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（良く⾔えば）
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標準模型大勝利!!
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CMS Exotica Physics Group Summary – ICHEP, 2016!
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BSM死屍累々
（悪く⾔えば）

TeVまでにはなんにもなかった



今そこにあるBSM新物理
✦ なんもなさ、を直接あつかう	

★ 漸近安全性 
→	⼭⽥くんのトーク（昨⽇）	

✦ いやなんもなくないし派	

★ 暗⿊物質、ニュートリノ質量 
→	中⻄さんのポスター（今⽇）	

★ インフレーション！ 
→	このトークのテーマ（実は、なんもなさ、とのハイブリッド）



前提



picture	from	web

Our	Universe

神は我々をキワキワに置いた

プランクスケールで３重のゼロ：	
４点結合、そのβ関数、裸の質量。

（観測事実）

[Hamada,	Kawai,	KO,	2012]
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1. 宇宙ヤバイ	

2. 多重臨界原理はヒッグス質量を予⾔していた	

3. 登⼭ヒッグス・インフレーション



宇宙ヤバイ

http://dic.nicovideo.jp/a/宇宙ヤバイ

http://dic.nicovideo.jp/a/%E5%AE%87%E5%AE%99%E3%83%A4%E3%83%90%E3%82%A4


宇宙論が精密科学になってしまった
16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.Planck	(2015)

Planck Collaboration: Cosmological parameters

Table 1. Parameters of the base ⇤CDM cosmology (as defined in PCP13) determined from the publicly released nominal-mission
CamSpec DetSet likelihood [2013N(DS)] and the 2013 full-mission CamSpec DetSet and crossy-yearly (Y1 ⇥Y2) likelihoods with
the extended sky coverage [2013F(DS) and 2013F(CY)]. These three likelihoods are combined with the WMAP polarization like-
lihood to constrain ⌧. The column labelled 2015F(CHM) lists parameters for a CamSpec cross-half-mission likelihood constructed
from the 2015 maps using similar sky coverage to the 2013F(CY) likelihood (but greater sky coverage at 217 GHz and di↵erent
point source masks, as discussed in the text). The column labelled 2015F(CHM) (Plik) lists parameters for the Plik cross-half-
mission likelihood that uses identical sky coverage to the CamSpec likelihood. The 2015 temperature likelihoods are combined
with the Planck lowP likelihood to constrain ⌧. The last two columns list the deviations of the Plik parameters from those of
the nominal-mission and the CamSpec 2015(CHM) likelihoods. To help refer to specific columns, we have numbered the first six
explicitly.

[1] Parameter [2] 2013N(DS) [3] 2013F(DS) [4] 2013F(CY) [5] 2015F(CHM) [6] 2015F(CHM) (Plik) ([2] � [6])/�[6] ([5] � [6])/�[5]

100✓MC . . . . . . . . . 1.04131 ± 0.00063 1.04126 ± 0.00047 1.04121 ± 0.00048 1.04094 ± 0.00048 1.04086 ± 0.00048 0.71 0.17
⌦bh2 . . . . . . . . . . . 0.02205 ± 0.00028 0.02234 ± 0.00023 0.02230 ± 0.00023 0.02225 ± 0.00023 0.02222 ± 0.00023 �0.61 0.13
⌦ch2 . . . . . . . . . . . 0.1199 ± 0.0027 0.1189 ± 0.0022 0.1188 ± 0.0022 0.1194 ± 0.0022 0.1199 ± 0.0022 0.00 �0.23
H0 . . . . . . . . . . . . 67.3 ± 1.2 67.8 ± 1.0 67.8 ± 1.0 67.48 ± 0.98 67.26 ± 0.98 0.03 0.22
ns . . . . . . . . . . . . 0.9603 ± 0.0073 0.9665 ± 0.0062 0.9655 ± 0.0062 0.9682 ± 0.0062 0.9652 ± 0.0062 �0.67 0.48
⌦m . . . . . . . . . . . . 0.315 ± 0.017 0.308 ± 0.013 0.308 ± 0.013 0.313 ± 0.013 0.316 ± 0.014 �0.06 �0.23
�8 . . . . . . . . . . . . 0.829 ± 0.012 0.831 ± 0.011 0.828 ± 0.012 0.829 ± 0.015 0.830 ± 0.015 �0.08 �0.07
⌧ . . . . . . . . . . . . . 0.089 ± 0.013 0.096 ± 0.013 0.094 ± 0.013 0.079 ± 0.019 0.078 ± 0.019 0.85 0.05
109Ase�2⌧ . . . . . . . . 1.836 ± 0.013 1.833 ± 0.011 1.831 ± 0.011 1.875 ± 0.014 1.881 ± 0.014 �3.46 �0.42

