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高次元場を，余剰次元方向の運動量の完全系で展開 

余剰次元空間がコンパクト空間なら運動量は離散化される 

例えば，円弧(S1)の場合：

Kaluza-Klein展開と波動関数
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Extra Dimensions 3

explaining the Planck-weak hierarchy.
Here is a rough outline of the lectures. In lecture 1, we begin with

the basics of KK decomposition in flat spacetime with one extra dimen-
sion compactified on a circle. We will show how obtaining chiral fermions
requires an orbifold compactification instead of a circle. In lecture 2, we
will consider a simple solution to the flavor hierarchy using the profiles of
the SM fermions in the extra dimension. However, we will see that such a
scenario results in too large contributions to flavor changing neutral current
(FCNC) processes (which are ruled out by experimental data) if the KK
scale is around the TeV scale – this is often called a flavor problem. Then,
in lecture 3, we will consider a solution to this flavor problem based on the
idea of large kinetic terms (for 5D fields) localized on a “brane”. Another
kind of measurement of properties of the SM particles (not involving flavor
violation), called Electroweak Precision Tests, will be also be studied in this
lecture, including the problem of large contributions to one such observable
called the T (or ρ) parameter. In lecture 4, we will solve this problem of
the T parameter by implementing a “custodial isospin” symmetry in the
extra dimension. We will then briefly discuss some collider phenomenology
of such models and some questions which are unanswered in these models.
Finally, we will briefly study models based on warped spacetime in lecture
5, indicating how such models “mimic” the models in flat spacetime (with
large brane kinetic terms) studied in the previous lectures. We will sketch
how some of the open questions mentioned in lecture 4 can be addressed in
the warped setting, resulting in a “complete” model.

1.2. Lecture 1

1.2.1. Basics of Kaluza-Klein Decomposition

Consider the following 5D action for a (real) scalar field (here and hence-
forth, the coordinates xµ will denote the usual 4D and the coordinate y
will denote the extra dimension):

S5D =

∫

d4x

∫

dy
[

(

∂MΦ
)

(∂MΦ) − M2ΦΦ
]

(1.1)

Since gravitational law falls off as 1/r2 and not 1/r3 at long dis-
tances, it is clear that we must compactify the extra dimension. Sup-
pose we compactify the extra dimension on a circle (S1), i.e., with y un-
restricted (−∞ < y < ∞), but with y identified with y + 2πRa. We
aEquivalently, we can restrict the range of y: 0 ≤ y ≤ 2πR, imposing the condition that

4D＋1D
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impose periodic boundary conditions on the fields as well, i.e., we require
Φ(y = 2πR) = Φ(y). Then, we can (Fourier) expand the 5D scalar field as
follows:

Φ =
1√
2πR

n=+∞
∑

n=−∞

φ(n)(x)einy/R (1.2)

where the coefficient in front has been chosen for proper normalization.
Substituting this expansion into S5D and using the orthonormality of

profiles of the Fourier modes in the extra dimension (i.e., einy/R) to inte-
grate over the extra dimension, we obtain the following 4D action:

S4D =

∫

d4x
∑

n

[ (

∂µφ
(n)
)(

∂µφ(n)
)

−
(

M2 +
n2

R2

)

φ(n)φ(n)
]

(1.3)

This implies that from the 4D point of view the 5D scalar field appears
as an (infinite) tower of 4D fields which are called the Kaluza-Klein (KK)
modes: φ(n) with mass2, m2

n = M2 + n2/R2 (note that the n2/R2 contri-
bution to the KK masses arises from ∂5 acting on the profiles) [see Fig. 1.1
(a)].

The lightest or zero-mode (n = 0) has mass M (strictly speaking it
is massless only for M = 0). The non-zero KK modes start at ∼ 1/R
(for the case M ≪ 1/R) which is often called the compactification scale.
We can easily generalize to the case of δ extra dimensions, each of which
is compactified on a circle of same radius to obtain the spectrum: m2

n =
M2 +

∑δ
i=1 n2

i /R2. However, in these lectures, we will restrict to only one
extra dimension.

Thus, we see that the signature of an extra dimension from the 4D
point of view is the appearance of infinite tower of KK modes: to repeat,
the lightest (zero)-modes is identified with the SM particle and the heavier
ones (KK modes) appear as new particles beyond the SM.

