Determination of the strong coupling constant from lattice QCD

@基研研究会素粒子物理学の進展2017大野木哲也(大阪大学)2017年8月2日

Lattice によるα_sの結果 現在の精度は何できまっているか? 将来的にどの精度までいくか?

最近のFlavor Lattice Averaging Group Report にもとづいて話します。

Eur. Phys. J. C (2014) 74:2890 DOI 10.1140/epjc/s10052-014-2890-7 The European Physical Journal C

Review

Review of lattice results concerning low-energy particle physics

FLAG Working Group

S. Aoki¹, Y. Aoki^{2,3}, C. Bernard⁴, T. Blum^{3,5}, G. Colangelo^{6,a}, M. Della Morte^{7,8}, S. Dürr^{9,10}, A. X. El-Khadra¹¹, H. Fukaya¹², R. Horsley¹³, A. Jüttner¹⁴, T. Kaneko¹⁵, J. Laiho^{16,28}, L. Lellouch^{17,18}, H. Leutwyler⁶, V. Lubicz^{19,20}, E. Lunghi²¹, S. Necco⁶, T. Onogi¹², C. Pena²², C. T. Sachrajda¹⁴, S. R. Sharpe²³, S. Simula²⁰, R. Sommer²⁴, R. S. Van de Water²⁵, A. Vladikas²⁶, U. Wenger⁶, H. Wittig²⁷ FLAG report: S. Aoki et al., Eur. Phys. J. C77(2017) no2. 112

Flavor Lattice Averaging Group (FLAG)

Lattice の物理量に対して、様々なcollaboration からの結果を総括し、「平均値」を与えるLattice 研究者コミュニティーのワーキンググループ

Our aim is to provide an answer to the frequently posed question "What is currently the best lattice value for a particular quantity?" in a way that is readily accessible to nonlattice-experts.

FLAG members

Advisory Board : S. Aoki, C. Bernard, M. Golterman, H. Leutwyler, C. Sachrajda Editorial Board: G. Colangelo, A. Jüttner, S. Hashimoto, S. Sharpe A. Vladikas, U. Wenger

Working Groups

- Quark masses: L. Lellouch, T. Blum, V. Lubicz
- Vus, Vud : S. Simula, P. Boyle, T. Kaneko
- Low Energy Constant: S. Dürr, H. Fukaya, U.M. Hellter
- BK : H. Wittig, P. Dimopoulos, R. Mawhinney
- fB, fD, BB: M. Della Morte, Y.Aoki, D. Lin
- B, D semileptonic decays: E. Lunghi, D. Becirevic, S. Gottlieb, C. Pena
- α_s : <u>R. Sommer, R. Horsley, T. O.</u>

目次

- 1. なぜ α_s が重要か? 2. 格子QCDの基礎 3. どうやって $\alpha^{\overline{MS}}(\mu)$ を決定するか? a. 自然な方法とWindow問題 b. Window 問題を解決するには? i. 自然な方法における改良 ii. 有限体積スキームとステップスケーリング iii. Wilson ループ
- 4. 数值結果
- 5. まとめ

1. なぜ α_s が重要か?

PDG value $\alpha^{MS} = 0.1181 \pm 0.0011$

(PDG 2016 rev.: Bethke, Dissertori, Salam)

1% レベルの精度に到達している。 以下の現象論の研究においては、より高い精度が求められる。

- 1. LHCにおけるヒッグスの物理
- 2. LHCにおけるトップクォークの物理
- 3. 標準模型の繰り込み群の振る舞い

LHCにおけるヒッグスの物理

% UNCERTAINTIES ON TOTAL CROSS-SECTION

素過程の断面積が *O*(*α*²) なら、2-3%の不定性が生じる。 標準模型からのずれを検証するには *Q*の精度の向上が必要

$$\sigma = c_1 \left(\alpha + \Delta \alpha\right)^2 + \dots = c_1 \alpha^2 \left(1 + 2\frac{\Delta \alpha}{\alpha}\right) + \dots$$

トップクォークの物理

 $pp \rightarrow tt \rightarrow lepton + jets$ @TeVatron, LHC \rightarrow all jets