pixel-based likelihood that extends up to multipoles ` = 29. Use
of the polarization information in this likelihood is denoted as
“lowP” in this paper The optical depth inferred from the lowP
likelihood combined with the Planck TT likelihood is typically
⌧ ⇡ 0.07, and is about 1� lower than the typical values of
⌧ ⇡ 0.09 inferred from the WMAP polarization likelihood (see
Sect. 3.4) used in the 2013 papers. As discussed in Sect. 3.4
(and in more detail in Planck Collaboration XI 2015) the LFI
70 GHz and WMAP polarization maps are consistent when both
are cleaned with the HFI 353 GHz polarization maps.7

(3) In the 2013 papers, the Planck temperature likelihood was
a hybrid: over the multipole range `= 2–49, the likelihood
was based on the Commander algorithm applied to 94 % of
the sky computed using a Blackwell-Rao estimator. The like-
lihood at higher multipoles (`=50–2500) was constructed from
cross-spectra over the frequency range 100–217 GHz using the
CamSpec software (Planck Collaboration XV 2014), which is
based on the methodology developed in (Efstathiou 2004) and
(Efstathiou 2006). At each of the Planck HFI frequencies, the
sky is observed by a number of detectors. For example, at
217 GHz the sky is observed by four unpolarized spider-web
bolometers (SWBs) and eight polarization sensitive bolometers
(PSBs). The TOD from the 12 bolometers can be combined to
produce a single map at 217 GHz for any given period of time.
Thus, we can produce 217 GHz maps for individual sky surveys
(denoted S1, S2, S3, etc.), or by year (Y1, Y2) or split by half-
mission (HM1, HM2). We can also produce a temperature map
from each SWB and a temperature and polarization map from

7Throughout this paper, we adopt the following labels for likeli-
hoods: (i) Planck TT denotes the combination of the TT likelihood at
multipoles ` � 30 and a low-` temperature-only likelihood based on
the CMB map recovered with Commander; (ii) Planck TT+lowP fur-
ther includes the Planck polarization data in the low-` likelihood, as de-
scribed in the main text; (iii) labels such as Planck TE+lowP denote the
T E likelihood at ` � 30 plus the polarization-only component of the
map-based low-` Planck likelihood; and (iv) Planck TT,TE,EE+lowP
denotes the combination of the likelihood at ` � 30 using TT , T E,
and EE spectra and the low-` temperature+polarization likelihood. We
make occasional use of combinations of the polarization likelihoods at
` � 30 and the temperature+polarization data at low-`, which we denote
with labels such as Planck TE+lowT,P.

quadruplets of PSBs. For example, at 217 GHz we produce four
temperature and two temperature+polarization maps. We refer
to these maps as detectors-set maps (or “DetSets” for short);
note that the DetSet maps can also be produced for any arbitrary
time period. The high multipole likelihood used in the 2013 pa-
pers was computed by cross-correlating HFI DetSet maps for
the “nominal” Planck mission extending over 15.5 months.8 For
the 2015 papers we use the full-mission Planck data extending
over 29 months for the HFI and 48 months for the LFI. In the
Planck 2015 analysis, we have produced cross-year and cross-
half-mission likelihoods in addition to a DetSet likelihood. The
baseline 2015 Planck temperature-polarization likelihood is also
a hybrid, matching the high multipole likelihood at ` = 30 to the
Planck pixel-based likelihood at lower multipoles.

(4) The sky coverage used in the 2013 CamSpec likelihood was
intentionally conservative, retaining 58 % of the sky at 100 GHz
and 37.3 % of the sky at 143 and 217 GHz. This was done to
ensure that on the first exposure of Planck cosmological results
to the community, corrections for Galactic dust emission were
demonstrably small and had negligible impact on cosmological
parameters. In the 2015 analysis we make more aggressive use
of the sky at each of these frequencies. We have also tuned the
point-source masks to each frequency, rather than using a sin-
gle point-source mask constructed from the union of the point
source catalogues at 100, 143, 217, and 353 GHz. This results in
many fewer point source holes in the 2015 analysis compared to
the 2013 analysis.