1.2.2. Orbifold

Mathematically speaking, a circle is a (smooth) manifold since it has no
special points. We can “mod out” this smooth manifold by a discrete sym-
metry to obtain an “orbifold”. Specifically, we impose the discrete (Z2)
identification: y ↔ −y in addition to y ≡ y + 2πR. Thus, the physical or

y = 0 same as y = 2πR.
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�(y = 2⇡R) = �(y)周期境界条件：

質量＋運動量を持った4Dの場だけで記述できている

c.f., [Dawson, Mohapatra ’08]



トーラス＝2D平面＋周期境界条件 

ゲージ場の強さのうちの余剰次元成分の期待値： 

5次元ではこのような成分はない 

string theoryで言うflux compactification 

Dirac’s charge quantization：

トーラスと磁場

2

demands the Dirac charge quantization,

qb

2π
= m ∈ Z. (2)

We perform the KK decomposition of the 6D Weyl spinor
Ψ and scalar Φ by a complete set as

Ψ(xµ, z) =
∑

n

χn(x
µ)⊗ ψn(z), (3)

Φ(xµ, z) =
∑

n

ϕn(x
µ)⊗ φn(z). (4)

for n = 0, 1, 2, · · · , where χn denotes 4D Weyl spinors.
Here, the KK-decomposed wavefunctions in the extra di-
mensional parts ψn and φn are chosen to be eigenstates
of the covariant derivative D = 2∂/∂z̄ + πmz and the
Laplace operator ∆ = {D†, D}/2 for extra dimensions as
i /Dψn = mnψn and ∆φn = m2

nφn, respectively, as defined
in Ref. [2]. In the Letter, we adopt a unit 2πR = 1 for
the compactification radius R and set a U(1) charge as
q = 1. On the flux background (1) for m > 0, the lowest
KK-decomposed modes ψ0 are m-multiply degenerated as

ψj
+,0(z) = N eπimzIm z ϑ

[
j/m

0

]
(mz,mi), (5)

with j = 0, 1, · · · ,m− 1 and the Jacobi theta function

ϑ

[
α

β

]
(ν, τ) =

∑

ℓ∈Z
eπi(α+ℓ)2τ+2πi(α+ℓ)(ν+β), (6)

where α and β are real parameters, and ν and τ take
complex values with Im τ > 0. On another hand, ψ−,0

possesses no normalizable zero-mode wavefunction, where
we decompose the two dimensional (2D) spinor as ψ0 =
(ψ+,0,ψ−,0)T carrying the 2D chiralities. Also, N denotes
a normalization factor, given as N = (2m)1/4. Note that
the lack of ψ−,0 implies that the chiral spectra are real-
izable in the low energy effective theory. The zero-modes
(5) are localized at different regions on the torus T 2 and
their schematic shapes are Gaussian-like. The important
point is that the degeneracy of the zero-modes corresponds
to the family replication after dimensional reduction. Al-
though mode functions of the scalar are the same as those
of the spinor, an exception remains in the KK mass spec-
tra. Indeed, it is straightforwardly found that the KK mass
spectra of the spinor are calculated as

m2
n = 4πmn. (7)

(The KK mass spectra of the scalar are given as m2
n =

4πm(n + 1/2).) Although they are not necessary in this
Letter, the concrete wavefunctions of excited KKmodes ψn

and φn for n ≥ 1 are analytically calculated, as discussed
in Ref. [6].
III. (DE)CONSTRUCTION OF MAGNETIZED

DIMENSIONS

In order to (de)construct magnetized toroidal dimen-
sions, we start from the Wilson fermion on the 3D “Moose”
diagram in Fig. 1 or namely discretized three dimensions.
The parts associated with the seventh dimension of fields
satisfy the Dirichlet boundary condition. The Lagrangian
of the 4DWeyl spinor in three Cartesian coordinates reads:

L =
1

2

∑

ȳ

η̄ȳi

⎡

⎣
∑

M=5,6,7

ΓM

(
QM (ȳ)ηȳ+M̂ −Q†

M (ȳ − M̂)ηȳ−M̂

)
⎤

⎦−M0

∑

ȳ

η̄ȳηȳ

− 1

2

∑

ȳ

η̄ȳ

⎡

⎣
∑

M=5,6,7

(
QM (ȳ)ηȳ+M̂ +Q†

M (ȳ − M̂)ηȳ−M̂ − 2η̄ȳηȳ
)
⎤

⎦ , (8)

where ȳ ≡ (y5, y6, y7) is a discretized coordinate for
the 3D Moose diagram which is defined as yM ∈
{1/NM , 2/NM , · · · , 1} (M = 5, 6, 7), M̂ is a unit vector
for the M -th direction and ΓM is the gamma matrices for
extra three dimensions. As is the case with the lattice
gauge theory, ηȳ = ηȳ(x) and η̄ȳ = η̄ȳ(x) are regarded as
independent fermion fields each other in the 4D Minkowski
spacetime, and M0 is a real positive parameter of order
one. Since we are interested in the low energy spectrum of
the Dirac operator, thus we extract the low lying modes

of the Dirac operator as the same as the work in Ref. [7].
Here, QM (ȳ) is a link function for the M -th dimension,
which ensures the gauge invariance [8]. To be precise, af-
ter integrating out only the seventh direction of the latti-
cized fermion fields with a trivial link function Q7(ȳ) = 1
and a Pauli–Villars infrared regulator field, chiral fermions
are realized in the residual 2D, similarly to a derivation of
the overlap-Dirac operator in the context of the 4D lat-
tice gauge theory. For practical reasons, we employ the
Möbius domain-wall Dirac operator rather than the stan-
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We provide an origin of family replications in the standard model of particle physics by construct-
ing renormalizable, asymptotically free, four dimensional local gauge theories that dynamically
generate the fifth and sixth dimensions with magnetic fluxes.