トップクォーク 生成断面積 → トップクォーク質量 $m_t^{\text{pole}} = 173.34 \pm 0.27 \pm 0.71 \text{GeV}$

PDFと α が 主な系統誤差

ヒッグスの物理と同様の構造

 $\mathrm{PDF}, \alpha, m_t, \cdots$

コライダー実験での様々な 過程の断面積の情報

 α_s の精密な値が不定性を小さくしうる。

繰り込み群による標準模型の 高エネルギーでの振る舞い

ヒッグス4点結合 λ の 繰り込み群の振る舞い

真空の安定性は m_t, α の値に敏感 → 精密決定の必要性

 α_s の決定の現状

格子QCDのパラメータ 裸の結合定数 : $g_0(a)$ 裸のクォーク質量: \hat{m}_0

L⁴: ボックスサイズ
 N⁴: 格子サイズ
 a: 格子間隔

原理的にはいかなる物理量 もインプットになりうる

アウトプット: あらゆる物理量(格子単位) (ハドロン質量、形状因子) 格子シミュレーションで格子単位での核子質量とパイオン質量が裸のパラメータの数値的な関数として求められる。

$$am_N = \mathcal{M}_N(g_0, \hat{m}_0), \quad am_\pi = \mathcal{M}_\pi(g_0, \hat{m}_0),$$

体子シミュレーションの結果

 $\frac{m_{\pi}}{m_N}$ をインプットとして \hat{m}_0 が g_0 の関数として決定できる。

 \blacktriangleright m_N をインプットとして a が g_0 の関数として決定できる

$$\begin{bmatrix}
 \frac{m_N^{\text{exp}}}{m_\pi^{\text{exp}}} = \frac{\mathcal{M}_N(g_0, \hat{m}_0(g_0))}{\mathcal{M}_\pi(g_0, \hat{m}_0(g_0))} \\
 a(g_0) = \frac{1}{m_N^{\text{exp}}} \mathcal{M}_N(g_0, \hat{m}_0(g_0)) \\
 理論の裸のパラメータの(非摂動的)繰り込み$$

QCDの物理量の予言
他のハドロン質量
$$m_{H}^{\text{prediction}} = \lim_{g_{0} \to 0} \frac{1}{a(g_{0})} \mathcal{M}_{N}(g_{0}, \hat{m}_{0}(g_{0}))$$

相関関数
 $\langle \mathcal{O}(x)\mathcal{O}(0) \rangle^{\text{prediction}} = \lim_{g_{0} \to 0} (a(g_{0}))^{-2d_{\mathcal{O}}} (Z_{\mathcal{O}}(g_{0}))^{2} \langle \hat{\mathcal{O}}^{\text{lat}}(\hat{x}) \hat{\mathcal{O}}^{\text{lat}}(0) \rangle_{g_{0}, \hat{m}_{0}(g_{0})}^{\text{lat}} |_{\hat{x}=a(g_{0})x}$

繰り込み因子 Zo(g₀)が必要 いくつかの計算方法(ワード・高橋恒等式….)

3. どうやって $\alpha^{\overline{MS}}(\mu)$ を決定するか?

a. Naïve method and window problem

A short distance quantityQ(μ) from lattice QCD, which is finite (i.e. renormalized or divergence free).
 (ex: static quark potential, Adler function) μ : some momentum scale

$$\mathcal{Q}(\mu) = \lim_{g_0 \to 0} \mathcal{Q}^{\operatorname{lat}}(\hat{\mu}, g_0, \hat{m}(g_0)) \mid_{\hat{\mu} = a(g_0)\mu}$$

2. Compute $\langle \mathcal{O} \rangle$ using perturbative QCD with $\alpha^{\overline{MS}}(\mu)$. (2,3,4-loops depending on quantities)

$$Q(\mu) = c_0 + c_1 \alpha^{\overline{\mathrm{MS}}}(\mu) + c_2 \left(\alpha^{\overline{\mathrm{MS}}}(\mu)\right)^2 + \cdots$$