(5) Most of the results in this paper are derived from a revised
Plik likelihood based on cross half-mission spectra. The Plik
likelihood has been modified since 2013 so that it is now similar
to the CamSpec likelihood used in PCP13. Both likelihoods use
similar approximations to compute the covariance matrices. The
main di↵erence is in the treatment of Galactic dust corrections
in the analysis of the polarization spectra. The two likelihoods
have been written independently and give similar (but not iden-
tical) results, as discussed further below. The Plik likelihood is

8Although we analysed a Planck full-mission temperature likeli-
hood extensively prior to the release of the 2013 papers.
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直にインフレーション由来



今後の進展が期待できる
✦ 宇宙背景重⼒⼦輻射が熱い（⽐喩的に）	

★ r	から間接的に	

✤ CMB	B-mode	が受かれば即（明⽇にでも;	
Recall	BICEP2）	

★ 直接観測は？	

✤ (Ultimate)	DECIGO	で⾏けるか

RESCEU APCosPA Summer School on Cosmology and Particle Astrophysics (August 3rd, 2014, Matsumoto)

Masaki Ando
(Dept. of Physics, Univ. of Tokyo / 
National Astronomical Observatory Japan)

DECIGO:  Space 
Gravitational-wave Antenna

from	DECIGO	website



（参考）こんなかんじらしい
Primordial GW

RESCEU APCosPA Summer School on Cosmology and Particle Astrophysics (August 3rd, 2014, Matsumoto)

Original Figure by
S. Kuroyanagi (2011)

Earlier universe Æ Smaller horizon scale Æ High GW freq.
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GW from Inflation

DECIGO

GW from Inflation

RESCEU APCosPA Summer School on Cosmology and Particle Astrophysics (August 3rd, 2014, Matsumoto)

Energy density ∝ Tensor-Scalar Ratio (𝑟).
Power spectrum : Evolution history of the Universe.

Nakayama+,
Journal of Cosmology 
and Astroparticle Physics 

06 (2008) 020.

・Spectrum Power.
Æ Energy scale 

of inflation
・Cut-off freq.
ÆEnergy scale 

of Reheating

DECIGO Correlation

安東さんのスライドから	(2014)



もうすぐ 
プランクスケール 
（重力×量子論）が 

直接見える
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ヒッグス質量は予言されていた
Standard model criticality prediction top mass 173 IL 5 GeV 

and Higgs mass 135 III 9 GeV 
C.D. Froggatt a, H.B. Nielsen b 

Phys.	Lett.	(1996)

(2012)



MPP？なにそれ



小正準版・場の理論（式で）
Frogatt	&	Nielsen	(1996)

⼩正準正準

統計⼒学

場の理論

D Multiple point principle

We review the original argument for the MPP that says that the SM parameters
should be tuned so that our SM vacuum is degenerate with another one whose
vacuum expectation value of the Higgs field is around the Planck scale [36, 37, 38].

The quantum field theory (QFT) is formulated by the path integral

Z({�}) =

Z
[d'] e�S({�})['], (180)

where {�} denotes the dependence on the coupling constants (and mass) col-
lectively. The partition function (180) is analogous to the one in the canonical
ensemble in the statistical mechanics:

Z(�) =
X

n

e��Hn . (181)

However in the statistical mechanics, the most fundamental concept is the micro-
canonical ensemble:

⌦(E) =
X

n

�(Hn � E) . (182)

Froggatt and Nielsen argue that more fundamental formulation of the QFT may
be analogous to the micro-canonical ensemble, in which rather the average field
value is fixed while the coupling constants are determined dynamically. Let us
review their argument step by step.

