosSuch a confining gauge theory is fascinating since:

 dynamically-realized symmetry breaking

 ‘predictive’ (limited # of parameters)

 Low-energy meson theory is managed by the chiral symmetry

 New vector particles are introduced in a consistent way!

 QQ::  CCaann  wwee  oobbttaaiinn  ``ccoommppoossiittee  ZZ``  ffoorr  RRKK((**))??

[Bando,Kugo,Uehara,Yamawaki, Phys.Rev.Lett.,54(1985)1215]
[Bando,Kugo,Yamawaki, Nucl.Phys.,B259(1985)493]
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We consider an SU(NHC) confining gauge theory (fermion: F, gauge boson: g’)

In a situation that ρμ “mix with”
the SM gauge boson, ρμ may couple with

the SM fermions in an effective way!
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(SM) quantum #
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i )(L)

(fSM
j )(L)

 flavor indices
(in gauge eigenbasis)

undesignated/assumed
physics with flavor-changing 

Gauge-invariant (effective) operator
including it can be written down

in terms of hidden local symmetry
(with nonlinear basis)

5/12



Vector-like hidden “QCD” (hypercolor[HC])

F
F 0

 

g0

We consider an SU(NHC) confining gauge theory (fermion: F, gauge boson: g’)

⇢µ V SM
µ holding the Same

(SM) quantum #

 
SU(NHC) SU(3)c SU(2)W U(1)Y

QL/R =

0

@

U

D

1

A

L/R

NHC 3 2 1/6

LL/R =

0

@

N

E

1

A

L/R

NHC 1 2 �1/2

TABLE I: The SM charge assignment for eight HC fermions FL/R = (Q,L)TL/R in the one-family model.

velop the nonzero “chiral” condensate hF̄AFBi ⇠ ⇤3
HC · �AB (A and B being indices for SU(8)

fundamental representations), which breaks the “chiral” symmetry of 8 HC fermions down to the

vectorial one: SU(8)
FL ⇥ SU(8)

FR ! SU(8)
FV . According to the spontaneous breaking, the 63

Nambu-Goldstone (NG) bosons emerge, which will be pseudoscalars by the explicit breaking terms

including the SM gauge interactions and possibly present vectorlike fermion mass terms likem0
F

F̄F ,

as discussed in Refs. [3–6].

By naively scaling the hadron spectroscopy in QCD, we may find 63 composite vectors (HC

⇢ mesons) as the next-to-lightest HC hadrons #3 #4. Thus the low-energy e↵ective theory of the

HC sector would be constructed from the 63 HC pions (⇠ F̄Ai�5F
B) and also 63 HC rho mesons

(⇠ F̄A�
µ

FB). Then the HC rho couplings to the SM particles arise indirectly from mixing be-

tween the SM gauge bosons (“indirect couplings”), and directly by an extended HC theory (“direct

couplings”), which could be generated from extended (vector, or scalar) interactions communicat-

ing the HC and the SM fermion sectors (which would be like a generalized extended technicolor

scenario). Note that the latter direct coupling can generically be flavor-dependent. Both types of

couplings are unambiguously formulated by the HLS formalism, which is the main target of the

subsections below.

B. HLS formulation

In this section we formulate the e↵ective Lagrangian including the HC vectors along with the

HC pions, arising from the one-family model of the HC introduced in the previous section.

#3 The lightest f0(500) scalar meson in QCD may be a mixture of q̄q and qqqq due to some feature specific to the
three-flavor (u, d, s) structure, according to recent analyses, e.g., see Ref. [66].

#4 If one happens to take some special value of NHC, e.g. NHC = 3, then the one-family HC dynamics would turn from
the ordinary QCD to be quite di↵erent, so-called, the walking gauge theory having the almost nonrunning gauge
coupling (i.e. approximate scale invariance). Then the lightest hadron spectrum would include a dilaton with the
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Vector-like hidden “QCD” [HC] (cont’d)

composite vector constituent color isospin
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TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �↵/2

(↵ = 1, 2, 3) with the Pauli matrices �↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).
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The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠
L,R

in Eq.(II.3)
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[vector meson spectrum] NOT ONLY Z’ candidates!
Vector-like hidden “QCD” [HC] (cont’d)
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The SU(2)
W

charge, in terms of which the HC rho field is decomposed as in Eq.(II.8), is identified

with the one in the SM. The SM fermions will carry corresponding SU(2)
W

charges so that they
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The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠
L,R

in Eq.(II.3)
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TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �↵/2
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[gauge structure] 

SM gauge boson
structure of (q,l)L

in SU(8)V form

SU(8)V, gauged (ρμ)

Z’ (and W’)
included

vector
leptoquarks

massive
gluons

 The following flavor-changing interaction can be added gauge-invariantly.

gijL ⇥
�
q̄SMi l̄SMi

�
L
�µ

�
gSMV SM

µ � g⇢⇢µ + · · ·
�✓qSMj

lSMj

◆

L flavor indices (in gauge eigenbasis)
undetermined

coefficients

15 in total
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[vector meson spectrum] NOT ONLY Z’ candidates!
Vector-like hidden “QCD” [HC] (cont’d)

for SU(2)W-doublet SM leptons

for SU(2)W-doublet SM quarks



Points

0.  Introduction (finished)

1. Hidden “QCD” ⇒ multiple vector candidates for B anomaly.

2. Various virtues in the vector-like compositeness

Summary 

3. Large part of parameter space waits for being explored.



Important points for current pheno.
We adopted the flavor texture:

Note again that m
V

is the mass in the gauge basis whereas M
V

in the mass-eigen basis. For the

final form of the above result, we keep the term up to O(r2
x

) for x = m, g.

A key point of this model is that the coupling gij
L

in the shift parameter of Eq.(III.22) share

with the HC ⇢ couplings to the SM fermions [in Eq.(II.24)] as a consequence of the HLS formu-

lation, which allows to introduce the SM gauges as a remnant of the spontaneous breaking of the

(gauged)“chiral” and hidden local symmetries. This crucial feature puts severe constraints on both

diagonal/o↵-diagonal components of gij
L

in the gauge basis, as we will see later.

E. Flavor-dependent constraints from the EW sector

In this subsection we show constraints on the flavorful coupling strength �ij

W/Z

(gij
L

) in

Eq.(III.21), required from flavor-dependent EW precision tests. We also discuss a reasonable setup

for the parameters, followed by flavor and collider limits in the next sections.

As can be seen in Eq.(II.24), our model involves lots of new interactions at the tree level, most

of which are obviously already disfavored. In particular, it is easily expected that couplings to the

first and second generations are severely constrained. To avoid such matters as well as to address

the flavor anomalies in B decays, the reasonable setup may be given as
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Even when we put the above assumption, constraints on g33
L

from precision measurements of the

electroweak sector must be concerned, which is rephrased in a way that the Z-boson couplings to

the SM fermions were measured very precisely and a sizable deviation from the SM is immediately

disfavored. In the present model, the form of the Z-f -f couplings is given as
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where P
L,R

are the chiral projectors defined as PL
R
= (1⌥ �5)/2.

The deviation from the SM for the Z couplings to the left-handed tau lepton in Eq.(III.21) is

severely constrained by the forward-backward asymmetry, A(0,⌧)
FB . The asymmetry A

(0,l)
FB (for unpo-

larized electron-positron beams) is defined as A(0,l)
FB = 3A

l

A
e

/4 with A
l

= (|g
lL

|2� |g
lR

|2)/(|g
lL

|2+
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With the assumption g33
L

6= 0 (and others = 0) as in Eq.(III.23), there is no FCNC term in the

gauge basis. This setup, however, still causes FCNCs in transforming from the gauge basis to the

mass basis:
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where U , D, and L are three-by-three unitary matrices and the spinors with the prime symbol de-

note the fermions in the mass basis#9. The capital latin indices I, J identify the mass eigenstates.

The CKM matrix element is then given by VCKM ⌘ U †(1 +�
W

)D ' U †D with �33
W

 O(10�3)

taken into account. According to the literature [80], in order to address several flavor anoma-

lies recently reported in measurements of B̄ ! Kµ+µ� (and D̄(⇤)⌧ ⌫̄) as well as to avoid severe

constraints of FCNCs in the first and second generations, the mixing structures of D and L are

reasonably parametrized by
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Through these flavor mixings, we will see significant contributions to flavor phenomenologies. The

following factors are useful,
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#9 Ambiguities can remain in the transformation of the right-handed neutrinos when (active) neutrinos are massive.
Here, we consider massless neutrinos, where no ambiguity remains.
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#9 Ambiguities can remain in the transformation of the right-handed neutrinos when (active) neutrinos are massive.
Here, we consider massless neutrinos, where no ambiguity remains.
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assuming (3,3) only
in gauge eigenbasis

(SM-fermion) mass eigenbases 

automatically
determined

(with CKM matrix)

[B.Bhattacharya et al., arXiv:1609.09078]
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[Our phenomenological scheme on flavor changing]
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Important points for current pheno.
We adopted the flavor texture:

Note again that m
V

is the mass in the gauge basis whereas M
V

in the mass-eigen basis. For the

final form of the above result, we keep the term up to O(r2
x

) for x = m, g.

A key point of this model is that the coupling gij
L

in the shift parameter of Eq.(III.22) share

with the HC ⇢ couplings to the SM fermions [in Eq.(II.24)] as a consequence of the HLS formu-

lation, which allows to introduce the SM gauges as a remnant of the spontaneous breaking of the

(gauged)“chiral” and hidden local symmetries. This crucial feature puts severe constraints on both

diagonal/o↵-diagonal components of gij
L

in the gauge basis, as we will see later.

E. Flavor-dependent constraints from the EW sector

In this subsection we show constraints on the flavorful coupling strength �ij

W/Z

(gij
L

) in

Eq.(III.21), required from flavor-dependent EW precision tests. We also discuss a reasonable setup

for the parameters, followed by flavor and collider limits in the next sections.

As can be seen in Eq.(II.24), our model involves lots of new interactions at the tree level, most

of which are obviously already disfavored. In particular, it is easily expected that couplings to the

first and second generations are severely constrained. To avoid such matters as well as to address

the flavor anomalies in B decays, the reasonable setup may be given as
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where P
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are the chiral projectors defined as PL
R
= (1⌥ �5)/2.
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With the assumption g33
L

6= 0 (and others = 0) as in Eq.(III.23), there is no FCNC term in the

gauge basis. This setup, however, still causes FCNCs in transforming from the gauge basis to the
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where U , D, and L are three-by-three unitary matrices and the spinors with the prime symbol de-

note the fermions in the mass basis#9. The capital latin indices I, J identify the mass eigenstates.

The CKM matrix element is then given by VCKM ⌘ U †(1 +�
W

)D ' U †D with �33
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 O(10�3)

taken into account. According to the literature [80], in order to address several flavor anoma-

lies recently reported in measurements of B̄ ! Kµ+µ� (and D̄(⇤)⌧ ⌫̄) as well as to avoid severe

constraints of FCNCs in the first and second generations, the mixing structures of D and L are

reasonably parametrized by
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Through these flavor mixings, we will see significant contributions to flavor phenomenologies. The

following factors are useful,
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#9 Ambiguities can remain in the transformation of the right-handed neutrinos when (active) neutrinos are massive.
Here, we consider massless neutrinos, where no ambiguity remains.
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Here, we consider massless neutrinos, where no ambiguity remains.
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assuming 2⇔3 matter generation mixings 

1 1

Using Eqs.(II.13) and (II.20), one can thus extract the HC ⇢ and VSM (SM gauge boson)

couplings to the left-handed SM fermions. As a result, we have
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where ⇢µ
QQ

, ⇢µ
LL

, and ⇢µ
QL

are combinations of the HC ⇢ mesons as defined in Eq.(II.9) and gij
L

=

(g1L+2g2L+g3L)ij . Note that the VSM-f
L

-f
L

term in Eq.(II.24) is not the normal SM interactions

but additional contributions in this model.

The HLS invariance actually allows one to write down vector couplings other than those in

Eq.(II.24), which would take the form like
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with the generation-dependent coupling hij
L

. As seen from Eq.(II.20), however, the 1-form ↵̂
µ?

goes to vanish in the unitary gauge of the HLS; ⇠
L/R

! 1 up to HC pion terms 3 @
µ

⇡/f
⇡

+ · · · .
This coupling term would thus be relevant only when the HC pions can have flavorful couplings to

the SM fermions, which is not the case in this article. We will briefly address possible e↵ects from

those HC pion couplings in the later section.

2. ⇢ - VSM mixing structures and induced-indirect couplings to SM fermions

In addition to the direct interactions of Eq.(II.24), the HC ⇢ mesons also have interactions

induced by the mixing with the SM gauge bosons. The mixing term is involved in the mass matrix

of the vector boson, which is written by
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where we used the relations in Eqs.(II.6), (II.7), (II.13) and the normalization of the SU(8) gener-

ators as tr
⇥

TATB

⇤

= �AB/2. Note that the mixing form is manifestly custodial-symmetric.
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Important points for current pheno.
We adopted the flavor texture:

Note again that m
V

is the mass in the gauge basis whereas M
V

in the mass-eigen basis. For the

final form of the above result, we keep the term up to O(r2
x

) for x = m, g.