I. INTRODUCTION

The standard model (SM) of elementary particle physics
still holds a mysterious puzzle in its matter contents. Who
ordered three copies of quarks and leptons in the SM? As
I. I. Rabi famously quipped for the muon: “Who ordered
that?”, up-type quarks (up u, charm c, top t), down-type
quarks (down d, strange s, bottom b), charged leptons
(electron e, muon µ, tauon τ) and neutrinos (electron
neutrino νe, muon neutrino νµ, tau neutrino ντ ) carry
the same quantum charges and are distinguished by their
Yukawa couplings to the Higgs boson, namely their masses.
After the SM was proposed, this simple and profound mys-
tery has been one of great interests in the SM over a long
period of history. Nevertheless, a satisfactory explanation
for an origin of three-generation structures has not been
naturally given from the viewpoint of four dimensional
(4D) field theory.

Among attempts to reveal an origin of triply multiple
copies of the SM fermions, a promising hypothesis is that
there exist compactified extra spacial dimensions in ad-
dition to 4D that we live in, although our world appar-
ently looks four dimensional. In higher dimensional the-
ories, fields are expanded by Kaluza–Klein (KK) expan-
sions, which are to decompose extra dimensional parts of
higher dimensional fields into a complete set spanned by
the KK mode wavefunctions. A novel proposal by Bachas
is based on quantized magnetic fluxes in toroidal compact-
ification [1], where the magnetic fluxes provide a degener-
acy of the lowest KK-expanded wavefunctions. The de-
generacy of the lowest KK modes should be regarded as
the family replication of matters after dimensional reduc-
tion. After the Bachas’s proposal, Ibanez et al. pointed
out that the degenerated mode functions can be analyti-
cally expressed by an elliptic function and discussed their
convergence properties [2].

However, such higher dimensional theories contain di-
mensionful coupling constants and are non-renormalizable.
Thus, these theories possess less predictability in general.
In 2001, Arkani-Hamed et al. proposed a splendid ul-
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traviolet (UV) completion, called (de)construction of an
extra dimension [3], where a fifth dimension can be ef-
fectively established by the multiplicity of 4D renormal-
izable gauge theories. In the paper, the authors utilized
the knowledge of lattice gauge theories to interpret the
non-renormalizable higher dimensional gauge theories by
renormalizable ones. As the results, latticized higher di-
mensional theories acquire a predictability without loss of
several essential properties.

In this Letter, we apply the (de)construction mechanism
to the flux compactification where there exists a (nontriv-
ial) topological index associated with the index theorem,
and construct renormalizable, asymptotically free, 4D lo-
cal gauge theories that dynamically generate the fifth and
sixth dimensions with magnetic fluxes. A main subject of
this study is to establish the UV completion of magnetized
toroidal compactifications and formulate latticized gauge
theories where the index theorem [4] is applicable. We find
that two dimensional Moose diagram is insufficient due to
the Nielsen–Ninomiya theorem [5] with the index theorem
for zero-modes where the index of the Dirac operator in the
latticized space is inevitably zero. Thus, it is remarkable
that it is necessary to treat three dimensional (3D) Moose
diagram to correctly regulate the theory from constructing
and deconstructing points of view.

II. MULTIPLE ZERO-MODES WITH FLUXES

Here, we briefly review an original theory proposed in
Ref. [2]. We consider a six dimensional (6D) gauge the-
ory that has magnetic fluxes (or magnetic monopoles)
in toroidal compactification T 2. It contains nonvanish-
ing flux background b =

∫
T 2 F of the field strength F =

(ib/2)dz ∧ dz̄, which is provided by a vector potential

A(b)(z) =
b

2
Im (z̄dz), (1)

where two Cartesian coordinates of the fifth and sixth di-
rections y5 and y6 are expressed by z ≡ (y5 + iy6)/2πR.