The canonical ensemble becomes equivalent to the micro-canonical one in the
thermodynamic (large volume) limit: Given the partition function (181), we can
compute the multiplicity

⌦(E) :=

Z
d� e�EZ(�) =

Z
d�

Z
dE
 
X

n

�(Hn � E)

!
e��(E�E)

=

Z
d�

Z
dE ⌦(E) e��(E�E)

=

Z
d�

Z
dE eS(E)��(E�E), (183)

where we used the entropy S(E) := ln ⌦(E); noting that S(E), E , and E are
extensive variables, in the thermodynamic limit, the integral over � and E is
dominated by the strong peak at their stationary values; by taking variations of
E and �, we get dS/dE = � and E = E:

⌦(E) ! eS(E) = ⌦(E). (184)

The energy is fixed first, and then the temperature T := 1/� is determined dy-
namically. Later we will see, in the QFT language, that the inverse-temperature �
corresponds to the coupling constants, that the energy E, E to the spatial integral
over field values

R
dDx |'|n, and that the summation over the states

P
n to the

path integration
R

[d'].
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熱⼒学（⼤体積）極限

As an illustration, let us consider a system of co-existing water and vapor with
a fixed pressure in a piston, placed in a room temperature. We add heat into
the piston. The temperature ��1 in the piston rises to the boiling point. Even if
we further continue to add the heat, it is used to make the water into the vapor,
without changing the temperature. This way, for a large range of energy, the
temperature is tuned to be the boiling point due to the two co-existing phases.
In QFT language, this will be translated to the statement that even if Nature
changes the field value in the micro-canonical version of the QFT, the coupling
constant (mass) is tuned to the value that allows two co-existing vacua.17

The ordinary QFT starts from the path integral (180). Let us illustrate the
situation by a simple toy model:

S
�
⇤, m2, �, . . .

�
['] =

Z
dDx

⇣
|@'|2 + ⇤ + m2 |'|2 + � |'|4 + · · ·

⌘
. (185)

The partition function reads

Z
�
⇤, m2, �, . . .

�
=

Z
[d'] e�S(⇤,m2,�,... )[']. (186)

The counterpart of Eq. (183) should be the following:
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where the dimensionality is

['] =
D � 2

2
, [I

0
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4

] = D � 4, (188)

etc.
From the observation, we know that the volume of the universe V is much

larger than the Planck volume: V :=
R

dDx o M�D
P . In the thermodynamic

17 The e↵ective potential must be convex, which is realized as a spatially inhomogeneous configuration with
' = '1 in some regions and ' = '2 in other places, where '1 and '2 are local minima of the potential; see
e.g. Ref. [105].
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limit V ! 1, we will recover the multiplicity in the micro-canonical ensemble: 18
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The “entropy” is given by
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In the micro-canonical version of the QFT, Nature chooses a set of extensive
variables { I

0

, I
2

, . . . }. Natural choice would be the values of order unity in Planck
units, multiplied by the volume V:

I
0

⇠ V, I
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⇠ VMD�2
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4

⇠ VM2D�4

P , · · · . (191)

Suppose that such a generic set of extensive variables are given in the micro-
canonical picture. Then the integral over the intensive variables ⇤, m2, �, . . . in
Eq. (187) must be dominated by such values that allow the co-existing vacua,
whose mixture can reproduce the values (187) as their mean value. This is just as
in the heuristic example shown above. The field values in such vacua other than
ours must be around the Planck scale.

We comment that the e↵ective potential can be approximated by the quartic
term because the running Higgs mass is almost zero in Planck units in a mass
independent renormalization scheme. Therefore both the quartic coupling and its
beta function must be zero at the Planck scale in order to allow the other vacuum.
This has led to the predictions of the top mass 173 ± 5 GeV and the Higgs mass
135 ± 9 GeV [36], nearly twenty years before the Higgs discovery.

We note that the bare Higgs mass becomes accidentally small for a Planck scale
cuto↵, given the low energy data at the electroweak scale [18, 19, 20, 21, 29, 30, 31].
This smallness of the bare mass can be accounted for by the above argument if
we employ a regularization scheme in which the bare Higgs mass appears in the
e↵ective potential near the cuto↵; see e.g. Appendix B in Ref. [57].

In Ref. [37], this argument has been extended to the meta-stable vacua. In
Ref. [38], the delta function in this argument has been promoted to an arbitrary
function having appropriate peaks.
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小正準版・場の理論（言葉で）
✦ 統計⼒学では⼩正準形式が本質	

★ 決まったエネルギー	E	の状態を⾜し上げて状態数Ωを勘定。	

★ 全部の状態を⾜し上げる正準形式は、熱⼒学極限で状態数Ωが⼩正準形
式と⼀致することで正当化される。	

✦ 場の理論だとどうなる？	

★ 神はまず⼩正準的に場の空間積分値	In	を決める。	

★ 全部の場の配位を⾜し上げる従前の経路積分から、結合定数（や宇宙
項、質量、…）を⾜し上げて熱⼒学極限を取ると状態数Ωが得られる。	

✦ Q:	どんな結合定数（や宇宙項、質量、…）が配位を	dominate	するのか？

Frogatt	&	Nielsen	(1996)
[Review	in	Hamada,	Kawai,	KO,	1501.04455]