A key point of this model is that the coupling gij
L

in the shift parameter of Eq.(III.22) share

with the HC ⇢ couplings to the SM fermions [in Eq.(II.24)] as a consequence of the HLS formu-

lation, which allows to introduce the SM gauges as a remnant of the spontaneous breaking of the

(gauged)“chiral” and hidden local symmetries. This crucial feature puts severe constraints on both

diagonal/o↵-diagonal components of gij
L

in the gauge basis, as we will see later.

E. Flavor-dependent constraints from the EW sector

In this subsection we show constraints on the flavorful coupling strength �ij

W/Z
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L

) in

Eq.(III.21), required from flavor-dependent EW precision tests. We also discuss a reasonable setup

for the parameters, followed by flavor and collider limits in the next sections.

As can be seen in Eq.(II.24), our model involves lots of new interactions at the tree level, most

of which are obviously already disfavored. In particular, it is easily expected that couplings to the

first and second generations are severely constrained. To avoid such matters as well as to address

the flavor anomalies in B decays, the reasonable setup may be given as
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Even when we put the above assumption, constraints on g33
L

from precision measurements of the

electroweak sector must be concerned, which is rephrased in a way that the Z-boson couplings to

the SM fermions were measured very precisely and a sizable deviation from the SM is immediately

disfavored. In the present model, the form of the Z-f -f couplings is given as
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where P
L,R

are the chiral projectors defined as PL
R
= (1⌥ �5)/2.

The deviation from the SM for the Z couplings to the left-handed tau lepton in Eq.(III.21) is

severely constrained by the forward-backward asymmetry, A(0,⌧)
FB . The asymmetry A

(0,l)
FB (for unpo-

larized electron-positron beams) is defined as A(0,l)
FB = 3A
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With the assumption g33
L

6= 0 (and others = 0) as in Eq.(III.23), there is no FCNC term in the

gauge basis. This setup, however, still causes FCNCs in transforming from the gauge basis to the

mass basis:

(u
L

)i = U iI(u0
L

)I , (d
L

)i = DiI(d0
L

)I , (e
L

)i = LiI(e0
L

)I , (⌫
L

)i = LiI(⌫ 0
L

)I , (IV.1)

where U , D, and L are three-by-three unitary matrices and the spinors with the prime symbol de-

note the fermions in the mass basis#9. The capital latin indices I, J identify the mass eigenstates.

The CKM matrix element is then given by VCKM ⌘ U †(1 +�
W

)D ' U †D with �33
W

 O(10�3)

taken into account. According to the literature [80], in order to address several flavor anoma-

lies recently reported in measurements of B̄ ! Kµ+µ� (and D̄(⇤)⌧ ⌫̄) as well as to avoid severe

constraints of FCNCs in the first and second generations, the mixing structures of D and L are

reasonably parametrized by
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Through these flavor mixings, we will see significant contributions to flavor phenomenologies. The

following factors are useful,
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assuming 2⇔3 matter generation mixings 

1 1

Using Eqs.(II.13) and (II.20), one can thus extract the HC ⇢ and VSM (SM gauge boson)

couplings to the left-handed SM fermions. As a result, we have
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where ⇢µ
QQ

, ⇢µ
LL

, and ⇢µ
QL

are combinations of the HC ⇢ mesons as defined in Eq.(II.9) and gij
L

=

(g1L+2g2L+g3L)ij . Note that the VSM-f
L

-f
L

term in Eq.(II.24) is not the normal SM interactions

but additional contributions in this model.

The HLS invariance actually allows one to write down vector couplings other than those in

Eq.(II.24), which would take the form like
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with the generation-dependent coupling hij
L

. As seen from Eq.(II.20), however, the 1-form ↵̂
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goes to vanish in the unitary gauge of the HLS; ⇠
L/R

! 1 up to HC pion terms 3 @
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This coupling term would thus be relevant only when the HC pions can have flavorful couplings to

the SM fermions, which is not the case in this article. We will briefly address possible e↵ects from

those HC pion couplings in the later section.

2. ⇢ - VSM mixing structures and induced-indirect couplings to SM fermions

In addition to the direct interactions of Eq.(II.24), the HC ⇢ mesons also have interactions

induced by the mixing with the SM gauge bosons. The mixing term is involved in the mass matrix

of the vector boson, which is written by
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where we used the relations in Eqs.(II.6), (II.7), (II.13) and the normalization of the SU(8) gener-

ators as tr
⇥

TATB

⇤

= �AB/2. Note that the mixing form is manifestly custodial-symmetric.

15

f-f-ρ interaction

correction to
f-f-VSM interactionoverall 

factor

gρ >> gSM is required via EW precisions.
→ gρ = 6 (vector dominance in QCD)

 

vector-meson spectrum being compressed
 (HC rho meson mass)2 ~ (mρ)2 * (1 + [gSM/gρ]2)
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should be introduced (like the SM).

 The 125GeV Higgs signal strengths are good.
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Important points for current pheno. (cont’d)
 vector-like HC rho mesons ⇒ harmless (tree-level) oblique corrections

4 (+1) couplings are relevant for (pure) HC vector-ρ phenomena:

mρ, gρL [= [gL]33 * gρ], θD, θL, (gρ)

 

No dynamical EWSB (vector-like) ⇒ the fundamental Higgs doublet 
should be introduced (like the SM).

 The 125GeV Higgs signal strengths are good.

 Fascinating aspects:

 The candidate of Zs and their mass scale are dynamically generated.

 The C9 = -C10 texture (for b→sll) is naturally realized.

 Apparently gauge-anomaly free.

 Lots of new particles (EW-safe) are ‘derived’.

 The lightest baryon may be stable (⇒ a dark matter candidate)

 Scale-invariant extension (⇒ hierarchy problem)
e.g., [T.Hur & P.Ko, arXiv:1103.2571] )(
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Points

0.  Introduction (finished)

1. Hidden “QCD” ⇒ multiple vector candidates for B anomaly.

2. Various virtues in the vector-like compositeness

Summary 

3. Large part of parameter space waits for being explored.



Flavor results

⌧
!

3
µ

⌧ ! �µ

b ! sµµ

b ! s⌫⌫̄

�Ms

FIG. 1: Allowed regions in the (✓L, ✓D) plane in the HC ⇢ model for m⇢ = 1TeV and g⇢ g
33
L = 1. The

b ! sµ+µ� anomaly can be explained in the blue region while the constraints from �Ms, B(⌧ ! 3µ),

B(⌧ ! �µ), and B(B ! K(⇤)⌫⌫̄) are satisfied in the magenta, cyan, green, and gray regions, respectively.

observable: the b ! s`+`� global fit in blue [Eq.(IV.17)], �M
s

in magenta [Eq.(IV.28)], B(⌧ ! 3µ)

in cyan, B(⌧ ! �µ) in green [Eq.(IV.22)], and B(B ! K(⇤)⌫⌫̄) in gray [Eq.(IV.19)], as denoted in

the figure. Note that �M
s

is precisely measured at experiments and thus new physics contributions

are allowed only within the theoretical uncertainties in Table III. One easily sees that the constraint

from the B
s

mixing (magenta region) is much stringent |✓
D

| ⌧ 1, while the other constraints are

consistent with the b ! sµ+µ� anomaly (blue region) in some limited regions.

To more precisely see the allowed region near ✓
D

⇠ 0, in Fig. 2 we show the close-up version

focused on the ✓
D

⇠ 0 region, for various values of g
⇢

g33
L

with m
⇢

= 1TeV fixed, where we have

taken the significant constraints, namely from �M
s

, B(⌧ ! 3µ), and the b ! sµ+µ� global fit. In

the close-up plot, we have taken the parameter range favored up to ±3� level for the b ! sµ+µ�

anomaly. For |g
⇢

g33
L

| & 1, it turns out that the b ! sµ+µ� anomaly is not consistent with the

constraints from �M
s

and B(⌧ ! 3µ) in the present model. As for the range 0.35 . |g
⇢

g33
L

| . 1,

several comments are in order:

34

RK(*)

‘minimal’
constraint

‘non-minimal’
constraints

 

FIG. 2: Allowed regions of the flavor constraints for various choice of |g⇢ g33L | with m⇢ = 1TeV near ✓D ⇠ 0.

The significant constraints from �Ms (magenta), B(⌧ ! 3µ) (cyan), and the b ! sµ+µ� global fit (blue)

are shown whereas the others are simply omitted. The best-fit point, ±2�, and ±3� ranges to explain the

b ! sµ+µ� anomaly are presented with dotted, dashed, and solid curves, respectively.

• We found that there are two isolated regions, ✓
L

. ⇡/4 (“left-side”) and ✓
L

⇠ ⇡/2 (“right-

side”), where all the constraints are (marginally) satisfied.

• The left-side spot is barely viable when the b ! sµ+µ� anomaly is 3� above in terms of

the coe�cient Cµµ

9 from the best-fit point (Cµµ

9 |best = �0.61 [94]), where Cµµ

9 |+3� = �0.23,
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µ-µ-⇢ term.

For |g
⇢

g33
L

| . 0.35 we also found that the two allowed spots (which were divided by the ⌧ ! 3µ

constraint) are merged into a single spot and then the region near ✓
L

⇠ ⇡/2 is only allowed. In

Fig. 3, we survey the allowed range of |g
⇢

g33
L

| for the case ✓
L

= ⇡/2. The result implies that the

present model for ✓
L

= ⇡/2 requires |g
⇢

g33
L

| & 0.1 in order to explain the b ! sµ+µ� anomaly

consistently with the bound from �M
s

.

To summarize, we investigated the allowed regions in the parameter space of ✓
L

, ✓
D

, and |g
⇢

g33
L

|,
which satisfy all the flavor constraints. The situation is then divided by two cases; ✓

L

. ⇡/4 (“left-
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FIG. 3: The allowed range in terms of |g⇢ g33L | and ✓D for the fixed value ✓L = ⇡/2 (“right-side” spot).

Conventions of the plots are the same as in Fig. 2.

side”) and ✓
L

⇠ ⇡/2 (“right-side”). As a result, the allowed region exists in

0.35 .
�

�g
⇢

g33
L

�

�⇥
✓

1TeV

m
⇢

◆

. 1 (for left-side spot) , (IV.32)

0.1 .
�

�g
⇢

g33
L

�

�⇥
✓

1TeV

m
⇢

◆

(for right-side spot) . (IV.33)

The left-side spot is considered as the ⌧ -dominant case where the ⌧ -⌧ -⇢ coupling is relatively larger

than the other lepton couplings to HC ⇢ (including LFV.) On the other hand, the right-side spot

only involves the µ-µ-⇢ coupling. Indeed, we have to pay attention to this di↵erence when we

consider collider limit at LHC as will be discussed in the next section.

The combined plots with the constraint from the EW precision measurements are shown in

Fig. 4 on the (g
⇢

g33
L

, m
⇢

) plane for the ✓
L

. ⇡/4 and ✓
L

⇠ ⇡/2 cases. The regions in red (blue)

line boundaries are favored by the b ! sµ+µ� data, along with the other constraints, for the

left-side (✓
L

. ⇡/4) and right-side (✓
L

⇠ ⇡/2) spots. The shaded regions show 68% and 95% C.L.

constraints from the EW measurements as obtained in Sec. III E. (Note that, for the ✓
L

⇠ ⇡/2

case, the EW limit is obtained by combining the R
b

and A
(0,µ)
FB constraints.) In the figure, the

reference number g
⇢

= 6 is taken. We can see that the favored regions from the b ! sµ+µ� data

are consistent with the 95% C.L. EW precision measurements. One also finds that, in the 1�

36

Scenario II

We can enlarge |gρgL33|
as much as possible

(if perturbation is valid). 

 All of vector ρs (massive gluons, vector LQ, W’s, Z’s) are taken into account.
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Situation after fixing the mixing angles (θD ~ 0)
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FIG. 4: Summary plot for constraints from the EW precision measurements and from the flavor observables

on the (g⇢g33L ,m⇢) plane fixing g⇢ = 6 for ✓L . ⇡/4 (left) and ✓L ⇠ ⇡/2 (right). The (darker) gray region

is allowed by the EW precision measurements at 95% (68%) C.L. The regions in red (blue) line boundaries

are favored by the b ! sµ+µ� data that satisfies all the other flavor constraints, for ✓L . ⇡/4 (✓L ⇠ ⇡/2).

range (68% C.L.), the EW precision measurements exclude the HC rho mass m
⇢

& 1.8TeV and

the positive value of g
⇢

g33
L

for the left-side spot case with ✓
L

. ⇡/4. The allowed parameter space

can be examined by direct searches at the LHC. It will be discussed below.

V. COLLIDER-RELATED ISSUES

In this section, we discuss constraints from the latest null results in the new physics searches

and future prospects at the 13TeV LHC. The HC ⇢’s as well as the HC ⇡’s will be resonantly,

or non-resonantly produced at the hadron collision machinery, to be constrained by the present

experimental data.