3. Require that these two are equal \rightarrow determination of $\alpha^{\overline{MS}}(\mu)$

Continuum quantity $\mathcal{Q}(\mu)$ Lattice simulation $\leftarrow \rightarrow$ Continuum perturbation

17/08/09

Examples of $\mathcal{Q}(\mu)$

- 2. Force of static quark potential

$$\begin{aligned} \mathcal{Q}(\mu) &= r^2 \frac{\partial V_{Q\bar{Q}}}{\partial r} \mid_{\mu = \frac{1}{r}}, \quad (V_{Q\bar{Q}} : \text{static potential}) \\ \text{c.f. } V_{Q\bar{Q}} &\sim -\frac{\alpha_V(\frac{1}{r})}{r} + \sigma r \end{aligned}$$

3. Adler function of vacuum polarization

$$Q(\mu) = -q^2 \frac{d}{dq^2} \Pi(q^2) \mid_{q^2 = \mu^2}$$

where $\int d^4 x e^{iqx} \langle V_{\mu}(x) V_{\nu}(0) \rangle = (q^2 \delta_{\mu\nu} - q_{\mu}q_{\nu}) \Pi(q^2)$

 V_{μ} V_{ν}

 p, μ, a

注釈1

When $Q(\mu)$ can be written as $Q(\mu) = c_1 \alpha^{MS}(\mu) + c_2 (\alpha^{MS}(\mu))^2 + \cdots$ (i.e., $c_0 = 0$)

One can define a running coupling $\alpha_{Q}(\mu)$ with the renormalization condition

$$\mathcal{Q}(\mu) = c_1 \alpha_{\mathcal{Q}}(\mu)$$

Previous examples 1. Momentum scheme $:\alpha_{MOM}(\mu)$ 2. Static potential scheme $:\alpha_V(\mu)$

Static クォークポテンシャルを用いて $Q\left(\frac{1}{r}\right) = r^2 \frac{d}{dr}V(r)$ を定義する この値が1となるスケールを r_1 と定義する

を定義する。この値が1となるスケールを r_1 と定義する

 $Q\left(1/r\right)\big|_{r=r_1} = 1$

大きな体積の3フレーバーシミュレーションでハドロン質量を インプットにすると $r_1 = 0.3133(3)$ fm となる。

この量は短距離の物理量なので、2.5 m程度の体積のシ ミュレーションでも有限体積効果は無視でき、比較的小さな 体積のシミュレーションにおけるインプットに使える。

注釈4

Gradient Flow (GF)

- 裸の場 $A_{\mu}(x)$ を初期条件として、仮想的なパラメータ tに対 する方程式を考える。 $\partial_{s}B_{\mu}(t,x) = D_{\nu}G_{\nu\mu}(t,x),$ $G_{\mu\nu}(t,x) = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}],$ $B_{\mu}(0,x) = A_{\mu}(x)$
- Bで作られる任意の場はt≠0 で有限
- 有限体積スキームでの結合定数

$$g_{GF}^2(\mu) = \langle E(t) \rangle_L / \langle E(t) \rangle_L^{\text{tree}} \mid_{\mu=1/(cL)}^{\sqrt{8t}=cL}$$

を定義できる。
$$E(t) = \frac{1}{4} \left(G^a_{\mu\nu}(t,x) \right)^2$$

注釈

重いクォーク c, b のthresholdでのフレーバー数の 変化にともなう結合定数のマッチング

$$\bar{g}_{N_f-1}^2(m_\star) = \bar{g}_{N_f}^2(m_\star) \times [1 + t_2 \,\bar{g}_{N_f}^4(m_\star) + t_3 \,\bar{g}_{N_f}^6(m_\star) + \dots]$$

$$m_\star = \bar{m}(m_\star)$$

$$t_2 = \frac{1}{(4\pi^2)^2} \frac{11}{72}$$

$$t_3 = \frac{1}{(4\pi^2)^3} \left[-\frac{82043}{27648} \zeta_3 + \frac{564731}{124416} - \frac{2633}{31104} (N_f - 1) \right]$$

4ループ摂動公式 Chetyrkin, Kuhn, Sturn arXiv: hep-ph/0512060

Window problem

Naïve method seems so simple.