多重臨界原理
✦ ⼩正準の神は場の空間積分値を好きに取りたい。	

✦ 熱⼒学（⼤体積）極限において⾜し上げられる結合定数（や宇宙項、質
量、…）はその値を挟む複数の真空が縮退するように⾃動的に	tune	される。

Frogatt	&	Nielsen	(1996)
[Review	in	Hamada,	Kawai,	KO,	1501.04455]

The total energy is given first, and the temperature 
is determined as a result. 
Example:  Water molecules in a cylinder with a  
                  fixed pressure. 
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T is automatically tuned to T* for wide range of E. 

T corresponds to coupling constants in field theory. 

micro canonical               canonical 
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Figure 4: Two different minima in the effective potential for the Higgs field.

the Planck energy scale is the “fundamental physics scale” for both energy and Higgs fields; they
have the same dimension.

Two of the vacua, which we discuss today have for some reason exceptionally small, say,
Higgs field, while the “high field” vacuum has the “normal” order of unity in Planck units value
for its Higgs expectation value. So we rather ask the question:

Why do the two vacua, “present vacuum” and “condensate vacuum”, not have Planck scale,
say, Higgs fields? (Let me for the moment postpone a discussion of the fact that indeed we have
an explanation[26, 27] from the “multiple point principle”, that these two vacua have exceptionally
small Higgs expectation values scale.)

3. Reason

But Why should we believe in the postulate of the Multiple Point Principle ?

• Need Coupling Explanations:

It is clear that there are some parameters in the Standard Model that take so special values,
that it cries for an explanation; there are fine tuning problems:

– Even with great effort e.g. Graham Ross[67] could not get the factor D with the inverse
of which the Higgs is too light further down than about 1/20.

6

From	Nielsen	et	al.	(2017)

F(750), We Miss You! Holger F. Bech Nielsen

Figure 6: Vapour, water and ice equilibrium in a bottle.

3.1 Model Reasons

It should be stressed that in specific model-pictures one can also derive the “Multiple (Crit-
icality) Point Principle” supposedly though it is only possible in models allowing the coupling
constants to depend on the future too. Ninomiya and one of us (HBN) “derived” it in the imagi-
nary action type of theory, and somewhat similarly in a nonlocal theory by Stillits [71, 72] and it
was done in babyuniverse theory, see works by Kawana et al. [15, 16, 17, 18].

4. The Difficulty of the Bound State

When we - as we now do - want to check if the “multiple point principle” is a true/valid law
of nature, we have the difficulty that an important role is played by a bound state with which the
vacuum, which we call “condensate vacuum”, is filled.

Fundamentally one cannot calculate completely perturbatively, when one calculates on a
bound state!

9

多相共存は広い	E	に対して 
同じ	T*	を選ぶ。



一般化された多重臨界原理
✦ 熱⼒学極限で、なんかある量を	extremize	しよう
と思ったら複数の	allowed	region	の端に来る。F(750), We Miss You! Holger F. Bech Nielsen
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Figure 5: Contour curves.

3. Theoretical Reason; Our Bennett’s and Mine Original Explanation [3, 4, 5, 6]
One assumes, that some extensive quantities / commodities i.e. some integrals over space

time of say fields raised to some powers etc. - say Higgs field squared - are fixed by “God”/ some
law, rather than as I think we would usually think, it is the couplings themselves that are selected
by “God”.

To really obtain the Multiple Point Principle as we wanted you must fix some integrals over
the four dimensional space time to “God given values”. Mathematically, however, what we did was
very analogous to what one does for a three dimensional system in working with micro-canonical
ensembles, when one e.g. fixes the energy, the volume, and the number of moles of say water.
Then without specifying these extensive quantities very accurately, one can get that the intensive
quantities temperature and pressure gets fine tuned to the triple point, see figure 6. In the bottle
with water, ice and vapour one has actually fixed the amount of mols of water molecules, the
volume and the total energy of the system inside the bottle. That is to say extensive quantities were
fixed, but not to any very special values. The pressure and temperature, however, come out with the
very special triple point values. The name for our principle is derived in analogy with this notation
“triple point” for the (pressure, temperature) combination appearing at such a meeting of several
(here three) phases.