A. Typical constraints on HC ⇡

Even though the details of the HC pion sector is out of our major interests, we briefly comment

on possible constraints on this part. Here, we focus on the color-singlet isospin-singlet HC pion

⇡0
(1)0 as a typical signature. Two types of interactions can be derived for the ⇡0

(1)0 . The first one is

from the global chiral anomalies of hypercolor fermions, which are represented by the covariantized

WZW terms in the present non-Abelian SU(8)
FL⇥SU(8)

FR case [116, 117] (based on the discussion

37

in scenario I in scenario II 

relevant EW constraints: AFB(0,τ), AFB(0,μ), Rb 

[Flavor-favored region] is inside [EW allowed region (2σ)].
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FIG. 7: Naive constraints on �(pp ! jj) [left panel] and �(pp ! ⌧ ⌧̄) [right panel] in ✓D = ✓L = 0, where

the CMS experimental results are from Refs. [128, 129]. For the dijet resonance, we adopt the calculated

value of acceptance A = 0.69 being di↵erent from the isotropic decays (A ⇡ 0.6) [128]. For the red curves

showing ‘maximized g⇢L’ being consistent with the requisites from flavor issues in Eq.(IV.32), the value of

g⇢L is tuned as |g⇢L| = 1.0⇥ (m⇢/1TeV). If g⇢L is greater than the tuned value (in each of m⇢), we cannot

address the flavor issues in the present model correctly. The regions above the black dashed (black dotted)

lines are excluded (expected to be excluded after a 300 fb�1 integrated luminosity accumulation) at 95%

C.L.s.

In Fig. 7, we summarize the cross sections of p(b)p(b̄) ! ⇢’s ! j(b)j(b̄) (left panel)

and p(b)p(b̄) ! ⇢’s ! ⌧ ⌧̄ (right panel). To calculate the numerical integration including

the PDF convolution in the Divonne method [133, 134], we use the CUBA package [135] with

the Mathlink protocol in Mathematica. The values of cross sections were cross-checked with

MadGraph5 aMC@NLO [136, 137], where the UFO-style model file [138] was generated by the FeynRules

package [139, 140]. For estimating the acceptance A of dijet events, we generated parton-level

events in MadGraph5 aMC@NLO and analyzed them in the ROOT framework [141] with the help of

ExRootAnalysis, which is a part of the integrated package of MadGraph5 aMC@NLO. We obtained

A ' 0.69 in our case, which a bit deviates from the isotropic case (A ⇡ 0.6) shown in Ref. [128].

The 95% C.L. upper bounds at
p
s = 13TeV were extracted from Refs. [128] (dijet, based on

12.9 fb�1 CMS data),#15 [129] (ditau, based on 2.2 fb�1 CMS data), and [143] (dimuon, based on

36.1 fb�1 ATLAS data). The expectations for the limits after 300 fb�1 data accumulation were

simply calculated by rescaling from the present bounds [128, 129, 143].

From Fig. 7, we see the constraints on g
⇢L

and m
⇢

for the ✓
L

= 0 case. The dijet bound in the

#15 The latest ATLAS result was reported in Ref. [142] after [128], where the constraints on W 0 and W ⇤ scenarios do
not overwhelm the bound of [128] in the range of the invariant mass, q2 . 2.5TeV.
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FIG. 8: Naive constraint on �(pp ! µ+µ�) for ✓D = 0, ✓L = ⇡/2 and g⇢L = 0.5, 1, where the latest

experimental result provided by the ATLAS group is obtained from Ref. [143]. The regions above the black

dashed (black dotted) lines are excluded (expected to be excluded after a 300 fb�1 integrated luminosity

accumulation) at 95% C.L.s.

left panel shows that no constraint is imposed on our flavor-specific HC ⇢ mesons if the value of

g
⇢L

is maximized so as to be consistent with Eq.(IV.32), which is the combined constraints from

all the appreciable flavor observables, (the corresponding maximal value is taken for each of m
⇢

from Eq.(IV.32).) On the other hand, the ditau channel excludes a part of possibilities to have

the maximized g
⇢L

, where m
⇢

is greater than ⇠ 1500GeV, whereas it excludes the HC rho mass

scale as m
⇢

& 900 (2100)GeV for the fixed coupling value g
⇢L

= 1 (2), as shown in the right panel

at 95% C.L.s. Therefore, the ditau channel plays a significant role in probing this scenario at the

LHC #16.

In Fig. 8, we show the collider bound for the ✓
L

= ⇡/2 case from the dimuon searches. It

indicates that our scenario was already tested and excluded up to m
⇢

= 4 (1.5)TeV at 95% C.L.

when g
⇢L

= 1 (0.5). We should keep in mind, however, that the present scenario with g
⇢L

= 1 for

the mass range 4TeV . m
⇢

. 10TeV can still accommodate the b ! sµ+µ� anomaly as seen in

Eq.(IV.33). Note that the dijet bound for the ✓
L

= ⇡/2 case is not significant when g
⇢L

< 1.

#16 We observed that the largeness of the t-channel e↵ective coupling shown in Eqs.(V.24)–(V.26) results in the
situation that the t-channel contribution becomes a major part to the cross section in the ditau and dimuon
production. Thus some deviations from the present acceptance times e�ciency may be expected when a dedicated
collider simulation is performed. We do not take into account of this point in our ballpark estimations of current
constraints and future prospects.
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for scenario I & II for scenario I 

for scenario II 

no bound

for ‘flavored’ region
typically,

mρ > 1TeV

typically,

mρ > a few TeV
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Summary
Virtues of (vector-like) composite model are (e.g.,) 

 The candidate of Zs and their mass scale are dynamically generated.

 The C9 = -C10 texture (for b→sll) is naturally realized.

 Apparently gauge-anomaly free.

 Lots of new particles are ‘derived’.

 Well-defined TeV-scale vector leptoquarks

The RK(*) anomalies are addressed consistently. 

 Discovering lots of new particles is expected at the LHC,
distinguishable from other scenarios.
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RD(*) anomaly

4. ⌧ ! 3µ

The lepton flavor violating decay ⌧ ! 3µ plays an important role in this model. The e↵ective

Hamiltonian is

He↵(⌧
� ! µ�µ+µ�) =

7

32

g2
⇢

(g33
L

)2

m2
⇢

X22
ll

X23
ll

(µ̄
L

�µµ
L

) (⌧̄
L

�
µ

µ
L

) , (IV.23)

and then the branching ratio is obtained by

B(⌧� ! µ�µ+µ�) =

"

7

32

g2
⇢

(g33
L

)2

m2
⇢

X22
ll

X23
ll

#2

⇥ 0.94

4

m5
⌧

⌧
⌧

192⇡3
, (IV.24)

where the factor 0.94 came from the phase space suppression for the decay [80]. The following

experimental upper bound at 90% C.L. is available [107]:

B(⌧� ! µ�µ+µ�) < 2.1⇥ 10�8. (IV.25)

5. B0
s -B̄

0
s mixing

The e↵ective Hamiltonian is

He↵(bs $ bs) =

 

G2
F

m2
W

16⇡2
(V

tb

V ⇤
ts

)2CSM
V LL

+
7

32

g2
⇢

(g33
L

)2

m2
⇢

X23
dd

X23
dd

!

(s̄
L

�µb
L

) (s̄
L

�
µ

b
L

) , (IV.26)

with CSM
V LL

' 4.95. The mass di↵erence in the B
s

system is provided by

�M
Bs =

2

3
M

Bsf
2
Bs
B̂

Bs

�

�

�

�

�

G2
F

m2
W

16⇡2
(V

tb

V ⇤
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)2CSM
V LL

+
7

32

g2
⇢

(g33
L

)2

m2
⇢

X23
dd

X23
dd

�

�

�

�

�

. (IV.27)

This is compared with the experimental measurement [108]

�M exp.
Bs

= (17.757± 0.021) ps�1. (IV.28)

Note that a theoretical uncertainty comes from the input parameters of V
tb

V ⇤
ts

and f2
Bs
B̂

Bs , which

are much more dominant than the above experimental uncertainty e.g., �MSM
Bs

= (17.4±2.6) ps�1.

For a conservative choice, we take ±1� range for the theoretical uncertainty.

6. B̄ ! D(⇤)⌧ ⌫̄

The semi-tauonic B meson decays of B̄ ! D(⇤)⌧ ⌫̄ were measured [109–111] and then it has

turned out that the experimental data deviate from the SM predictions. To be specific, with

respect to the ratios

R
D

=
B(B̄ ! D⌧ ⌫̄)

B(B̄ ! D`⌫̄)
, R

D

⇤ =
B(B̄ ! D⇤⌧ ⌫̄)

B(B̄ ! D⇤`⌫̄)
, (IV.29)
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Figure 66: Measurement of R(D) and R(D⇤

) and their average compared with the prediction
for R(D⇤

) [563] and R(D) [480, 559]. The dashed ellipses corresponds to the 2 and 4 �
contours.
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(` = e or µ)

[HFLAV, arXiv:1612.07233v2]
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(` = e or µ)

 In our scenario, nonzero contributions to
RD(*) are found (via W’s and vector LQ).
However, they are cancelled out in the
degenerated ρ mass limit.
⇒ Only negligible effect remains.

[HFLAV, arXiv:1612.07233v2]
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, (IV.29)
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•  The most abundant background is 
due to (“prompt”) Xb→D*-π+π-π++N 
(neutrals) where the 3 pions come 
from the Xb vertex (BR ≈100 times 
higher than signal). 

 
•  Suppressed by requiring minimum 

distance between Xb and τ vertices 
(>4σΔz). 

•  This background suppressed by 3 
orders of  magnitude. 35% efficient 
on signal. 

•  Possible due to the excellent LHCb 
vertex resolution. 
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•  We have measured the ratio 
Khad(D*)=BR(B0→D*-τν)/BR(B0→D*-3π) using 
the 3π(π0) hadronic decay of  the τ lepton. 

 
•  The result regarding R(D*) is compatible 

with all other measurements and with the 
SM, having the smallest statistical error. 

•  This analysis was made possible due to 
the unique LHCb capabilities for 
separating secondary and tertiary 
vertices with excellent resolution. 

 

A ‘null’ result
from LHCb?

[CERN LHC seminar, 06/06/2017,
 A.R.Vidal (LHCb)]

In our scenario, nonzero contributions to
RD(*) are found (via W’s and vector LQ).
However, they are cancelled out in the
degenerated ρ mass limit.
⇒ Only negligible effect remains.
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have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions N
F

= 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s

(M
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)⇤2
HCln

⇤2
UV

⇤2
HC

, with C2 = 4
3 (3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵
s

(M
⇡

) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M
⇡(3)

⇠ 3 TeV

and M
⇡(8)

⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1) and ⇡±,3

(1)0 pions to yieldM
⇡

±,3
(1),(1)0

⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)
W

triplets. The index ‘0’ emphasizes that the designated states are SU(2)
W

singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M
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⇠ O(f
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) = O(100)GeV ,

M
⇡

±,3
(1)0
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⇡
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for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),
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particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.
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for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.
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eigenstates G̃
a

and ⇢̃(8)a are given as

Gµ

a

=
g
⇢

eGµ

a

+
p
2g

s

e⇢µ(8)a
q

g2
⇢

+ 2g2
s

, ⇢µ(8)a =

p
2g

s

eGµ

a

� g
⇢

e⇢µ(8)a
q

g2
⇢

+ 2g2
s

, (II.38)

with

M2
G

= 0, M2
⇢(8)

= m2
⇢

(1 + 2r2
gs
). (II.39)

Here, the ratio r
gs is defined as g

s

/g
⇢

.

The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such

flavor-universal couplings are suppressed for r
g

⌧ 1, namely, for large g
⇢

, which is also required

for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g
⇢

gij
L

as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling

terms emerge after the expansion (up to the quartic order in fields): ⇢-⇡-⇡, V-⇡-⇡, V-V-⇡-⇡ and

⇡-⇡-⇡-⇡. Their interaction forms easily read

L
⇢-⇡-⇡ = ag

⇢

i tr [[@
µ

⇡,⇡]⇢µ] , (II.40)

LV-⇡-⇡ = 2i
⇣

1� a

2

⌘

tr [[@
µ

⇡,⇡]Vµ] , (II.41)

LV-V-⇡-⇡ = �tr {[V
µ

,⇡] [Vµ,⇡]} , (II.42)

L
⇡-⇡-⇡-⇡ = � 3

f
⇡

tr {(@
µ

⇡) [⇡, [⇡, @µ⇡]]} , (II.43)

with a ⌘ m2
⇢

/(g2
⇢

f2
⇡

). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g
⇢⇡⇡

is completely set by the

18

 (ρ, π)-interactions

eigenstates G̃
a

and ⇢̃(8)a are given as

Gµ

a

=
g
⇢

eGµ

a

+
p
2g

s

e⇢µ(8)a
q

g2
⇢

+ 2g2
s

, ⇢µ(8)a =

p
2g

s

eGµ

a

� g
⇢

e⇢µ(8)a
q

g2
⇢

+ 2g2
s

, (II.38)

with

M2
G

= 0, M2
⇢(8)

= m2
⇢

(1 + 2r2
gs
). (II.39)

Here, the ratio r
gs is defined as g

s

/g
⇢

.