The single-valuedness of the 6D action under con-
tractible loops, e.g., z → z + 1 → z + 1 + i → z + i → z,

hF i = hF (b)
56 i 6= 0

y5, y6トーラスの座標：
z ⌘ (y5 + iy6)/(2⇡R)複素座標： 2⇡

R

Z

T 2

hF i = b磁場の”総量"：

U(1) 電荷： q

[Bachas ’95; Cremades, Ibanez, Marcheano ’04]

> 0



KK展開したmassless mode(s)が満たす式 
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(5) are localized at different regions on the torus T 2 and
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spectra of the spinor are calculated as

m2
n = 4πmn. (7)
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Here, QM (ȳ) is a link function for the M -th dimension,
which ensures the gauge invariance [8]. To be precise, af-
ter integrating out only the seventh direction of the latti-
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n = 0, 1, 2, ...

��n = mn�n � = {D†, D}/2with

iD/ n = mn n D = 2@/@z̄ + ⇡mzwith
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though mode functions of the scalar are the same as those
of the spinor, an exception remains in the KK mass spec-
tra. Indeed, it is straightforwardly found that the KK mass
spectra of the spinor are calculated as

m2
n = 4πmn. (7)

(The KK mass spectra of the scalar are given as m2
n =

4πm(n + 1/2).) Although they are not necessary in this
Letter, the concrete wavefunctions of excited KKmodes ψn

and φn for n ≥ 1 are analytically calculated, as discussed
in Ref. [6].
III. (DE)CONSTRUCTION OF MAGNETIZED

DIMENSIONS

In order to (de)construct magnetized toroidal dimen-
sions, we start from the Wilson fermion on the 3D “Moose”
diagram in Fig. 1 or namely discretized three dimensions.
The parts associated with the seventh dimension of fields
satisfy the Dirichlet boundary condition. The Lagrangian
of the 4DWeyl spinor in three Cartesian coordinates reads:

L =
1

2

∑

ȳ

η̄ȳi

⎡

⎣
∑

M=5,6,7

ΓM

(
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)
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)
⎤

⎦ , (8)

where ȳ ≡ (y5, y6, y7) is a discretized coordinate for
the 3D Moose diagram which is defined as yM ∈
{1/NM , 2/NM , · · · , 1} (M = 5, 6, 7), M̂ is a unit vector
for the M -th direction and ΓM is the gamma matrices for
extra three dimensions. As is the case with the lattice
gauge theory, ηȳ = ηȳ(x) and η̄ȳ = η̄ȳ(x) are regarded as
independent fermion fields each other in the 4D Minkowski
spacetime, and M0 is a real positive parameter of order
one. Since we are interested in the low energy spectrum of
the Dirac operator, thus we extract the low lying modes

of the Dirac operator as the same as the work in Ref. [7].
Here, QM (ȳ) is a link function for the M -th dimension,
which ensures the gauge invariance [8]. To be precise, af-
ter integrating out only the seventh direction of the latti-
cized fermion fields with a trivial link function Q7(ȳ) = 1
and a Pauli–Villars infrared regulator field, chiral fermions
are realized in the residual 2D, similarly to a derivation of
the overlap-Dirac operator in the context of the 4D lat-
tice gauge theory. For practical reasons, we employ the
Möbius domain-wall Dirac operator rather than the stan-
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2π
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We perform the KK decomposition of the 6D Weyl spinor
Ψ and scalar Φ by a complete set as
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Here, the KK-decomposed wavefunctions in the extra di-
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of the covariant derivative D = 2∂/∂z̄ + πmz and the
Laplace operator ∆ = {D†, D}/2 for extra dimensions as
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nφn, respectively, as defined
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complex values with Im τ > 0. On another hand, ψ−,0

possesses no normalizable zero-mode wavefunction, where
we decompose the two dimensional (2D) spinor as ψ0 =
(ψ+,0,ψ−,0)T carrying the 2D chiralities. Also, N denotes
a normalization factor, given as N = (2m)1/4. Note that
the lack of ψ−,0 implies that the chiral spectra are real-
izable in the low energy effective theory. The zero-modes
(5) are localized at different regions on the torus T 2 and
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point is that the degeneracy of the zero-modes corresponds
to the family replication after dimensional reduction. Al-
though mode functions of the scalar are the same as those
of the spinor, an exception remains in the KK mass spec-
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spectra of the spinor are calculated as
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(The KK mass spectra of the scalar are given as m2
n =

4πm(n + 1/2).) Although they are not necessary in this
Letter, the concrete wavefunctions of excited KKmodes ψn

and φn for n ≥ 1 are analytically calculated, as discussed
in Ref. [6].
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ȳ

η̄ȳηȳ
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{1/NM , 2/NM , · · · , 1} (M = 5, 6, 7), M̂ is a unit vector
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independent fermion fields each other in the 4D Minkowski
spacetime, and M0 is a real positive parameter of order
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Here, QM (ȳ) is a link function for the M -th dimension,
which ensures the gauge invariance [8]. To be precise, af-
ter integrating out only the seventh direction of the latti-
cized fermion fields with a trivial link function Q7(ȳ) = 1
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ヤコビのテータ関数：