However, lattice setup has to satisfy 4 conditions.

1. $L \ge 3 \text{ fm}$ to kill finite size effect for the nucleon.2. N = L/a = 32, 48, 64 for reasonable computational cost.3. $q, \mu \ll a^{-1}$ 4. $q, \mu > 1 \sim 2 \text{ GeV}$ 6. for pert. QCD to be valid.

1. & 2.
$$\rightarrow a^{-1} \le 2 \sim 4 \text{ GeV}$$

 $\implies 3. \& 4. \rightarrow 1 \sim 2 \text{ GeV} < q, \mu \ll 2 \sim 4 \text{ GeV}$

Hard to find a window for q, μ

b. How to solve the window problem

- Stick to the naïve method
 - Finer lattice or improved lattice action
 - improvement in pert. theory,
- New method $m_N \rightarrow \text{output } 1 \xrightarrow{\text{RG}} \text{output } 2 \rightarrow \alpha^{\overline{\text{MS}}}(\mu)$ - Finite box scheme
 - Nonperturbative running(=step scaling)
- Cutoff scale quantity without cutoff effect (!?)

i) Improvements in the naïve method

• Reduce the computational cost

 \rightarrow Larger a^{-1}

- ・ 短距離の物理量を中間のインプットに挟む
 → smaller box size → Larger a⁻¹
- Use improved action
 - \rightarrow Reduction of discretization error
- Improved perturbation theory
 - \rightarrow Better convergence

ii) Finite box scheme & step scaling

A finite physical quantity in finite box

$$Q(\mu)$$
, in finite box (L^4) , where $\mu = \frac{1}{L}$
 $Q(\mu) = c_1 \alpha^{MS}(\mu) + c_2 (\alpha^{MS}(\mu))^2 + \cdots$

Let us define a renormalized coupling $\alpha_{Q}(\mu)$ (finite box scheme) for the coupling with renormalization condition

$$\mathcal{Q}(\mu) \equiv c_1 \alpha_{\mathcal{Q}}(\mu)$$

Step scaling gives RG running of $lpha_{\mathcal{Q}}$

$$\alpha_{\mathcal{Q}}(\mu_0) \to \alpha_{\mathcal{Q}}(2\mu_0) \to \cdots \to \alpha_{\mathcal{Q}}(2^n\mu_0)$$

with reasonable computational cost at each step.

Taking sufficient n, perturbative expansion $\alpha_{\mathcal{Q}}(2^{n}\mu_{0}) = c_{1}\alpha^{\overline{\mathrm{MS}}}(2^{n}\mu_{0}) + c_{2}\left(\alpha^{\overline{\mathrm{MS}}}(2^{n}\mu_{0})\right)^{2} + \cdots$ becomes highly reliable.

Solution to the window problem

iii) Wilson loop

• Wilson loop を格子摂動論で展開

$$\langle W_{n,m} \rangle = 1 + c_1^{n,m} g_0^2 + c_2^{n,m} g_0^4 + \cdots$$

• ポテンシャルスキーム結合を g_0^2 と結びつける。
 $g_V^2(\mu) = g_0^2 + b_1(a\mu)g_0^4 + \cdots$

• Wilson loopsの比を $g_V^2(\mu_*)$, $\mu_* \propto \frac{1}{a}$ で書き直す

$$R_{n,m} \equiv \ln\left(\frac{\langle W_{n,m}\rangle}{\left(\langle W_{1,1}\rangle\right)^{nm}}\right) = d_1^{n,m}\alpha_V(\mu_*) + d_2^{n,m}\alpha_V(\mu_*)^2 + \cdots$$