The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such

flavor-universal couplings are suppressed for r
g

⌧ 1, namely, for large g
⇢

, which is also required

for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g
⇢

gij
L

as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling

terms emerge after the expansion (up to the quartic order in fields): ⇢-⇡-⇡, V-⇡-⇡, V-V-⇡-⇡ and

⇡-⇡-⇡-⇡. Their interaction forms easily read

L
⇢-⇡-⇡ = ag

⇢

i tr [[@
µ

⇡,⇡]⇢µ] , (II.40)

LV-⇡-⇡ = 2i
⇣

1� a

2

⌘

tr [[@
µ

⇡,⇡]Vµ] , (II.41)

LV-V-⇡-⇡ = �tr {[V
µ

,⇡] [Vµ,⇡]} , (II.42)

L
⇡-⇡-⇡-⇡ = � 3

f
⇡

tr {(@
µ

⇡) [⇡, [⇡, @µ⇡]]} , (II.43)

with a ⌘ m2
⇢

/(g2
⇢

f2
⇡

). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g
⇢⇡⇡

is completely set by the

18

← ~2 in vector dominance

← decay channel of ρ

← ~0

← ‘gg→ππ’ pair production (evaded)



Misc on pions (skippable)
 typical spectrum
(ΛHC~1TeV, ΛUV~1016GeV)

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions N
F

= 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s

(M
⇡

)⇤2
HCln

⇤2
UV

⇤2
HC

, with C2 = 4
3 (3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵
s

(M
⇡

) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M
⇡(3)

⇠ 3 TeV

and M
⇡(8)

⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1) and ⇡±,3

(1)0 pions to yieldM
⇡

±,3
(1),(1)0

⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)
W

triplets. The index ‘0’ emphasizes that the designated states are SU(2)
W

singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M
⇡

0
(1)0

⇠ O(f
⇡

) = O(100)GeV ,

M
⇡

±,3
(1)0

⇠ 2TeV ,

M
⇡

±,3
(1)

⇠ 2TeV ,

M
⇡

±,3,0
(3)

⇠ 3TeV ,

M
⇡

±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model
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 (ρ, π)-interactions

sure how the decay channels to HC pion pairs open, we list up the total values of the final-state

particle masses (m
⇡⇡

): (c.f., Appendix A),

• ⇢0(3) ! ⇡̄0
(3)⇡

0
(1)0 : m⇡⇡

⇠ (3 +O(0.1))TeV,

• ⇢↵(3) ! ⇡̄↵

(3)⇡
0
(1)0 : m⇡⇡

⇠ (3 +O(0.1))TeV,

• ⇢0(8) ! ⇡̄0
(3)⇡

0
(3) : m⇡⇡

⇠ (3 + 3)TeV = 6TeV,

• ⇢↵(8) ! ⇡̄0
(3)⇡

↵

(3) : m⇡⇡

⇠ (3 + 3)TeV = 6TeV,

• ⇢0(1)0 ! ⇡̄0
(3)⇡

0
(3) : m⇡⇡

⇠ (3 + 3)TeV = 6TeV,

• ⇢↵(1)0 ! ⇡̄�

(1)⇡
�

(1)0 : m⇡⇡

⇠ (1 + 2)TeV = 3TeV,

• ⇢↵(1) ! ⇡̄�

(1)⇡
�

(1) : m⇡⇡

⇠ (1 + 2)TeV = 3TeV.

Then, additional contributions to the HC rho’s decay branches appear when m
⇢

& 3TeV at the

present benchmark point, f
⇡

⇠ O(100)GeV and ⇤HC ⇠ 1TeV. On the other hand, when f
⇡

is somewhat greater than ⇠ 100GeV (with a sizable explicit breaking scale m0
F

), the HC pions

becomes heavier and we may block the HC rho’s decays to the HC pions consistently, keeping the

relation m
⇢

⇠ O(10)f
⇡

intact.

Thus our assumption m
⇢

< 2m
⇡

may be justified even in the range m
⇢

& 3TeV, so that we

may be able to ignore decays to HC pion pairs. Of interest enough is then that all of the physical

HC ⇢ components have the common value in the total width as

�
⇢

=
g2
⇢L

m
⇢

48⇡
, (V.15)

where we simply ignored tiny contributions through mixing e↵ects. Details of partial widths are

provided in appendix C. The curve of the ratio �
⇢

/m
⇢

as a function of g
⇢L

is illustrated in Fig. 6.

2. Forms of resonant cross sections

We summarize the forms of di↵erential production (on the solid angle ⌦ in the center-of-mass

flame) cross section at the LHC. As we pointed out, we set the mixing angles ✓
D

= 0 and ✓
L

= 0

or ⇡/2 and consider that all of the HC ⇢ mesons are completely degenerated. We note that in the

limit of ✓
D

= 0, the possible initial state is bb̄ only. Due to this mass degeneracy, we should take

all of the HC ⇢ contributions simultaneously.
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The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such

flavor-universal couplings are suppressed for r
g

⌧ 1, namely, for large g
⇢

, which is also required

for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g
⇢

gij
L

as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling
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⇡-⇡-⇡-⇡. Their interaction forms easily read
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with a ⌘ m2
⇢

/(g2
⇢

f2
⇡

). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g
⇢⇡⇡

is completely set by the
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For mρ <~3TeV, ρ decay width is
narrow.



Misc on pions (skippable)
 typical spectrum
(ΛHC~1TeV, ΛUV~1016GeV)

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions N
F

= 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s

(M
⇡

)⇤2
HCln

⇤2
UV

⇤2
HC

, with C2 = 4
3 (3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵
s

(M
⇡

) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M
⇡(3)

⇠ 3 TeV

and M
⇡(8)

⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1) and ⇡±,3

(1)0 pions to yieldM
⇡

±,3
(1),(1)0

⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)
W

triplets. The index ‘0’ emphasizes that the designated states are SU(2)
W

singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M
⇡

0
(1)0

⇠ O(f
⇡

) = O(100)GeV ,

M
⇡

±,3
(1)0

⇠ 2TeV ,

M
⇡

±,3
(1)

⇠ 2TeV ,

M
⇡

±,3,0
(3)

⇠ 3TeV ,

M
⇡

±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

f
L

=

0

@

q

l

1

A

L

, f
R

=

0

@

q

l

1

A

R

, (II.12)
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 (ρ, π)-interactions

sure how the decay channels to HC pion pairs open, we list up the total values of the final-state

particle masses (m
⇡⇡

): (c.f., Appendix A),

• ⇢0(3) ! ⇡̄0
(3)⇡

0
(1)0 : m⇡⇡

⇠ (3 +O(0.1))TeV,

• ⇢↵(3) ! ⇡̄↵

(3)⇡
0
(1)0 : m⇡⇡

⇠ (3 +O(0.1))TeV,

• ⇢0(8) ! ⇡̄0
(3)⇡

0
(3) : m⇡⇡

⇠ (3 + 3)TeV = 6TeV,

• ⇢↵(8) ! ⇡̄0
(3)⇡

↵

(3) : m⇡⇡

⇠ (3 + 3)TeV = 6TeV,

• ⇢0(1)0 ! ⇡̄0
(3)⇡

0
(3) : m⇡⇡

⇠ (3 + 3)TeV = 6TeV,

• ⇢↵(1)0 ! ⇡̄�

(1)⇡
�

(1)0 : m⇡⇡

⇠ (1 + 2)TeV = 3TeV,

• ⇢↵(1) ! ⇡̄�

(1)⇡
�

(1) : m⇡⇡

⇠ (1 + 2)TeV = 3TeV.

Then, additional contributions to the HC rho’s decay branches appear when m
⇢

& 3TeV at the

present benchmark point, f
⇡

⇠ O(100)GeV and ⇤HC ⇠ 1TeV. On the other hand, when f
⇡

is somewhat greater than ⇠ 100GeV (with a sizable explicit breaking scale m0
F

), the HC pions

becomes heavier and we may block the HC rho’s decays to the HC pions consistently, keeping the

relation m
⇢

⇠ O(10)f
⇡

intact.

Thus our assumption m
⇢

< 2m
⇡

may be justified even in the range m
⇢

& 3TeV, so that we

may be able to ignore decays to HC pion pairs. Of interest enough is then that all of the physical

HC ⇢ components have the common value in the total width as

�
⇢

=
g2
⇢L

m
⇢

48⇡
, (V.15)

where we simply ignored tiny contributions through mixing e↵ects. Details of partial widths are

provided in appendix C. The curve of the ratio �
⇢

/m
⇢

as a function of g
⇢L

is illustrated in Fig. 6.

2. Forms of resonant cross sections

We summarize the forms of di↵erential production (on the solid angle ⌦ in the center-of-mass

flame) cross section at the LHC. As we pointed out, we set the mixing angles ✓
D

= 0 and ✓
L

= 0

or ⇡/2 and consider that all of the HC ⇢ mesons are completely degenerated. We note that in the

limit of ✓
D

= 0, the possible initial state is bb̄ only. Due to this mass degeneracy, we should take

all of the HC ⇢ contributions simultaneously.
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Combined with the above two sources, the squared amplitudes are computed as
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with the factor

A = � NHC

16
p
3⇡2 · 4

g2
s

f
⇡

. (V.11)

Through the relations 2 p1 · p2 = M2
⇡

0
(1)0

and �(⇡0
(1)0 ! GG) = |M|2/(2⇥ 16⇡M

⇡

0
(1)0

), we obtain
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Through the well known formula for cross section with a spin-J resonance that arises from a

proton-proton collision with gluonic initial state [120]

�(GG ! ⇡0
(1)0 ! ��) =

2J + 1

s
C
GG

�(⇡0
(1)0 ! GG)

M
⇡

0
(1)0

�(⇡0
(1)0 ! ��)

�
⇡

0
(1)0

, (V.13)

(where s is the center of mass energy and C
GG

|13TeV = 2137 [120] denotes the luminosity coe�cient

for a pair of gluons as initial partons,) we can immediately calculate the diphoton cross section.

First, we shall consider the simplest case with r
y

= 0, (namely, no coupling to top quark pair.)

In this case, we estimate the diphoton cross section

�(GG ! ⇡0
(1)0 ! ��)

�

�

�

�

�

ry=0

⇠ 0.1 fb⇥


NHC

3

�2
h ↵

s

0.1

i2
"B(⇡0

(1)0 ! ��)

10�3

# 

M
⇡

0
(1)0

f
⇡

!2

. (V.14)

Note that, in the case of r
y

= 0, B(⇡0
(1)0 ! ��) is completely free from the ⇡0

(1)0 mass dependence

because ⇡(1)0 decays only to the massless final states, 2� and 2G. Hence the diphoton cross section

in Eq.(V.14) is controlled only by the ratio (M
⇡

0
(1)0

/f
⇡

). To survey a generic parameter space in

the present model, we shall momentarily take the value of M
⇡

0
(1)0

in a range from O(100) GeV

[low mass] up to O(TeV) [high mass] #13, and discuss the phenomenological constraints from the

diphoton cross section of Eq.(V.14).

#13 As listed in Eq.(II.11), a typical size of the M⇡0
(1)0

is expected to be O(100) GeV. However, the TeV mass range

might be achieved when one consider possible e↵ects from extended HC sector, which could be enhanced in the case
of many flavor QCD (nearly conformal/walking gauge theory), in a way similar to extended technicolor scenarios.
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typical cross section of resonant π production (through WZW anomaly term)
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with

M2
G

= 0, M2
⇢(8)

= m2
⇢

(1 + 2r2
gs
). (II.39)

Here, the ratio r
gs is defined as g

s

/g
⇢

.

The indirect couplings of the HC ⇢ mesons to SM fermions thus arise from the above flavor-

universal VSM-⇢ mixings in the mass eigenstates. As seen from the expressions of the mixings, such

flavor-universal couplings are suppressed for r
g

⌧ 1, namely, for large g
⇢

, which is also required

for the oblique corrections to be negligible. This is, indeed, inferred from the QCD case. (See the

later sections.) On the other hand, flavor-specific couplings of the HC ⇢ mesons to SM fermions are

also given with the form g
⇢

gij
L

as in Eq.(II.24) and then it can significantly contribute to variety of

flavor processes, as we will see in the next section.

3. Couplings including HC ⇡

From the chiral Lagrangian in Eq.(II.1) with the concrete form of the covariantized Maurer–

Cartan one forms in Eqs.(II.18) and (II.19), we find that the following types of HC pion coupling

terms emerge after the expansion (up to the quartic order in fields): ⇢-⇡-⇡, V-⇡-⇡, V-V-⇡-⇡ and

⇡-⇡-⇡-⇡. Their interaction forms easily read

L
⇢-⇡-⇡ = ag
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i tr [[@
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with a ⌘ m2
⇢

/(g2
⇢

f2
⇡

). The specific choice, a = 2, turns out to make the V-⇡-⇡ term vanishes at the

leading order. This is referred to as the vector dominance in which the chiral perturbation theory

reproduces experimental results regarding QCD. For the present study, we may therefore assume

the vector dominance scenario and then see that the ⇢-⇡-⇡ coupling g
⇢⇡⇡

is completely set by the

18
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If this factor is less than a few,
no problem.



Composite scenario: QCD as showing example
 If a gauge theory is strongly-coupled, composite mesons (and other types)
are observed (like QCD below ~1GeV).
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2 A Brief Review of the Chiral Perturbation Theory

In this section we briefly review the Chiral Perturbation Theory (ChPT) [190, 79, 81],

which gives the systematic low-energy expansion of Green functions of QCD related to

light pseudoscalar mesons. The Lagrangian is constructed via non-linear realization of the

chiral symmetry based on the manifold SU(Nf)L× SU(Nf)R/SU(Nf )V, with Nf being the

number of light flavors. Here we generically use π for the pseudoscalar NG bosons (pions

and their flavor partners) even for Nf "= 2. For physical pions, on the other hand, we write

their charges explicitly as π± and π0.