：実変数↵,� ：複素変数⌫, ⌧

[Cremades, Ibanez, Marchesano ’04]

4Dで同じ表現の場が複数個に縮退 
→ 世代数

j=0, 1, 2, …, m-1

 �,0 ：規格化可能な解なし

pic from [Abe et al. ’14]

 0 = ( +,0,  �,0)
T

where,  +,0  �,0

：m個の各モード



確率密度：　　　　をプロットしてみる 

波動関数のガウシアン的局在：

波動関数の局在

 j
+,0 ⇠ e�(y6�j)2

[Cremades, Ibanez, Marchesano ’04]
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y6方向への局在性は，低エネルギー有効理論で， 
結合定数などの物理量に影響



3世代模型 
離散フレーバー対称性 
MSSM-like models 
動的超対称性の破れ 
Type I seesaw 
SUSY SO(10) + split SUSY 
SUSY SO(10) + flavor mixings 
モジュライ固定

この機構を使った現象論
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余剰次元模型は不幸にも「non-renormalizable」 

何がしかの理論の有効理論として考えるべき

UV completion

UV completionとしては2つの可能性が濃厚(私の知る限りでは)

超弦理論へ埋め込む 

次元脱構築により4D理論の寄せ集めとして理解する

利点：4Dの知識だけで理解可能．格子理論の知識も使える．一般の系にも応用可能 
難点：場合によっては計算コストはそこそこ必要

See a good textbook, [Ibanez, Uranga ’12]

利点：openstring sectorとして単純に埋め込める．e.g., magnetized D-branes 
難点：超弦理論がやはり難しい

今回はこちら



脱構築＝ 

余剰次元空間を格子化する：

次元脱構築

5D方向
y=0 y=2πR

our 4D方向 ：4D＋S1連続理論

[Arkani-Hamed, Cohen, Georgi ’01]

5D方向
y=0

：4D連続理論×1D格子理論

y=2πR

our 4D方向

複数個の繰り込み可能な4D理論だけで有効的に5D理論を実現
5D S1：Arkani-Hamed, Cohen, Georgi ’01
5D QED：Hill, Leibovich ’02

5D RS：Abe, Kobayashi, Maru, Yoshioka ’03
6D T2 with flux：our work

according to Wikipedia

形而上学の仕組みを解体し，その可能性の要素を抽出して再構築を試みる
哲学的思考の方法．(=deconstruction)



複数個のweak gauge groups G，strong gauge groups Gs
を繋げる：

次元脱構築  (続き)

KKスペクトラム(近似的に)再現できている

a = 1/(gfs), R = Na
/ f

3
s

ゲージ結合定数と，凝縮期待値を調整する： 

ゲージ場の質量行列を対角化すると，mk ' 2⇡|k|/R

Gsがカイラル凝縮して， 
複数個の非線形シグマ模型に
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定式化の前に，Nielsen-Ninomiyaの定理の復習：

ドメインウォール(DW)・フェルミオン

1) 格子上の並進対称性 
2) カイラル対称性 
3) エルミート性 
4) スピナー場の双一次形式 
5) 相互作用の局所性 

の全てが満たされるとき， 
フェルミオン・ダブラーが生じる

d次元空間のとき，2d-1個の不要モード

[Nielsen, Ninomiya ’81]

DWフェルミオン用の1次元空間を加え，境界条件とその方
向のバルク質量によりダブラーを重くする

指数定理に適用可余剰次元空間への磁場はtopological indexを稼ぐ 

ダブラーを避ける為，DWフェルミオンを用いる
→ DW用の格子数が大きいときOVフェルミオンへ

[Kaplan ’09]



トーラス用の2次元の格子(y5, y6)に加え，DW用の1次元格子
(y7)を考える：

定式化

2

demands the Dirac charge quantization,

qb

2π
= m ∈ Z. (2)

We perform the KK decomposition of the 6D Weyl spinor
Ψ and scalar Φ by a complete set as

Ψ(xµ, z) =
∑

n

χn(x
µ)⊗ ψn(z), (3)

Φ(xµ, z) =
∑

n

ϕn(x
µ)⊗ φn(z). (4)

for n = 0, 1, 2, · · · , where χn denotes 4D Weyl spinors.
Here, the KK-decomposed wavefunctions in the extra di-
mensional parts ψn and φn are chosen to be eigenstates
of the covariant derivative D = 2∂/∂z̄ + πmz and the
Laplace operator ∆ = {D†, D}/2 for extra dimensions as
i /Dψn = mnψn and ∆φn = m2

nφn, respectively, as defined
in Ref. [2]. In the Letter, we adopt a unit 2πR = 1 for
the compactification radius R and set a U(1) charge as
q = 1. On the flux background (1) for m > 0, the lowest
KK-decomposed modes ψ0 are m-multiply degenerated as