One should take this analogy of the method for deriving the Multiple Point Principle with the
often found slush having to have a fixed temperature as very encouraging! When nature naturally
provides slush and just 00 Celsius for us, it might also make the MPP-situation for the couplings.
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From	Nielsen	et	al.	(2017)

Nielsen	(2012)



もういっこ臨界だと尚良い
✦ プランクスケールで３重のゼロ：	

★ ４点結合、そのβ関数、裸の質量。	

✦ 同時に	R	の係数	も臨界になってるかも！？ →今⽇の話

Hamada,	Kawai,	KO	(2013)



Plan
1. 宇宙ヤバイ	

2. 多重臨界原理はヒッグス質量を予⾔していた	

3. 登⼭ヒッグス・インフレーション



余談：Hillclimbing
ぐぐる翻訳より ぐぐる画像検索より



Higgs inflation
✦ ナイスである：	

★ ⼈類が今まで⾒た唯⼀の素スカラー場	

★ CMB	の	bests	fit	model

16 Planck Collaboration: Constraints on inflation

Fig. 11. Marginalized joint 68 % and 95 % CL regions for (✏1 , ✏2 , ✏3) (top panels) and (✏V , ⌘V , ⇠2V ) (bottom panels) for Planck
TT+lowP (red contours), Planck TT,TE,EE+lowP (blue contours), and compared with the Planck 2013 results (grey contours).

Fig. 12. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.Planck	(2015)

Salopek,	Bond,	Bardeen	(1989)	
Bezrukov,	Shaposhnikov	(2008)



MPP と両立できる?
✦ 【鑑賞】天才の描いた絵→	

✦ 途中で⼭があると	inflation	には使えない？	

★ 上から勢いよく落とせば通り越せる。  
→	中⻄さんのポスター（今⽇）	

★ R	も臨界になってたらいんじゃね？  
→	このはなし

1 Introduction
The major starting point of the present contribution to the Bled conference is, that the
recent observation of the Higgs mass as observed at CMS[2] and ATLAS[3] at LHC lies
exceeding tight to the stability boarder of the vacuum in which we live. That the Higgs
mass should indeed lie either at the border at which the energy density of our present
vacuum and the alternative vacuum with Higgs field vacuum expectation value close to the
Planck energy are the same[1] or where our present vacuum only barely survived the era
shortly after Big Bang (or the early time) without transforming itself into the alternative
vacuum[4] were already publiched as or PREdicted years ago. This prediction(s) were
based on the assumption of “Multiple Point Principle” (=MPP) proposed by D. Bennett
and myself [5].

The point is indeed that for an even lower Higgs mass than these 129.4 GeV[7] the
extrapolation of the effective potential Veff (�h) using purely Standard Model would lead
to a negative effective potential. Various other discussion of the Higgs and Fermion masses
from cosmological restriction are found in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30].

Also Shaposnikov et al [31] have predited the Higgs mass using it as inflaton, It may
be explainable that our predictions and Shaposnikovs et al.’s are close by both having
Standard Model high up in energy.

In Michael Scherer’s dissertation[32] one finds a Higgs mass
p
6.845v (where v is the

Higgs field vacuum expectation value).
Sylwester Kornowski rather postdict [33] the Higgs mass.
A bit depending on the temperature in the cosmological eras to be passed a sufficiently

low Higgs mass would lead to the next minimum in the effective potential being so low
that the vacuum we live in would have decayed.

For higher mass than about the 129.4 GeV the effective potential will be positive all
over.

Nielsen	(2012)

Hamada,	Kawai,	KO	(2014)



登山インフレーション

✦ Einstein	frame	potential	〜	V/F2	

★ V(φ)=0	の点で	F(φ)=0	なら持ち上がる。	

✦ Einstein	frame	の	canonical	場は⼤体	ln	F	

★ V/F2	が	F	の多項式なら	exponentially	flat.