In Sec. 2.1 we give a conceptual relation between the generating functional of QCD and

that of the ChPT following Ref. [79, 81]. Then, after introducing the derivative expansion

in Sec. 2.2, we review how to perform the order counting systematically in the ChPT in

Sec. 2.3. The Lagrangian of the ChPT up until O(p4) is given in Sec. 2.4. We review the

renormalization and the values of the coefficients of the O(p4) terms in Secs. 2.5 and 2.6.

The particle assignment in the realistic case of Nf = 3 is shown in Sec. 2.7. Finally, we

review the applications of the ChPT to physical quantities such as the vector form factors

of the pseudoscalar mesons (Sec. 2.8) and π → eνγ amplitude (Sec. 2.9).

2.1 Generating functional of QCD

Let us start with the QCD Lagrangian with external source fields:

LQCD = L0
QCD + qLγ

µLµqL + qRγ
µRµqR + qL [S + iP] qR + qR [S − iP] qL , (2.1)

where Lµ and Rµ are external gauge fields corresponding to SU(Nf)L and SU(Nf )R, and

S and P are external scalar and pseudoscalar source fields. L0
QCD is the ordinary QCD

Lagrangian with Nf massless quarks:

L0
QCD = q̄iD/ q − 1

2
tr [GµνG

µν ] , (2.2)

where

Dµq = (∂µ − igsGµ) q ,

Gµν = ∂µGµ − ∂νGµ − igs [Gµ , Gν ] , (2.3)

with Gµ and gs being the gluon field matrix and the QCD gauge coupling constant.
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pure QCD part

couplings to external
gauge fields (W±,Z,γ)

current mass terms
(via the Higgs mechanism)

 

 

[QCD Lagrangian]

qL/R =

0

BBB@

u
d
s
...

1
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SU(Nf)L×SU(Nf)R global flavor (chiral) symmetry, realized

 If a gauge theory is strongly-coupled, composite mesons (and other types)
are observed (like QCD below ~1GeV).
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2 A Brief Review of the Chiral Perturbation Theory

In this section we briefly review the Chiral Perturbation Theory (ChPT) [190, 79, 81],

which gives the systematic low-energy expansion of Green functions of QCD related to

light pseudoscalar mesons. The Lagrangian is constructed via non-linear realization of the

chiral symmetry based on the manifold SU(Nf)L× SU(Nf)R/SU(Nf )V, with Nf being the

number of light flavors. Here we generically use π for the pseudoscalar NG bosons (pions

and their flavor partners) even for Nf "= 2. For physical pions, on the other hand, we write

their charges explicitly as π± and π0.

In Sec. 2.1 we give a conceptual relation between the generating functional of QCD and

that of the ChPT following Ref. [79, 81]. Then, after introducing the derivative expansion

in Sec. 2.2, we review how to perform the order counting systematically in the ChPT in

Sec. 2.3. The Lagrangian of the ChPT up until O(p4) is given in Sec. 2.4. We review the

renormalization and the values of the coefficients of the O(p4) terms in Secs. 2.5 and 2.6.

The particle assignment in the realistic case of Nf = 3 is shown in Sec. 2.7. Finally, we

review the applications of the ChPT to physical quantities such as the vector form factors

of the pseudoscalar mesons (Sec. 2.8) and π → eνγ amplitude (Sec. 2.9).

2.1 Generating functional of QCD

Let us start with the QCD Lagrangian with external source fields:

LQCD = L0
QCD + qLγ

µLµqL + qRγ
µRµqR + qL [S + iP] qR + qR [S − iP] qL , (2.1)

where Lµ and Rµ are external gauge fields corresponding to SU(Nf)L and SU(Nf )R, and

S and P are external scalar and pseudoscalar source fields. L0
QCD is the ordinary QCD

Lagrangian with Nf massless quarks:

L0
QCD = q̄iD/ q − 1

2
tr [GµνG

µν ] , (2.2)

where

Dµq = (∂µ − igsGµ) q ,

Gµν = ∂µGµ − ∂νGµ − igs [Gµ , Gν ] , (2.3)

with Gµ and gs being the gluon field matrix and the QCD gauge coupling constant.
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[explicit breaking: SU(Nf)L×SU(Nf)R → SU(Nf)V]

 hq̄AqBi ⇠ ⇤

3
QCD�

AB
(confinement) ! SU(Nf)L×SU(Nf)R → SU(Nf)V spontaneously

→ (Nf)2-1 #s of (pseudo) NG bosons emerge.

Composite scenario: QCD as showing example

 Spin-one vector mesons can be described by hidden local symmetry (HLS).

[Chiral perturbation theory ⇒ effective description]

SU(Nf)L×SU(Nf)R ⇒ [SU(Nf)L×SU(Nf)R]global×[SU(Nf)V]gauged

→ (Nf)2-1 #s of vector mesons are introduced.

[reviewed by e.g., M.Harada &
 K.Yamawaki, arXiv:hep-ph/0302103]

Confined

around below 

ΛQCD



Basic ingredients of chiral perturbation theory (with HLS): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)
FL ⇥ SU(8)

FR

symmetry, the Lagrangian is written as #5

L = �1

2
tr[⇢2

µ⌫

] + f2
⇡

tr[↵̂2
?µ

] +
m2

⇢

g2
⇢

tr[↵̂2
||µ] + · · · , (II.1)

in a manner invariant under the SU(8)
FL ⇥SU(8)

FR ⇥ [SU(8)
FV ]HLS symmetries, where we define

⇢
µ⌫

= @
µ

⇢
⌫

� @
⌫

⇢
µ

� ig
⇢

[⇢
µ

, ⇢
⌫

] ,

↵̂?µ

=
D

µ

⇠
R

· ⇠†
R

�D
µ

⇠
L

· ⇠†
L

2i
, ↵̂||µ =

D
µ

⇠
R

· ⇠†
R

+D
µ

⇠
L

· ⇠†
L

2i
, (II.2)

D
µ

⇠
R(L) = @

µ

⇠
R(L) � ig

⇢

⇢
µ

⇠
R(L) + i⇠

R(L)Rµ

(L
µ

) ,

with the HLS gauge coupling g
⇢

, the HC pion decay constant f
⇡

, and the external gauge fields

R
µ

and L
µ

that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠
L,R

(nonlinear bases), ⇢
µ

(HLS field), and ↵̂?µ

, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠
L

! h(x) · ⇠
L

· g†
L

(x) , ⇠
R

! h(x) · ⇠
R

· g†
R

(x) ,

⇢
µ

! h(x) · ⇢
µ

· h†(x) + i

g
⇢

h(x) · @
µ

h†(x) , ⇢
µ⌫

! h(x) · ⇢
µ⌫

· h†(x) , (II.3)

↵̂?µ

! h(x) · ↵̂?µ

· h†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h†(x) ,

where h(x) 2 [SU(8)
FV ]HLS and g

R,L

(x) 2 [SU(8)
FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠
L,R

i = 1. The nonlinear bases ⇠
L

and ⇠
R

can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= eiP/fP · e±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m
⇢

= g
⇢

fP and then the Ps are eaten by the HLS gauge boson ⇢
µ

due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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 (non-linear basis of chiral symmetries)
pions (NG bosons)would-be NGs

for rho mesons
(longitudinal d.o.f.s)

 ⇢µ = ⇢aµT
a
(T a

: SU(8) generators) (HC rho meson fields)

Form of effective Lagrangian
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L,R

i = 1. The nonlinear bases ⇠
L

and ⇠
R

can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= eiP/fP · e±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m
⇢

= g
⇢

fP and then the Ps are eaten by the HLS gauge boson ⇢
µ

due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)
FL ⇥ SU(8)

FR
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⇡
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⇢
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⇠
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⇡
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(x) 2 [SU(8)
FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠
L,R

i = 1. The nonlinear bases ⇠
L

and ⇠
R

can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= eiP/fP · e±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m
⇢

= g
⇢

fP and then the Ps are eaten by the HLS gauge boson ⇢
µ

due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
W

⇥ U(1)
Y

as

⇠
L

! h(x) · ⇠
L

· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
R

· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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with V
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We may define the dressed fields for the left-handed SM fermions,
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which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as
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, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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composite vector constituent color isospin

⇢↵(8)a
1p
2
Q̄�µ�

a⌧↵Q octet triplet

⇢0(8)a
1

2
p
2
Q̄�µ�

aQ octet singlet

⇢↵(3)c

⇣

⇢̄↵(3)c

⌘

1p
2
Q̄c�µ⌧

↵L (h.c.) triplet triplet

⇢0(3)c

⇣

⇢̄0(3)c

⌘

1
2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢↵(1)0
1

2
p
3
(Q̄�µ⌧

↵Q� 3L̄�µ⌧↵L) singlet triplet

⇢0(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢↵(1)
1
2 (Q̄�µ⌧

↵Q+ L̄�µ⌧
↵L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �↵/2

(↵ = 1, 2, 3) with the Pauli matrices �↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)
FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

D
µ

f
L

= (@
µ

f
L

) · 18⇥8 � i[Lf

µ

]8⇥8 · fL ,

D
µ

f
R

= (@
µ

f
R

) · 18⇥8 � i[Rf

µ

]8⇥8 · fR , (II.13)

with

h

Lf

µ

i

8⇥8
=

0

@

12⇥2 ⌦ g
s

Ga

µ

�

a

2 +
�

g
W

W
µ

⌧↵ + 1
6gY Bµ

�⌦ 13⇥3 06⇥2

02⇥6 g
W

W↵

µ

⌧↵ � 1
2gY Bµ

· 12⇥2

1

A

=
p
2g

s

Ga

µ

T(8)a +
2p
3
g
Y

B
µ

T(1)0 + 2g
W

W↵

µ

T↵

(1),

h

Rf

µ

i

8⇥8
=

0

@

12⇥2 ⌦ g
s

Ga

µ

�

a

2 + g
Y

Qq

emB
µ

⌦ 13⇥3 06⇥2

02⇥6 g
Y

Ql

emB
µ

1

A , (II.14)

where G
µ

,W
µ

and B
µ

are the SU(3)
c

⇥SU(2)
W

⇥U(1)
Y

gauge fields along with the gauge couplings

g
s

, g
W

and g
Y

, respectively; and Qq,l

em is the electromagnetic (EM) charge defined as

Qq

em =

0

@

2/3 0

0 �1/3

1

A , Ql

em =

0

@

0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠
L,R

in Eq.(II.3)

13

for SU(2)W-doublet quarks

for SU(2)W-doublet leptons

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions N
F

= 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s

(M
⇡

)⇤2
HCln

⇤2
UV

⇤2
HC

, with C2 = 4
3 (3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵
s

(M
⇡

) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M
⇡(3)

⇠ 3 TeV

and M
⇡(8)

⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1) and ⇡±,3

(1)0 pions to yieldM
⇡

±,3
(1),(1)0

⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)
W

triplets. The index ‘0’ emphasizes that the designated states are SU(2)
W

singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M
⇡

0
(1)0

⇠ O(f
⇡

) = O(100)GeV ,

M
⇡

±,3
(1)0

⇠ 2TeV ,

M
⇡

±,3
(1)

⇠ 2TeV ,

M
⇡

±,3,0
(3)

⇠ 3TeV ,

M
⇡

±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

f
L

=

0

@

q

l

1

A

L

, f
R

=

0

@

q

l

1

A

R

, (II.12)
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Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)
FL ⇥ SU(8)

FR

symmetry, the Lagrangian is written as #5

L = �1

2
tr[⇢2

µ⌫

] + f2
⇡

tr[↵̂2
?µ

] +
m2

⇢

g2
⇢

tr[↵̂2
||µ] + · · · , (II.1)

in a manner invariant under the SU(8)
FL ⇥SU(8)

FR ⇥ [SU(8)
FV ]HLS symmetries, where we define

⇢
µ⌫

= @
µ

⇢
⌫

� @
⌫

⇢
µ

� ig
⇢

[⇢
µ

, ⇢
⌫

] ,

↵̂?µ

=
D

µ

⇠
R

· ⇠†
R

�D
µ

⇠
L

· ⇠†
L

2i
, ↵̂||µ =

D
µ

⇠
R

· ⇠†
R

+D
µ

⇠
L

· ⇠†
L

2i
, (II.2)

D
µ

⇠
R(L) = @

µ

⇠
R(L) � ig

⇢

⇢
µ

⇠
R(L) + i⇠

R(L)Rµ

(L
µ

) ,

with the HLS gauge coupling g
⇢

, the HC pion decay constant f
⇡

, and the external gauge fields

R
µ

and L
µ

that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠
L,R

(nonlinear bases), ⇢
µ

(HLS field), and ↵̂?µ

, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠
L

! h(x) · ⇠
L

· g†
L

(x) , ⇠
R

! h(x) · ⇠
R

· g†
R

(x) ,

⇢
µ

! h(x) · ⇢
µ

· h†(x) + i

g
⇢

h(x) · @
µ

h†(x) , ⇢
µ⌫

! h(x) · ⇢
µ⌫

· h†(x) , (II.3)

↵̂?µ

! h(x) · ↵̂?µ

· h†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h†(x) ,

where h(x) 2 [SU(8)
FV ]HLS and g

R,L

(x) 2 [SU(8)
FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠
L,R

i = 1. The nonlinear bases ⇠
L

and ⇠
R

can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= eiP/fP · e±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m
⇢