ψj
+,0(z) = N eπimzIm z ϑ

[
j/m

0

]
(mz,mi), (5)

with j = 0, 1, · · · ,m− 1 and the Jacobi theta function

ϑ

[
α

β

]
(ν, τ) =

∑

ℓ∈Z
eπi(α+ℓ)2τ+2πi(α+ℓ)(ν+β), (6)

where α and β are real parameters, and ν and τ take
complex values with Im τ > 0. On another hand, ψ−,0

possesses no normalizable zero-mode wavefunction, where
we decompose the two dimensional (2D) spinor as ψ0 =
(ψ+,0,ψ−,0)T carrying the 2D chiralities. Also, N denotes
a normalization factor, given as N = (2m)1/4. Note that
the lack of ψ−,0 implies that the chiral spectra are real-
izable in the low energy effective theory. The zero-modes
(5) are localized at different regions on the torus T 2 and
their schematic shapes are Gaussian-like. The important
point is that the degeneracy of the zero-modes corresponds
to the family replication after dimensional reduction. Al-
though mode functions of the scalar are the same as those
of the spinor, an exception remains in the KK mass spec-
tra. Indeed, it is straightforwardly found that the KK mass
spectra of the spinor are calculated as

m2
n = 4πmn. (7)

(The KK mass spectra of the scalar are given as m2
n =

4πm(n + 1/2).) Although they are not necessary in this
Letter, the concrete wavefunctions of excited KKmodes ψn

and φn for n ≥ 1 are analytically calculated, as discussed
in Ref. [6].
III. (DE)CONSTRUCTION OF MAGNETIZED

DIMENSIONS

In order to (de)construct magnetized toroidal dimen-
sions, we start from the Wilson fermion on the 3D “Moose”
diagram in Fig. 1 or namely discretized three dimensions.
The parts associated with the seventh dimension of fields
satisfy the Dirichlet boundary condition. The Lagrangian
of the 4DWeyl spinor in three Cartesian coordinates reads:

L =
1

2

∑

ȳ

η̄ȳi

⎡

⎣
∑

M=5,6,7

ΓM

(
QM (ȳ)ηȳ+M̂ −Q†

M (ȳ − M̂)ηȳ−M̂

)
⎤

⎦−M0

∑

ȳ

η̄ȳηȳ

− 1

2

∑

ȳ

η̄ȳ

⎡

⎣
∑

M=5,6,7

(
QM (ȳ)ηȳ+M̂ +Q†

M (ȳ − M̂)ηȳ−M̂ − 2η̄ȳηȳ
)
⎤

⎦ , (8)

where ȳ ≡ (y5, y6, y7) is a discretized coordinate for
the 3D Moose diagram which is defined as yM ∈
{1/NM , 2/NM , · · · , 1} (M = 5, 6, 7), M̂ is a unit vector
for the M -th direction and ΓM is the gamma matrices for
extra three dimensions. As is the case with the lattice
gauge theory, ηȳ = ηȳ(x) and η̄ȳ = η̄ȳ(x) are regarded as
independent fermion fields each other in the 4D Minkowski
spacetime, and M0 is a real positive parameter of order
one. Since we are interested in the low energy spectrum of
the Dirac operator, thus we extract the low lying modes

of the Dirac operator as the same as the work in Ref. [7].
Here, QM (ȳ) is a link function for the M -th dimension,
which ensures the gauge invariance [8]. To be precise, af-
ter integrating out only the seventh direction of the latti-
cized fermion fields with a trivial link function Q7(ȳ) = 1
and a Pauli–Villars infrared regulator field, chiral fermions
are realized in the residual 2D, similarly to a derivation of
the overlap-Dirac operator in the context of the 4D lat-
tice gauge theory. For practical reasons, we employ the
Möbius domain-wall Dirac operator rather than the stan-

3

dard domain-wall Dirac operator. This is due to the fact
that the Möbius domain-wall Dirac operator can realize
more appropriate chiral symmetry [9] only through a slight
extension of the seventh direction in comparison with the
standard one, e.g., Ref. [10]. Also, it is expected that the
Möbius domain-wall fermion with N7 lattice points be-
comes asymptotically equivalent to the standard one with
2N7 lattice points [11]. The Hermitian domain-wall Dirac
operator HDW [12] with the corresponding Pauli–Villars
infrared regulator filed is given in Refs. [9, 11] as

HDW =
1

2
sgnrat(HM ), (9)

where the matrix sign function sgnrat(HM ) by use of the
rational approximation is defined as

sgnrat(HM ) =
1− (T (HM ))N7

1 + (T (HM ))N7
, (10)

with the transfer matrix T (HM ) = (1 − HM )/(1 + HM ).
The kernel operator (the Hermitian Möbius-Dirac opera-
tor) HM is given as

HM = Γ7
2DW

2 +DW
, (11)

where Γ7 is a chirality operator, namely the Pauli matrix
σ3, and DW is the Wilson–Dirac operator with the mass
−M0. Here, 0 < M0 < 2 is required to realize a correct
pole structure, and we set M0 = 1. We adopt the same
choice of parameters as those reported in Ref. [13]. Note
that if we start from the overlap-Dirac operator, which is
realized in the limit of N7 → ∞ and it has an exact sign
function, the theory becomes nonlocal and phenomenolog-
ically unnatural.