 Lattice シミュレーションで求めた比に摂動展開の表式を 代入して g²_V(µ_{*})を逆解きする。

$$(R_{n,m})^{\mathrm{MC}} = d_1^{n,m} g_V^2(\mu_*) + d_2^{n,m} g_V^4(\mu_*)$$

4. 数値計算の結果

i) 重いクオークの2点関数(HPQCD 2010, JLQCD 2017)

$$G(x_{0}) = a^{3} \sum_{\vec{x}} \langle J^{\dagger}(x) J(0) \rangle \text{ where } J(x) = im_{0h}\bar{h}(x)\gamma_{5}h(x)$$

$$m_{c} \leq m_{h} \leq m_{b}$$
短距離の発散と2点関数のモーメント

$$G(x_{0}) \overset{x_{0}\sim0}{\sim} x_{0}^{-3} \qquad G_{n} \equiv a \sum_{t} (t/a)^{n} G(t)$$
モーメント(の比)に対する連続理論での摂動公式

$$\tilde{R}_{4} \equiv G_{4}/G_{4}^{(0)} = 1 + \sum_{n=1}^{3} r_{4,n}(\mu/m_{h}^{\overline{\text{MS}}}(\mu)) \left(\alpha^{\overline{\text{MS}}}(\mu)\right)^{n} \qquad 3\text{-loop}$$

$$\tilde{R}_{n} \equiv \frac{G_{n}}{m_{h}^{\overline{\text{MS}}}(\mu)} = 1 + \sum_{k=1}^{3} r_{n,k}(\mu/m_{h}^{\overline{\text{MS}}}(\mu)) \left(\alpha^{\overline{\text{MS}}}(\mu)\right)^{k} \qquad (n = 6, 8, \cdots)$$
Chetyrkin et al. 2006

比を格子で計算して、上の公式で α_s を逆解きする。

global fit of R_4, R_6, R_8, R_{10}

$$\alpha^{\rm MS}(\mu) = 0.1183 \pm 0.007$$

統計誤差: 0.2% 系統誤差:連続極限外挿 0.2% 摂動truncation (4-loop) 0.4% その他 0.2% トータル: 0.6% エラー

WGによる評価

 $am_h = 0.2 \sim 0.85$ $\mu = 2m_h(m_h) = 2 \sim 8 \text{ GeV}$

*m_h*小→繰り込み点µ小
 → α^{MS}(µ)大→摂動の収束性が悪い

• m_h 大 **>** 格子化誤差 am_h 大

より新しい計算(JLQCD 2016) Domain-Wall フェルミオン作用 $a^{-1} = 2.5, 3.6, 4.5 \text{ GeV}$ $L = 2.6 \sim 2.8 \text{ fm}$ インプット: 短距離の物理量: $t_0^{1/2} = 0.1465 \text{ fm}$

摂動のtruncation誤差(missing 4-loop) がもっとも支配的: → 比の表式の右辺に現れる繰り込み点 µ を

 $\mu = 2 \sim 4 \text{ GeV}$

と振ったときの最終結果の変化で評価

$$\alpha^{MS}(M_Z) = 0.1177 \pm 0.0026 \qquad 2\% \text{IP}$$

ii) 小さいWilson loop

Small Wilson loopの自動化された摂動計算(3次)
 Q. Mason et al., Phys. Rev. Lett. 95,052002 (2005)

$$\langle W_{m,n} \rangle = 1 + c_1 g_0^2 + c_2 g_0^4 + c_3 g_0^6$$

Static potential の2ループ許算
Y. Schroder, Phys. Lett. B 447, 321 (1999)
 $\alpha_V(\mu) = \alpha^{\overline{\text{MS}}}(\mu) + a_1 \alpha^{\overline{\text{MS}}}(\mu) + a_2 \left(\alpha^{\overline{\text{MS}}}(\mu) \right)^2$

• Bare coupling とMSbar coupling の2ループ計算 Luscher and Weisz, Nucl. Phys. B452 (1995) 234 $\alpha^{\overline{\text{MS}}}(\mu) = \alpha_0 + d_1(a\mu)\alpha_0^2 + d_2(a\mu)\alpha_0^3 \qquad \alpha_0 = g_0^2/(4\pi)$

$$\langle W_{n,m} \rangle = 1 + b_1 \alpha_V (d/a) + b_2 \left(\alpha_V (d/a) \right)^2 + b_3 \left(\alpha_V (d/a) \right)^3$$

$$R_{n,m} \equiv \ln\left(\frac{\langle W_{n,m}\rangle}{\langle W_{1,1}\rangle^{nm}}\right) = d_1^{n,m}\alpha_V(d/a) + d_2^{n,m}\left(\alpha_V(d/a)\right)^2 + d_3^{n,m}\left(\alpha_V(d/a)\right)^3$$