= g
⇢

fP and then the Ps are eaten by the HLS gauge boson ⇢
µ

due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
W

⇥ U(1)
Y

as

⇠
L

! h(x) · ⇠
L

· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
R

· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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We may define the dressed fields for the left-handed SM fermions,
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· f
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which transform as
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, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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with V
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We may define the dressed fields for the left-handed SM fermions,
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which transform as
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These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as
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�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡
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with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ
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µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢
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We may define the dressed fields for the left-handed SM fermions,
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· f
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, (II.21)

which transform as
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! h(x) · 
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These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i
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�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L
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⌘
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⇣
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�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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composite vector constituent color isospin

⇢↵(8)a
1p
2
Q̄�µ�

a⌧↵Q octet triplet

⇢0(8)a
1

2
p
2
Q̄�µ�

aQ octet singlet

⇢↵(3)c

⇣

⇢̄↵(3)c

⌘

1p
2
Q̄c�µ⌧

↵L (h.c.) triplet triplet

⇢0(3)c

⇣

⇢̄0(3)c

⌘

1
2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢↵(1)0
1

2
p
3
(Q̄�µ⌧

↵Q� 3L̄�µ⌧↵L) singlet triplet

⇢0(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢↵(1)
1
2 (Q̄�µ⌧

↵Q+ L̄�µ⌧
↵L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �↵/2

(↵ = 1, 2, 3) with the Pauli matrices �↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)
FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

D
µ

f
L

= (@
µ

f
L

) · 18⇥8 � i[Lf

µ

]8⇥8 · fL ,

D
µ

f
R

= (@
µ

f
R

) · 18⇥8 � i[Rf

µ

]8⇥8 · fR , (II.13)

with

h

Lf

µ

i

8⇥8
=

0

@

12⇥2 ⌦ g
s

Ga

µ

�

a

2 +
�

g
W

W
µ

⌧↵ + 1
6gY Bµ

�⌦ 13⇥3 06⇥2

02⇥6 g
W

W↵

µ

⌧↵ � 1
2gY Bµ

· 12⇥2

1

A

=
p
2g

s

Ga

µ

T(8)a +
2p
3
g
Y

B
µ

T(1)0 + 2g
W

W↵

µ

T↵

(1),

h

Rf

µ

i

8⇥8
=

0

@

12⇥2 ⌦ g
s

Ga

µ

�

a

2 + g
Y

Qq

emB
µ

⌦ 13⇥3 06⇥2

02⇥6 g
Y

Ql

emB
µ

1

A , (II.14)

where G
µ

,W
µ

and B
µ

are the SU(3)
c

⇥SU(2)
W

⇥U(1)
Y

gauge fields along with the gauge couplings

g
s

, g
W

and g
Y

, respectively; and Qq,l

em is the electromagnetic (EM) charge defined as

Qq

em =

0

@

2/3 0

0 �1/3

1

A , Ql

em =

0

@

0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠
L,R

in Eq.(II.3)
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for SU(2)W-doublet quarks

for SU(2)W-doublet leptons

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions N
F

= 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s

(M
⇡

)⇤2
HCln

⇤2
UV

⇤2
HC

, with C2 = 4
3 (3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵
s

(M
⇡

) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M
⇡(3)

⇠ 3 TeV

and M
⇡(8)

⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1) and ⇡±,3

(1)0 pions to yieldM
⇡

±,3
(1),(1)0

⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)
W

triplets. The index ‘0’ emphasizes that the designated states are SU(2)
W

singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M
⇡

0
(1)0

⇠ O(f
⇡

) = O(100)GeV ,

M
⇡

±,3
(1)0

⇠ 2TeV ,

M
⇡

±,3
(1)

⇠ 2TeV ,

M
⇡

±,3,0
(3)

⇠ 3TeV ,

M
⇡

±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

f
L

=

0

@

q

l

1

A

L

, f
R

=

0

@

q

l

1

A

R

, (II.12)
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transform under the HLS and the SM gauge group G = SU(3)
c
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Y
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⇠
L

! h(x) · ⇠
L

· [g†
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! h(x) · ⇠
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(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
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µ
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i.e., V
µ

=
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µ
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µ
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µ
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=
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� L
µ

2
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It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):
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µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ
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µ

+ L
µ

)/2 and A
µ
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� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as
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We may define the dressed fields for the left-handed SM fermions,
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which transform as
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These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as
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⇢ff
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 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
W

⇥ U(1)
Y

as

⇠
L

! h(x) · ⇠
L

· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
R

· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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Form of effective Lagrangian (cont’d)
Effective Lagrangian (lowest terms): 

The e↵ective Lagrangian for those vectors can be formulated based on the HLS formalism, which

has succeeded in QCD rho meson physics [40–44], where the ⇢’s are introduced as the gauge bosons

of the HLS. Based on the nonlinear realization of the HLS and the “chiral” SU(8)
FL ⇥ SU(8)

FR

symmetry, the Lagrangian is written as #5

L = �1

2
tr[⇢2

µ⌫

] + f2
⇡

tr[↵̂2
?µ

] +
m2

⇢

g2
⇢

tr[↵̂2
||µ] + · · · , (II.1)

in a manner invariant under the SU(8)
FL ⇥SU(8)

FR ⇥ [SU(8)
FV ]HLS symmetries, where we define

⇢
µ⌫

= @
µ

⇢
⌫

� @
⌫

⇢
µ

� ig
⇢

[⇢
µ

, ⇢
⌫

] ,

↵̂?µ

=
D

µ

⇠
R

· ⇠†
R

�D
µ

⇠
L

· ⇠†
L

2i
, ↵̂||µ =

D
µ

⇠
R

· ⇠†
R

+D
µ

⇠
L

· ⇠†
L

2i
, (II.2)

D
µ

⇠
R(L) = @

µ

⇠
R(L) � ig

⇢

⇢
µ

⇠
R(L) + i⇠

R(L)Rµ

(L
µ

) ,

with the HLS gauge coupling g
⇢

, the HC pion decay constant f
⇡

, and the external gauge fields

R
µ

and L
µ

that are associated by gauging the “chiral” symmetry. Ellipses include terms of higher

derivative orders [44, 68]. Under the HLS and the “chiral” symmetry, the transformation properties

for basic variables – ⇠
L,R

(nonlinear bases), ⇢
µ

(HLS field), and ↵̂?µ

, ↵̂||µ (covariantized Maurer–

Cartan one forms) – are described as

⇠
L

! h(x) · ⇠
L

· g†
L

(x) , ⇠
R

! h(x) · ⇠
R

· g†
R

(x) ,

⇢
µ

! h(x) · ⇢
µ

· h†(x) + i

g
⇢

h(x) · @
µ

h†(x) , ⇢
µ⌫

! h(x) · ⇢
µ⌫

· h†(x) , (II.3)

↵̂?µ

! h(x) · ↵̂?µ

· h†(x) , ↵̂||µ ! h(x) · ↵̂||µ · h†(x) ,

where h(x) 2 [SU(8)
FV ]HLS and g

R,L

(x) 2 [SU(8)
FR,L ]gauged. The HLS is thus the gauge degree of

freedom independent of the SM-external gauges and has spontaneously been broken together with

the “chiral” symmetry in terms of the nonlinear realization: h⇠
L,R

i = 1. The nonlinear bases ⇠
L

and ⇠
R

can be parametrized by the NG bosons ⇡ for the “chiral” symmetry and P for the HLS.

Hence, they are parametrized as ⇠R
L
= eiP/fP · e±i⇡/f⇡ , where the HLS decay constant fP is related

to the HC rho mass as m
⇢

= g
⇢

fP and then the Ps are eaten by the HLS gauge boson ⇢
µ

due to

the Higgs mechanism.

Note that, by construction, at the leading order of derivative expansion the HLS completely

forbids triple vector vertices involving the external gauge fields along with HLS, such as G � G � ⇢

#5 We have imposed the C and P invariance as well, and assumed that the P invariance is violated only through the
weak interactions when the HC pions and ⇢ mesons couple to the SM fermions through the external weak gauges
(See also the ⇢ couplings to the SM fermions in Eq.(II.23), which take the left-handed form).
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transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
W

⇥ U(1)
Y

as

⇠
L

! h(x) · ⇠
L

· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
R

· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
W

⇥ U(1)
Y
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⇠
L

! h(x) · ⇠
L

· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
R

· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).

14

transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
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Y
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L

(x)]G , ⇠
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! h(x) · ⇠
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· [g†
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(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡
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µ
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f
⇡

[A
µ

,⇡] + · · · , (II.18)

and
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=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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⇥ SU(2)
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⇥ U(1)
Y
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! h(x) · ⇠
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· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
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· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ
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⇢

⇢
µ
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2f2
⇡
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µ
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f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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composite vector constituent color isospin

⇢↵(8)a
1p
2
Q̄�µ�

a⌧↵Q octet triplet

⇢0(8)a
1

2
p
2
Q̄�µ�

aQ octet singlet

⇢↵(3)c

⇣

⇢̄↵(3)c

⌘

1p
2
Q̄c�µ⌧

↵L (h.c.) triplet triplet

⇢0(3)c

⇣

⇢̄0(3)c

⌘

1
2
p
2
Q̄c�µL (h.c.) triplet singlet

⇢↵(1)0
1

2
p
3
(Q̄�µ⌧

↵Q� 3L̄�µ⌧↵L) singlet triplet

⇢0(1)0
1

4
p
3
(Q̄�µQ� 3L̄�µL) singlet singlet

⇢↵(1)
1
2 (Q̄�µ⌧

↵Q+ L̄�µ⌧
↵L) singlet triplet

TABLE II: The HC rho mesons and their associated constituent HC quarks Qc = (U,D)c and leptons

L = (N,E). Here �a (a = 1, · · · , 8) are the Gell-Mann matrices, ⌧↵ SU(2) generators defined as ⌧↵ = �↵/2

(↵ = 1, 2, 3) with the Pauli matrices �↵, and the label c stands for the QCD-three colors, c = r, g, b. The

numbers attached in lower scripts (1, 3, 8) correspond to the representations under the QCD color, i.e.,

singlet, triplet and octet for (1, 3, 8).

where q and l are SU(2)
FL,FR doublets for the quark and lepton fields. The SM-covariant derivatives

that act on the f -fermion multiplets are then expressed as the 8⇥ 8 matrix forms:

D
µ

f
L

= (@
µ

f
L

) · 18⇥8 � i[Lf

µ

]8⇥8 · fL ,

D
µ

f
R

= (@
µ

f
R

) · 18⇥8 � i[Rf

µ

]8⇥8 · fR , (II.13)

with

h

Lf

µ

i

8⇥8
=

0

@

12⇥2 ⌦ g
s

Ga

µ

�

a

2 +
�

g
W

W
µ

⌧↵ + 1
6gY Bµ

�⌦ 13⇥3 06⇥2

02⇥6 g
W

W↵

µ

⌧↵ � 1
2gY Bµ

· 12⇥2

1

A

=
p
2g

s

Ga

µ

T(8)a +
2p
3
g
Y

B
µ

T(1)0 + 2g
W

W↵

µ

T↵

(1),

h

Rf

µ

i

8⇥8
=

0

@

12⇥2 ⌦ g
s

Ga

µ

�

a

2 + g
Y

Qq

emB
µ

⌦ 13⇥3 06⇥2

02⇥6 g
Y

Ql

emB
µ

1

A , (II.14)

where G
µ

,W
µ

and B
µ

are the SU(3)
c

⇥SU(2)
W

⇥U(1)
Y

gauge fields along with the gauge couplings

g
s

, g
W

and g
Y

, respectively; and Qq,l

em is the electromagnetic (EM) charge defined as

Qq

em =

0

@

2/3 0

0 �1/3

1

A , Ql

em =

0

@

0 0

0 �1

1

A . (II.15)

The covariant derivatives for the HC fermions can also be written in terms of the 8⇥ 8 matrix

form. We may relate the charges of the HC fermions with those of the SM quark and lepton

charges, involving the HC-quark and -lepton numbers. Then the nonlinear bases ⇠
L,R

in Eq.(II.3)
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for SU(2)W-doublet quarks

for SU(2)W-doublet leptons

have another source which would allow some HC pions to get more massive: since the present HC

theory consists of the one-family content with the number of HC fermions N
F

= 8, the masses of

HC pions having the SM charges could be enhanced by the amplification of the explicit breaking

e↵ect, as discussed in [69] and references therein. The enhancement will then be most eminent for

QCD colored pions, ⇡(3) and ⇡(8) due to the relatively large QCD coupling strength. Following

[69], we evaluate the size of colored HC pion masses from the QCD gluon exchange contribution

as M2
⇡(3),(8)

⇠ C2↵s

(M
⇡

)⇤2
HCln

⇤2
UV

⇤2
HC

, with C2 = 4
3 (3) for color-triplet (octet) HC pions, where ⇤UV

denotes some ultraviolet high-energy scale up to which the HC theory is valid. Taking ↵
s

(M
⇡

) ⇠ 0.1

and ⇤UV ⇠ 1016 GeV, for example, we thus estimate the ⇡(3) and ⇡(8) masses as M
⇡(3)

⇠ 3 TeV

and M
⇡(8)

⇠ 4 TeV, respectively, for ⇤HC ⇠ 1 TeV.

In a similar way, the EW gauge interaction makes masses of EW-charged HC pions lifted up.