To introduce magnetic flux background, we assume that
link functions QM (y5, y6) in the toroidal directions acquire
the following expectation values:

Q5(y5, y6) =

{
1 (y5 ̸= 1),

exp[−iby6] (y5 = 1),
(12)

Q6(y5, y6) = exp[iby5], (13)

where yM ∈ {1/NM , 2/NM , · · · , 1} (M = 5, 6), and b =
2πm is required from the consistency of single particle
wavefunction [14].

IV. (DE)CONSTRUCTED ZERO-MODE
WAVEFUNCTIONS

In order to obtain zero-mode wavefunctions, the main
task is to solve an eigenvalue problem,

HDWψ
(D)
n (y) = λnψ

(D)
n (y), (14)

where y ≡ (y5, y6). Eigenvalues and eigenvectors in the
eigenvalue problem correspond to the KK-decomposed

FIG. 1. A schematic picture of three dimensionally extended
Moose diagram (or discretized toroidal extra directions plus an-
other direction associated with the domain-wall fermion), which
is necessary to utilize the index theorem. Link functions QM (ȳ)
with ȳ = (y5, y6, y7) and M = 5, 6, 7, correspond to gauge fields
in the lattice gauge theory.

mass spectra and mode functions. To realize Gaussian-
localized zero-modes, it is necessary to select appropriate
bases out of eigenvectors in Eq. (14) such that all of kinetic
terms are canonically normalized. This is because, on the
lattice, there is no reason to be eigenstates of a covariant
translational operator Ỹ defined in Ref. [15]. Note that
the zero-mode wavefunctions in Ref. [2] are all eigenstates
of the operator Ỹ .

In our practical calculation, we take the number of lat-
tice points in the seventh direction is sixteen, i.e., N7 = 16,
and set N5 = N6 = 30, 20 and 10 for comparison. Also,
we fix the number of magnetic fluxes as m = 3. Our code
is implemented by Python 3.4 and Numpy with Cython
from the scratch, and the calculation is performed in our
laptop and desktop computers. By the setup previously
shown, it is possible to realize localization profiles of the
KK wavefunctions as well as several lower modes of the
KK mass spectra m2

n = 4πmn (7) as shown in Fig. 2. It is
remarkable that negative chirality modes never appear in
the lowest eigenvalues, as recognized in the continuum the-
ory, and thus the (de)construction mechanism also lead to
chirality projection via the presence of nonvanishing fluxes
(monopoles). Note that the degeneracy of each of KK lev-
els is controlled by N7, while the mass squared ratios of
the KK spectra are determined by N5 and N6. The de-
viation between the continuum and (de)constructed theo-
ries can be recognized, depending on the numbers of N5

and N6. Next, we depict the (de)constructed zero-mode

wavefunctions ψ(D),i
0 (i = 0, 1, 2) in Fig. 3, where one can

easily find satisfactory agreements between each of zero-
mode wavefunctions for Eq. (14) and those in the contin-
uum theory (5). It is also found that the scalar compo-
nents are discretely realized in a similar manner. Thus,
we conclude that the magnetized extra dimensions can be
(de)constructed.

解きたいエネルギー固有値方程式：
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that if we start from the overlap-Dirac operator, which is
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with ȳ = (y5, y6, y7) and M = 5, 6, 7, correspond to gauge fields
in the lattice gauge theory.

mass spectra and mode functions. To realize Gaussian-
localized zero-modes, it is necessary to select appropriate
bases out of eigenvectors in Eq. (14) such that all of kinetic
terms are canonically normalized. This is because, on the
lattice, there is no reason to be eigenstates of a covariant
translational operator Ỹ defined in Ref. [15]. Note that
the zero-mode wavefunctions in Ref. [2] are all eigenstates
of the operator Ỹ .