HPQCD 2010, C. McNeile et al. Phys. Rev. D 82, 034512 (2010)

 $a^{-1} = 1.7, 2.4, 3.4, 4.5 \text{ GeV}$ $L = 2.4 \sim 2.8 \text{ fm}$ 短距離スケールのインプット

- いろんな格子間隔で *R_{n,m}*を格子モンテカルロ計算で求め、
 上の式から α_V(*d*/*a*)を逆解きする
- その際、連続理論の4ループ繰り込み群を用いることで、異なる格子間隔 のデータを同時フィットできる $\frac{d\alpha_V(\mu)}{d\ln(\mu^2)} = -\beta_0 \alpha_V^2 - \beta_2 \alpha_V^3 - \beta_3 \alpha_V^4 - \beta_4 \alpha_V^5$
- 摂動のtruncation誤差を見積もるため10次式で展開し

$$R_{n,m} = d_1^{n,m} \alpha_V + d_2^{n,m} \alpha_V^2 + d_3^{n,m} \alpha_V^3 + \sum_{k=4}^{10} d_k^{n,m} \alpha_V^k$$
4次以上の未知係数をある統計分布に従う乱数としてフィット。

$$\alpha_V(7.5 \text{ GeV}, n_f = 3) = 0.2120 \pm 0.0028$$

 $\alpha^{\overline{MS}}(\mu) = 0.1183 \pm 0.0008$

17/08/09

WGによる評価

- 乱数フィットの結果を見るとほとんどの場合 $\frac{|d_4^{m,n}|}{|d_1^{m,n}|} \sim 2$ → 4次のtruncation 誤差 $\Delta \alpha_V = \left| \frac{d_4^{m,n}}{d_1^{m,n}} \right| \alpha_V^4$
- $\alpha_V \sim 0.2$ を用いると $\frac{\Delta \alpha_V}{\alpha_V} = \left| \frac{d_4^{n,m}}{d_1^{n,m}} \right| \alpha_V^3 \sim 1.6\%$

$$\frac{\Delta \alpha^{\overline{\mathrm{MS}}}(M_Z)}{\alpha^{\overline{\mathrm{MS}}}(M_Z)} \sim 1.2\%$$

個人的感想

Window 問題は本当に解消したのか? Bare coupling と MSbarスキームの摂動マッチングが出来るには

$1 \sim 2 \text{ GeV} < \mu \ll a^{-1}$

なるスケールの存在が必要だが、明らかに一部の格子間隔はこれを満たしていない。

iii) 有限体積スキームとStep scaling

背景場 $A_{\mu}(k)$ のもとでの量子補正をとりこんだ有効作用

$$S_{\text{eff}} = \int \frac{d^4k}{(2\pi)^4} A^a_{\mu}(-k) A^a_{\nu}(k) \frac{1 + c_1(ak)g_0^2 + \cdots}{2g_0^2} \left(k^2 \delta_{\mu\nu} - k_{\mu}k_{\nu}\right)$$
$$= \int \frac{d^4k}{(2\pi)^4} A^a_{\mu}(-k) A^a_{\nu}(k) \frac{1}{2g_R^2(k)} \left(k^2 \delta_{\mu\nu} - k_{\mu}k_{\nu}\right)$$

 $g_R^2(k)$ は繰り込まれた結合定数 この概念は非摂動的に拡張できる。 有限体積で背景色電場をもつ背景場配位 $A_i^a(t, \vec{x}) = C_i^a + E_i^a t$ $L^3 \times T$ $S_{\text{eff}} = \frac{1}{g_R^2(\frac{1}{L})^2} \begin{bmatrix} L^3T(E_i^a)^2 \\ I \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ I \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ Z_i \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ Z_i \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ Z_i \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ Z_i \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ Z_i \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i + z_i^2 \\ Z_i \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z_i^2 \end{bmatrix} \begin{bmatrix} z_i^2 + z_i^2 \\ z$