Jinno,	Kaneta	(2017)
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登山ヒッグス・インフレーション
✦ やったこと	

★ 4点結合を	minimum	のまわりで展開	

★ λ(φ)	〜	β2	[ln	(φ/M)]2

Jinno,	Kaneta,	KO	(2017)
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FIG. 1. Illustration for the setup. The Jordan-frame po-
tential VJ, shown in the blue line, has multiple vacua at
the electroweak scale ∼ vEW and the high scale denoted by
M ≫ vEW. We assume that the conformal factor Ω, denoted
by the red or yellow lines for Model 1 and Model 2 in Eq. (13),
respectively, also vanishes at the point φJ = M . We also su-
perimpose the Einstein-frame potential V as a function of the
canonically normalized field φ. The difference in the poten-
tial shape arises because Model 1 corresponds to n = 1 while
Model 2 corresponds n = 2 in Eq. (7). In this figure the
vertical axes is arbitrary, and we take M = 0.1MP.

where β2 ≃ 2 × 10−5 =: βSM
2 in the SM [25]. The cubic

and higher order terms are loop-suppressed, β3, · · · ≪ β2,
and will be neglected hereafter.
In the following we set λmin = 0 so that the poten-

tial becomes zero at φJ = M by assuming the MPP.
In the SM, this is realized with the top quark mass
mt ≃ 171.4GeV for the strong coupling αs ≃ 0.1185,
leading to M ≃ 4 × 1018GeV [17]. However, the precise
values of the β2 and M that realize λmin = 0 are altered
by extra particles such as the heavy right-handed neutri-
nos and the Higgs-portal dark matter; see e.g. Refs. [30–
34]. Therefore we take them as free parameters hereafter.
Also, we consider the following forms for the conformal

factor in this Letter:

Ω =
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We summarize the setup in Fig. 1. Given this setup, the
Einstein-frame potential is expanded as

V =
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β2M4

16
(1− Ω− · · · ) (Model 1),

β2M4

64
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1

12
Ω2 − · · ·

)

(Model 2).
(14)

Therefore, the leading exponent is given by n = 1 and 2
for Model 1 and 2, respectively, and the potential height

FIG. 2. Parameter region which realizes the observed curva-
ture perturbation As ≃ 2.2×10−9. The two bands correspond
to Model 1 and Model 2 in Eq. (13), and the upper and lower
lines for each band correspond toN = 50 and 60, respectively.
See also Table I.

in the Einstein frame is given by V0 ∼ β2M4. Taking
Eq. (8) and the curvature perturbation As ∼ V0/ϵV into
account, one sees that the observed value As ≃ 2.2×10−9

constrains the model parameters along M ∝ β−1/4
2 . Fig-

ure 2 shows such a constraint for each of Model 1 and 2.
The two bands correspond to Model 1 and 2, and the up-
per and lower lines for each band correspond to N = 50
and 60, respectively. In making this figure we numerically
solved for the e-folding N under the slow-roll assump-
tion, defining the end of inflation by max(ϵV , ηV ) = 1. It
should be mentioned that while we have investigated only
two simple models, there are various possible choices of
Ω which gives different viable parameter spaces. In ad-
dition, as mentioned above, the values of β2 and M may
easily change in models beyond the SM by the existence
of additional particles and associated intermediate scales;
see e.g. Refs. [30–34].

Figure 3 shows the inflationary predictions in the hill-
climbing Higgs inflation. It is seen that the prediction of
the tensor-to-scalar ratio differs between Model 1 and 2
because of the difference in the leading exponent. See also
Table I. Note that the prediction for r differs from the
rough estimate (10) by O(10)%. This is because Eq. (10)
is derived by taking only the leading term in Eq. (14) into
account, while higher order terms can contribute to the
inflaton dynamics as the conformal factor grows towards
the end of inflation. Such a contribution is larger if the
coefficient of the leading term is smaller, and this is why
Model 2 shows a larger deviation from Eq. (10) compared
to Model 1.

In Table I we summarize the allowed value for M and
corresponding inflationary predictions for β2 = 2× 10−5.
One sees that M ∼ 0.1MP is favored for this value of
β2 and also that φJ at the CMB scale corresponds to
∼ 0.01M away from the potential minimum at φJ = M .
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結果
✦ r	（宇宙背景重⼒⼦
放射の効果）がも
うすぐみえる。	

✦ 普通の	Higgs	
inflation	と区別が
つく。

Jinno,	Kaneta,	KO	(2017)



まとめ
1. 宇宙ヤバイ	

2. 多重臨界原理はヒッグス質量を予⾔していた	

3. 登⼭ヒッグス・インフレーション	

• 多重臨界原理と整合的	

• 普通の	Higgs	inflation	と区別可能
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