This e↵ect becomes operative for the ⇡±,3
(1) and ⇡±,3

(1)0 pions to yieldM
⇡

±,3
(1),(1)0

⇠ 2TeV for ⇤HC ⇠ 1TeV

and ⇤UV ⇠ 1016GeV as a benchmark. Hereafter, The indices ‘±’ and ‘3’ discriminate components

of SU(2)
W

triplets. The index ‘0’ emphasizes that the designated states are SU(2)
W

singlets.

Thus, the sizes of the HC pion masses are roughly expected as

M
⇡

0
(1)0

⇠ O(f
⇡

) = O(100)GeV ,

M
⇡

±,3
(1)0

⇠ 2TeV ,

M
⇡

±,3
(1)

⇠ 2TeV ,

M
⇡

±,3,0
(3)

⇠ 3TeV ,

M
⇡

±,3,0
(8)

⇠ 4TeV , (II.11)

for ⇤HC ⇠ 1TeV and ⇤UV ⇠ 1016GeV. This is the significant feature for the HC pion in our model

particularly when we discuss collider bound on the HC rho mesons. Hereafter we shall take the

above HC pion spectroscopy as a benchmark in the present study on the HC rho meson physics.

E. Couplings to SM particles

1. Direct V -fL-fL coupling terms: extended HC-origin

The SM fermion fields are written as an eight-dimensional vector on the base of the fundamental

representation of SU(8),

f
L

=

0

@

q

l

1

A

L

, f
R

=

0

@

q

l

1

A

R

, (II.12)
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transform under the HLS and the SM gauge group G = SU(3)
c

⇥ SU(2)
W

⇥ U(1)
Y

as

⇠
L

! h(x) · ⇠
L

· [g†
L

(x)]G , ⇠
R

! h(x) · ⇠
R

· [g†
R

(x)]G . (II.16)

From Table I, one thus finds that the external gauge fields L
µ

and R
µ

, coupled to the nonlinear

bases ⇠
L,R

as in Eq.(II.2), are identified with those coupled to the SM fermions as described in

Eq.(II.13):

L
µ

= Lf

µ

, R
µ

= Lf

µ

,

i.e., V
µ

=
R

µ

+ L
µ

2
= Lf

µ

, A
µ

=
R

µ

� L
µ

2
= 0 . (II.17)

It is useful to expand ↵̂||µ and ↵̂?µ

in Eq.(II.2) in powers of the HC pion fields ⇡ with the unitary

gauge for the HLS (P ⌘ 0):

↵̂||µ = V
µ

� g
⇢

⇢
µ

� i

2f2
⇡

[@
µ

⇡,⇡]� i

f
⇡

[A
µ

,⇡] + · · · , (II.18)

and

↵̂?µ

=
@
µ

⇡

f
⇡

+A
µ

� i

f
⇡

[V
µ

,⇡]� 1

6f3
⇡

[⇡, [⇡, @
µ

⇡]] + · · · , (II.19)

with V
µ

= (R
µ

+ L
µ

)/2 and A
µ

= (R
µ

� L
µ

)/2. Then the 1-forms in Eqs.(II.18) and (II.19) are

represented as

↵̂||µ = Lf

µ

� g
⇢

⇢
µ

+ · · · , ↵̂?µ

= 0 + · · · . (II.20)

We may define the dressed fields for the left-handed SM fermions,

 
L

⌘ ⇠
L

· f
L

,  
L

⌘ ⇠
R

· f
L

, (II.21)

which transform as

 
L

! h(x) · 
L

,  
L

! h(x) ·  
L

. (II.22)

These transformations allow us to write down the HC ⇢ couplings to the left-handed SM fermions

in the HLS-invariant way as

L
⇢ff

= gij1L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

+ gij2L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

+ h.c.
⌘

+ gij3L

⇣

 ̄i

L

�µ↵̂||µ 
j

L

⌘

, (II.23)

where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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where i and j label the generations of the SM fermions (i, j = 1, 2, 3).
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(undetermined) 3×3 matrices

⇠L/R = 1 + · · ·

gijL ⌘ (g1L + 2g2L + g3L)
ij

(No additional fermion/scalar is required.)

HC pion decay constant (typical) HC rho-meson mass scale

HC rho mesons



 
 

basic pheno. strategy: U(1)’Lμ-Lτ + vector-like quarks

a straightforward candidate: Z’ vector boson What is quantum number?

 Coupling to μ’s (also τ’s) are generated.

 → constraints on lepton masses
Preferred neutrino profiles can be realized.

 a variation: loop-induced

2

Q′
a χ

SU(3)C 3 1

SU(2)L 2 1

U(1)Y 1
6 0

U(1)µ−τ qx qx

TABLE I: Charge assignments of the new fields Q′ and χ
under SU(3)C × SU(2)L × U(1)Y × U(1)µ−τ with qx "= 0
where we assume these fields have Z2 odd parity. Here Q′

is vector-like fermions, and its lower index a is the number
of family that runs over 1 − 3. χ is a complex boson that is
considered as a DM candidate.

FIG. 1: The diagrams introducing effective coupling for
Z′

µb̄γ
µs+ h.c. interaction.

where SU(2)L doublet vectorlike fermions are replaced
by colored scalar fields and DM is SU(2) singlet colorless
Dirac fermion. Finally Sec. V is devoted to the summary
of our results and the conclusion.

II. MODEL SETUP AND CONSTRAINTS

In this section we set up our model and derive some for-
mula in B physics and DM phenomenology, which will be
used in Sec. III for the numerical analysis. We introduce
three vector-like exotic quarks Q′ and a complex scalar
boson χ, both of which carry nonzero µ− τ charges and
odd parity under discrete Z2 symmetry that stabilizes
DM. Here χ is the lightest Z2-odd particle, and consid-
ered as a DM candidate. Charge assignments of these
new field are summarized in Table I.
The relevant Lagrangian under these symmetries is

given by

−LVLQ+χ =MaQ̄
′
aQ

′ +m2
χχ

†χ+ (fajQ′
Ra

QLjχ+ h.c.),
(1)

where (a, j) = 1− 3 are generation indices, QLj’s are the
SM quark doublets. We have omitted kinetic term and
scalar potential associated with χ for simplicity.
The anomaly in B → K(∗)#+#− decay can be explained

by the shift of the Wilson coefficient C9 associated with
the corresponding operator (s̄γµPLb)(µγµµ). The effec-
tive coupling for Z ′

µb̄γ
µPLs+ h.c. is induced at one loop

level as shown in Fig. 1 with the Yukawa coupling in
Eq. (1). Then the effective Hamiltonian (s̄γµPLb)(µ̄γµµ)
arises from Z ′ mediation and the contribution to Wilson
coefficient ∆Cµµ

9 is obtained as:

∆Cµµ
9 #

qxg′2

m2
Z′CSM

∑

a=1−3

f †
3afa2

∫

[dX ] ln

(

∆[Ma,mχ]

∆[mχ,Ma]

)

,

CSM ≡
VtbV ∗

tsGFαem√
2π

, (2)

∆[m1,m2] = (X + Y − 1)(Xm2
b + Y m2

s)

+Xm2
1 + (Y + Z)m2

2,

where Vtb ≈ 0.999, Vts ≈ −0.040 are the 3-3 and 3-
2 elements of CKM matrix respectively, GF ≈ 1.17 ×
10−5 GeV is the Fermi constant, αem ≈ 1/137 is

the electromagnetic fine-structure constant,
∫ 1
0 [dX ] ≡

∫ 1
0 dXdY dZδ(1 − X − Y − Z), mb ≈ 4.18 GeV and
ms ≈ 0.095 GeV are respectively the bottom and strange
quark masses given in the MS scheme at a renormaliza-
tion scale µ = 2 GeV [26], mχ is the mass of χ, and Ma

is the mass of Q′
a. Notice here that we have assumed

mb,ms ( mZ′ to derive the formula of C9 in Eq. (2).
The global fit for the value of C9 [20, 21] based on LHCb
data suggests that the best fit value is

∆C9 ∼ −1. (3)

In the following numerical analysis, we explore possible
value of the ∆C9 in the model defined in Table I.
M −M mixing: The exotic vector-like quarks and the

complex scalar DM χ induce the neutral meson (M)-
antimeson (M) mixings such as K0− K̄0, Bd− B̄d, Bs −
B̄s, and D0 − D̄0 from the box type one-loop diagrams.
The formulae for the mass splitting are respectively given
by [25]

∆mK ≈
3

∑

a,b=1

f †
1afa1f

†
2bfb2G

K
box[mχ,Ma,Mb]

! 3.48× 10−15 [GeV], (4)

∆mBd
≈

3
∑

a,b=1

f †
1afa1f

†
3bfb3G

Bd

box[mχ,Ma,Mb]

! 3.36× 10−13 [GeV], (5)

∆mBs ≈
3

∑

a,b=1

f †
2afa2f

†
3bfb3G

Bs

box[mχ,Ma,Mb]

! 1.17× 10−11 [GeV], (6)

∆mD ≈
3

∑

a,b=1

f †
2afa2f

†
1bfb1G

D
box[mχ,Ma,Mb]

! 6.25× 10−15 [GeV], (7)

GM
box(m1,m2,m3)

=
mMf2

M

3(4π)2

∫ 1

0

X [dX ]

Xm2
1 + Y m2

2 + Zm2
3

, (8)

no quark
mass mixing

new particle
(e.g., DM)

 U(1)’Lμ-Lτ → U(1)’ for vector-like
                    quark & lepton (+ DM)

 other (anomaly-free) U(1)’

 U(1; y(Lμ-Lτ) + x(B3-L3))
[L.Bian et al., arXiv:1707.04811]

[K.Asai et al., arXiv:1705.00419]

[P. Ko et al., arXiv:1702.02699]

[J. Kawamura et al., arXiv:1706.04344]

[W.Altmannshofer et al., arXiv:1403.1269]

 Fundamental Z’ scenarios work [(with additional fermion(s) and scalar(s)].

with H̃
1,2 ⌘ i�

2

H⇤
1,2. A gauge kinetic mixing between U(1)y(Lµ�L⌧ )+x(B3�L3) and SM hyper-

charge gauge bosons is also allowed but we assume that it is negligible for our discussion.

Our model has a rich structure in the Higgs sector which extends the two Higgs doublet
models with extra complex singlet scalars. As the second Higgs doubletH

2

is charged under
the local U(1)0 symmetry, the Higgs potential has a restricted form. We note that the Higgs
bilinear term is forbidden by U(1)0 but it is necessary to get a nonzero pseudo-scalar Higgs
mass to be compatible with experiments. Thus, we introduced a complex singlet scalar
S with nonzero U(1)0 charge. The details of the scalar sector and its phenomenology
will be studied elsewhere so we just assume in this work that a correct vacuum with
both electroweak symmetry and U(1)0 broken exists. After electroweak symmetry and
U(1)0 are broken spontaneously, the Z 0 mass is determined to be m2

Z0 = 2g2Z0Q02
H2
hH

2

i2 +
2g2Z0Q02

S hSi2 + 2
P

3

a=1

Q02
�a
h�ai2. Thus, as h�ai determines RH neutrino masses, we can

take h�ai � hH
2

i, hSi such that the Z 0 mass is larger than weak scale.

We note that when the second Higgs doublet H
2

gets a VEV, it gives rise to a mass
mixing between Z and Z 0 gauge bosons, which is constrained by electroweak precision data
as will be discussed in Section 4.5. Henceforth, we assume that the VEV of the second
Higgs doublet is small enough such that our model is consistent with electroweak precision
data.

As a result, the SM fermion mass matrices in our model are given by the following,

LY = �ūMuu� d̄Mdd� l̄Mll � l̄MD⌫R � (⌫R)cMR⌫R + h.c. (7)

with the flavor structure being

Mu =

0

@
yu
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hH
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i yu
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hH
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i 0
yu
21

hH
1

i yu
22

hH
1

i 0
hu
31

hH
2

i hu
32

hH
2

i yu
33

hH
1

i

1

A , (8)

Md =

0
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yd
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hH̃
1

i yd
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hH̃
1

i hd
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hH̃
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i
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hH̃
1

i yd
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i hd
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i
0 0 yd
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i
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A , (9)
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1

i 0 0
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A , (10)
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i 0 0
0 y⌫
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0 0 y⌫
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A , (11)
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h�
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h�
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h�
3

i 0

1

CA . (12)

Then, we find that the flavor structure is very much restricted due to flavor-dependent
U(1)0 charges, in particular, the RH neutrino matrix vanishes except the (11) entry. But,
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e.g.,

(x,y: arbitrary values)

4

bL

sL

Q
Z 0

h�i

h�i

bR

sR

D

Z 0

h�i

h�i

tR

cR

U

Z 0

h�i

h�i

FIG. 1. Example diagrams in the high energy theory that lead to flavor-changing e↵ective couplings of the Z0 to SM quarks.

breaking the U(1)0 symmetry, for example through the
Higgs portal operator |H|2|�|2. The e↵ects, however,
are more model dependent and we do not study them in
this work.