注釈

- 格子QCDシミュレーションでは有効作用は直接計算できない
- 色電場にパラメータを入れて、有効作用をパラメータ微分したものは期待値として計算できる。

Luscher, Sommer, Weisz, Wolff 1994

注釈2

- SFスキーム結合定数は非摂動繰り込み計算のスタンダード
- Nf=0,2はAlpha Collaborationによって徹底的に調べられた。

ところが、一般的に格子QCD業界で、 細かい格子を用いた格子シミュレーションにおける 異なるインスタントンセクターのサンプリングが不十分な問題 (Topology Freezing)が起こる事がわかった。 Alpha Collaboration 改め CLS Collaborationは全力を挙げて この問題の解決に取り組む

→ 結合定数の計算はストップ

- Nf=2の計算は形式的には、摂動論的マッチング公式でストレンジクォークの効果を加えてNf=3の結果に翻訳できるが、乗り換えに摂動論は信用できない。

無冠の帝王

SF スキーム 結合定数 PACS-CS collaboration 2009

S. Aoki et al. JHEP 0910, 053 (2009)

3-flavor QCD (Wilsonフェルミオン) ステップスケーリング: 7ステップ(+より高いエネルギーデータ) インプット用格子 L/a=8,12,16 アウトプット用格子 L/a=4,6,8 やや粗い格子 $g_{SF}^2(\mu) = 5.0 \sim 1.0$ の間をRG running (+ より高いエネルギーデータ)

2ループマッチング

$$\alpha^{\overline{\mathrm{MS}}}(\mu) = \alpha_{\mathrm{SF}}(\mu) + c_1 \alpha_{\mathrm{SF}}^2(\mu) + c_2 \alpha_{\mathrm{SF}}^3(\mu)$$

 $\alpha^{\text{MS}}(M_Z) = 0.12047 \pm 0.00081 \pm 0.00048^{+0.00000}_{-0.00173}$ kitiki kitiki

もし連続極限でLinear extrapolationのみをとると $\alpha^{\overline{\text{MS}}}(M_Z) = 0.118 \pm 0.003$

Bruno et al. (Alpha Collaboration) arXiv:1706.03821

- 1. インプット: ハドロンデータ→ アウトプット: GFスキーム結合定数
- 2. ステップ・スケーリング (RG evolution) with GF
- 3. インプット: GFスキーム結合定数 → アウトプット: SFスキーム結合定数
- 4. ステップ・スケーリング(RG evolution) with SF
- 5. SFスキーム結合定数 → Msbar スキーム結合定数

- PACS-CSに比べLatticeサイズが大きい
 →格子化誤差が小さい
- 低エネルギー側をGFスキームに置き替えた

→ 統計誤差が小さい

Everything Together

Final Result

$$\Lambda_{\overline{MS}}^{(3)} = 341(12) \text{ MeV}$$

 $\Lambda_{\overline{MS}}^{(5)} = 215(10)(03) \text{ MeV}$ pert. decoupling
 $\alpha_{\overline{MS}}(M_Z) = 0.1185(8)(3)$
0.1174(16) PDG non-lattice

5. まとめ

- 格子QCDによる強い相互作用の決定は概念的にはシンプルだがWindow 問題がネック。
- Naïveな方法での改善がなされている。
- ステップ・スケーリング法は非常に有望で、最近とても良い精度が出た。
- 現在の精度はSFスキームの統計誤差が支配的→ 0.8%程度の誤差。将来 摂動計算を完成し、すべてのエネルギースケールでGFスキームを用いれ ば、統計誤差は十分小さくできるだろう。
- 将来的には3フレーバー格子QCD計算からの結果を5フレーバーQCDに マッチングする際の摂動計算が精度のリミット → 0.5%程度(4フレーバー 格子QCD計算に移行すればもう少し小さくなる)