III. THE B ! K⇤µ+µ� ANOMALY AND
ADDITIONAL FLAVOR CONSTRAINTS

Before discussing the various constraints on the
hadronic current of Eq. (7), we match the Wilson co-
e�cients relevant for the B ! K⇤µ+µ� anomaly,
Eqs. (2a,2b) with the corresponding terms in the Z 0 cur-
rents. Working in the approximation that the Z 0 is heavy
compared to the B meson1, so as to neglect the momen-
tum exchange in the semi-leptonic decay of the B, we
have

C9 = �(q)
bs

1

⇤2
=

YQbY ⇤

Qs

2m2
Q

, (16a)

C 0

9 = �(d)
bs

1

⇤2
= �YDbY ⇤

Ds

2m2
D

, (16b)

with the relative minus sign arising from the opposite
U(1)0 charges of Q̃R and D̃L (see Eqs. (9a,9b)). We note
that in this approximation the Wilson coe�cients C9 and
C 0

9 are completely independent of the Z 0 mass and the
U(1)0 gauge coupling. Therefore, these relations deter-
mine the mass scale for the exotic quarks,

mQ,D ' 25 TeV ⇥
⇣
Re(Y(Q,D)bY

⇤

(Q,D)s)
⌘1/2

, (17)

in order to address the anomaly in the B ! K⇤µ+µ�

decay (see Eqs.(2a,2b)). This scale is su�ciently high
that current collider constraints on new colored particles
(& 1 TeV) do not result in useful bounds. However, other
flavor processes are easily sensitive to such high scales.
While they do not rule out the combinations leading to
the operators corresponding to C9 and C 0

9, they do place

1 If the Z0 is lighter than the B meson, it would show up as
a resonance in the di-muon invariant mass spectrum of the
B ! K⇤µ+µ� decay rate. We reserve the analysis to another
publication [22].

constraints on the general mixing coe�cients as we now
discuss.
Meson mixing: Tree level exchange of the Z 0 con-

tributes to neutral meson mixing. In particular, the cou-
plings required to explain the B ! K⇤µ+µ� anomaly
will lead to contributions to Bs mixing. Additional con-
tributions to Bs mixing arise from the flavor-changing
e↵ects associated with the scalar �. Both real and imag-
inary parts of � (the latter is equivalent to the longitudi-
nal part of the Z 0) mediate SM�vector-like quark tran-
sitions, and the box diagram with � exchange therefore
leads to an additional contribution to �B = 2 transi-
tions.

The modifications to the mixing amplitude M12 read

M12

MSM
12

= 1 +
h
CLL + CRR + 9.7CLR
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2S0
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where we used the hadronic matrix elements collected
in [24], and the SM loop function is S0 ' 2.3. The Wilson
coe�cients CLL, CRR, CLR are given by
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⇤
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where the O(v2�) terms originate from tree level Z 0 contri-
butions, and the 1/(16⇡2) suppressed contributions orig-
inate from the scalar box diagrams. Note that the Z 0

contribution to the mixing amplitude does not depend
on the Z 0 mass and the U(1)0 gauge couplings separately,
but only through the combination v� = mZ0/g0. The
good agreement of the SM prediction for Bs mixing with
the experimental data sets an upper bound on the U(1)0

symmetry breaking VEV, v�.
In the plots of Fig. 2 we show the limit on v� as a

function of the masses of the vector-like quarks, mD and
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basic pheno. strategy: U(1)’Lμ-Lτ + vector-like quarks

a straightforward candidate: Z’ vector boson What is quantum number?

 Coupling to μ’s (also τ’s) are generated.

 → constraints on lepton masses
Preferred neutrino profiles can be realized.

 a variation: loop-induced

2

Q′
a χ

SU(3)C 3 1

SU(2)L 2 1

U(1)Y 1
6 0

U(1)µ−τ qx qx

TABLE I: Charge assignments of the new fields Q′ and χ
under SU(3)C × SU(2)L × U(1)Y × U(1)µ−τ with qx "= 0
where we assume these fields have Z2 odd parity. Here Q′

is vector-like fermions, and its lower index a is the number
of family that runs over 1 − 3. χ is a complex boson that is
considered as a DM candidate.

FIG. 1: The diagrams introducing effective coupling for
Z′

µb̄γ
µs+ h.c. interaction.

where SU(2)L doublet vectorlike fermions are replaced
by colored scalar fields and DM is SU(2) singlet colorless
Dirac fermion. Finally Sec. V is devoted to the summary
of our results and the conclusion.

II. MODEL SETUP AND CONSTRAINTS

In this section we set up our model and derive some for-
mula in B physics and DM phenomenology, which will be
used in Sec. III for the numerical analysis. We introduce
three vector-like exotic quarks Q′ and a complex scalar
boson χ, both of which carry nonzero µ− τ charges and
odd parity under discrete Z2 symmetry that stabilizes
DM. Here χ is the lightest Z2-odd particle, and consid-
ered as a DM candidate. Charge assignments of these
new field are summarized in Table I.
The relevant Lagrangian under these symmetries is

given by

−LVLQ+χ =MaQ̄
′
aQ

′ +m2
χχ

†χ+ (fajQ′
Ra

QLjχ+ h.c.),
(1)

where (a, j) = 1− 3 are generation indices, QLj’s are the
SM quark doublets. We have omitted kinetic term and
scalar potential associated with χ for simplicity.
The anomaly in B → K(∗)#+#− decay can be explained

by the shift of the Wilson coefficient C9 associated with
the corresponding operator (s̄γµPLb)(µγµµ). The effec-
tive coupling for Z ′

µb̄γ
µPLs+ h.c. is induced at one loop

level as shown in Fig. 1 with the Yukawa coupling in
Eq. (1). Then the effective Hamiltonian (s̄γµPLb)(µ̄γµµ)
arises from Z ′ mediation and the contribution to Wilson
coefficient ∆Cµµ

9 is obtained as:

∆Cµµ
9 #

qxg′2

m2
Z′CSM

∑

a=1−3

f †
3afa2

∫

[dX ] ln

(

∆[Ma,mχ]

∆[mχ,Ma]

)

,

CSM ≡
VtbV ∗

tsGFαem√
2π

, (2)

∆[m1,m2] = (X + Y − 1)(Xm2
b + Y m2

s)

+Xm2
1 + (Y + Z)m2

2,

where Vtb ≈ 0.999, Vts ≈ −0.040 are the 3-3 and 3-
2 elements of CKM matrix respectively, GF ≈ 1.17 ×
10−5 GeV is the Fermi constant, αem ≈ 1/137 is

the electromagnetic fine-structure constant,
∫ 1
0 [dX ] ≡

∫ 1
0 dXdY dZδ(1 − X − Y − Z), mb ≈ 4.18 GeV and
ms ≈ 0.095 GeV are respectively the bottom and strange
quark masses given in the MS scheme at a renormaliza-
tion scale µ = 2 GeV [26], mχ is the mass of χ, and Ma

is the mass of Q′
a. Notice here that we have assumed

mb,ms ( mZ′ to derive the formula of C9 in Eq. (2).
The global fit for the value of C9 [20, 21] based on LHCb
data suggests that the best fit value is

∆C9 ∼ −1. (3)

In the following numerical analysis, we explore possible
value of the ∆C9 in the model defined in Table I.
M −M mixing: The exotic vector-like quarks and the

complex scalar DM χ induce the neutral meson (M)-
antimeson (M) mixings such as K0− K̄0, Bd− B̄d, Bs −
B̄s, and D0 − D̄0 from the box type one-loop diagrams.
The formulae for the mass splitting are respectively given
by [25]
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3
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1afa1f

†
2bfb2G

K
box[mχ,Ma,Mb]

! 3.48× 10−15 [GeV], (4)

∆mBd
≈

3
∑

a,b=1

f †
1afa1f

†
3bfb3G

Bd

box[mχ,Ma,Mb]

! 3.36× 10−13 [GeV], (5)

∆mBs ≈
3

∑

a,b=1

f †
2afa2f

†
3bfb3G

Bs

box[mχ,Ma,Mb]

! 1.17× 10−11 [GeV], (6)

∆mD ≈
3

∑

a,b=1

f †
2afa2f

†
1bfb1G

D
box[mχ,Ma,Mb]

! 6.25× 10−15 [GeV], (7)

GM
box(m1,m2,m3)

=
mMf2

M

3(4π)2

∫ 1

0

X [dX ]

Xm2
1 + Y m2

2 + Zm2
3

, (8)

no quark
mass mixing

new particle
(e.g., DM)

 U(1)’Lμ-Lτ → U(1)’ for vector-like
                    quark & lepton (+ DM)

 other (anomaly-free) U(1)’

[K.Asai et al., arXiv:1705.00419]

[P. Ko et al., arXiv:1702.02699]

[J. Kawamura et al., arXiv:1706.04344]

[W.Altmannshofer et al., arXiv:1403.1269]

 Fundamental Z’ scenarios work [(with additional fermion(s) and scalar(s)].

 QQ::  HHooww  aabboouutt  ccoommppoossiittee  ccaassee??

 U(1; y(Lμ-Lτ) + x(B3-L3))
[L.Bian et al., arXiv:1707.04811]
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charge gauge bosons is also allowed but we assume that it is negligible for our discussion.

Our model has a rich structure in the Higgs sector which extends the two Higgs doublet
models with extra complex singlet scalars. As the second Higgs doubletH
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is charged under
the local U(1)0 symmetry, the Higgs potential has a restricted form. We note that the Higgs
bilinear term is forbidden by U(1)0 but it is necessary to get a nonzero pseudo-scalar Higgs
mass to be compatible with experiments. Thus, we introduced a complex singlet scalar
S with nonzero U(1)0 charge. The details of the scalar sector and its phenomenology
will be studied elsewhere so we just assume in this work that a correct vacuum with
both electroweak symmetry and U(1)0 broken exists. After electroweak symmetry and
U(1)0 are broken spontaneously, the Z 0 mass is determined to be m2
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take h�ai � hH
2

i, hSi such that the Z 0 mass is larger than weak scale.

We note that when the second Higgs doublet H
2

gets a VEV, it gives rise to a mass
mixing between Z and Z 0 gauge bosons, which is constrained by electroweak precision data
as will be discussed in Section 4.5. Henceforth, we assume that the VEV of the second
Higgs doublet is small enough such that our model is consistent with electroweak precision
data.

As a result, the SM fermion mass matrices in our model are given by the following,
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Then, we find that the flavor structure is very much restricted due to flavor-dependent
U(1)0 charges, in particular, the RH neutrino matrix vanishes except the (11) entry. But,
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e.g.,

(x,y: arbitrary values)
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bL
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h�i
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D
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h�i

h�i
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U

Z 0

h�i

h�i

FIG. 1. Example diagrams in the high energy theory that lead to flavor-changing e↵ective couplings of the Z0 to SM quarks.

breaking the U(1)0 symmetry, for example through the
Higgs portal operator |H|2|�|2. The e↵ects, however,
are more model dependent and we do not study them in
this work.

III. THE B ! K⇤µ+µ� ANOMALY AND
ADDITIONAL FLAVOR CONSTRAINTS

Before discussing the various constraints on the
hadronic current of Eq. (7), we match the Wilson co-
e�cients relevant for the B ! K⇤µ+µ� anomaly,
Eqs. (2a,2b) with the corresponding terms in the Z 0 cur-
rents. Working in the approximation that the Z 0 is heavy
compared to the B meson1, so as to neglect the momen-
tum exchange in the semi-leptonic decay of the B, we
have
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2m2
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, (16a)
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9 = �(d)
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D

, (16b)

with the relative minus sign arising from the opposite
U(1)0 charges of Q̃R and D̃L (see Eqs. (9a,9b)). We note
that in this approximation the Wilson coe�cients C9 and
C 0

9 are completely independent of the Z 0 mass and the
U(1)0 gauge coupling. Therefore, these relations deter-
mine the mass scale for the exotic quarks,

mQ,D ' 25 TeV ⇥
⇣
Re(Y(Q,D)bY

⇤

(Q,D)s)
⌘1/2

, (17)

in order to address the anomaly in the B ! K⇤µ+µ�

decay (see Eqs.(2a,2b)). This scale is su�ciently high
that current collider constraints on new colored particles
(& 1 TeV) do not result in useful bounds. However, other
flavor processes are easily sensitive to such high scales.
While they do not rule out the combinations leading to
the operators corresponding to C9 and C 0

9, they do place

1 If the Z0 is lighter than the B meson, it would show up as
a resonance in the di-muon invariant mass spectrum of the
B ! K⇤µ+µ� decay rate. We reserve the analysis to another
publication [22].

constraints on the general mixing coe�cients as we now
discuss.
Meson mixing: Tree level exchange of the Z 0 con-

tributes to neutral meson mixing. In particular, the cou-
plings required to explain the B ! K⇤µ+µ� anomaly
will lead to contributions to Bs mixing. Additional con-
tributions to Bs mixing arise from the flavor-changing
e↵ects associated with the scalar �. Both real and imag-
inary parts of � (the latter is equivalent to the longitudi-
nal part of the Z 0) mediate SM�vector-like quark tran-
sitions, and the box diagram with � exchange therefore
leads to an additional contribution to �B = 2 transi-
tions.
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where we used the hadronic matrix elements collected
in [24], and the SM loop function is S0 ' 2.3. The Wilson
coe�cients CLL, CRR, CLR are given by
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where the O(v2�) terms originate from tree level Z 0 contri-
butions, and the 1/(16⇡2) suppressed contributions orig-
inate from the scalar box diagrams. Note that the Z 0

contribution to the mixing amplitude does not depend
on the Z 0 mass and the U(1)0 gauge couplings separately,
but only through the combination v� = mZ0/g0. The
good agreement of the SM prediction for Bs mixing with
the experimental data sets an upper bound on the U(1)0

symmetry breaking VEV, v�.
In the plots of Fig. 2 we show the limit on v� as a

function of the masses of the vector-like quarks, mD and
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