In our practical calculation, we take the number of lat-
tice points in the seventh direction is sixteen, i.e., N7 = 16,
and set N5 = N6 = 30, 20 and 10 for comparison. Also,
we fix the number of magnetic fluxes as m = 3. Our code
is implemented by Python 3.4 and Numpy with Cython
from the scratch, and the calculation is performed in our
laptop and desktop computers. By the setup previously
shown, it is possible to realize localization profiles of the
KK wavefunctions as well as several lower modes of the
KK mass spectra m2

n = 4πmn (7) as shown in Fig. 2. It is
remarkable that negative chirality modes never appear in
the lowest eigenvalues, as recognized in the continuum the-
ory, and thus the (de)construction mechanism also lead to
chirality projection via the presence of nonvanishing fluxes
(monopoles). Note that the degeneracy of each of KK lev-
els is controlled by N7, while the mass squared ratios of
the KK spectra are determined by N5 and N6. The de-
viation between the continuum and (de)constructed theo-
ries can be recognized, depending on the numbers of N5

and N6. Next, we depict the (de)constructed zero-mode

wavefunctions ψ(D),i
0 (i = 0, 1, 2) in Fig. 3, where one can

easily find satisfactory agreements between each of zero-
mode wavefunctions for Eq. (14) and those in the contin-
uum theory (5). It is also found that the scalar compo-
nents are discretely realized in a similar manner. Thus,
we conclude that the magnetized extra dimensions can be
(de)constructed.
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dard domain-wall Dirac operator. This is due to the fact
that the Möbius domain-wall Dirac operator can realize
more appropriate chiral symmetry [9] only through a slight
extension of the seventh direction in comparison with the
standard one, e.g., Ref. [10]. Also, it is expected that the
Möbius domain-wall fermion with N7 lattice points be-
comes asymptotically equivalent to the standard one with
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operator HDW [12] with the corresponding Pauli–Villars
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σ3, and DW is the Wilson–Dirac operator with the mass
−M0. Here, 0 < M0 < 2 is required to realize a correct
pole structure, and we set M0 = 1. We adopt the same
choice of parameters as those reported in Ref. [13]. Note
that if we start from the overlap-Dirac operator, which is
realized in the limit of N7 → ∞ and it has an exact sign
function, the theory becomes nonlocal and phenomenolog-
ically unnatural.

To introduce magnetic flux background, we assume that
link functions QM (y5, y6) in the toroidal directions acquire
the following expectation values:

Q5(y5, y6) =

{
1 (y5 ̸= 1),

exp[−iby6] (y5 = 1),
(12)

Q6(y5, y6) = exp[iby5], (13)

where yM ∈ {1/NM , 2/NM , · · · , 1} (M = 5, 6), and b =
2πm is required from the consistency of single particle
wavefunction [14].

IV. (DE)CONSTRUCTED ZERO-MODE
WAVEFUNCTIONS

In order to obtain zero-mode wavefunctions, the main
task is to solve an eigenvalue problem,
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where y ≡ (y5, y6). Eigenvalues and eigenvectors in the
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is necessary to utilize the index theorem. Link functions QM (ȳ)
with ȳ = (y5, y6, y7) and M = 5, 6, 7, correspond to gauge fields
in the lattice gauge theory.
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bases out of eigenvectors in Eq. (14) such that all of kinetic
terms are canonically normalized. This is because, on the
lattice, there is no reason to be eigenstates of a covariant
translational operator Ỹ defined in Ref. [15]. Note that
the zero-mode wavefunctions in Ref. [2] are all eigenstates
of the operator Ỹ .

In our practical calculation, we take the number of lat-
tice points in the seventh direction is sixteen, i.e., N7 = 16,
and set N5 = N6 = 30, 20 and 10 for comparison. Also,
we fix the number of magnetic fluxes as m = 3. Our code
is implemented by Python 3.4 and Numpy with Cython
from the scratch, and the calculation is performed in our
laptop and desktop computers. By the setup previously
shown, it is possible to realize localization profiles of the
KK wavefunctions as well as several lower modes of the
KK mass spectra m2

n = 4πmn (7) as shown in Fig. 2. It is
remarkable that negative chirality modes never appear in
the lowest eigenvalues, as recognized in the continuum the-
ory, and thus the (de)construction mechanism also lead to
chirality projection via the presence of nonvanishing fluxes
(monopoles). Note that the degeneracy of each of KK lev-
els is controlled by N7, while the mass squared ratios of
the KK spectra are determined by N5 and N6. The de-
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ries can be recognized, depending on the numbers of N5
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0 (i = 0, 1, 2) in Fig. 3, where one can

easily find satisfactory agreements between each of zero-
mode wavefunctions for Eq. (14) and those in the contin-
uum theory (5). It is also found that the scalar compo-
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dard domain-wall Dirac operator. This is due to the fact
that the Möbius domain-wall Dirac operator can realize
more appropriate chiral symmetry [9] only through a slight
extension of the seventh direction in comparison with the
standard one, e.g., Ref. [10]. Also, it is expected that the
Möbius domain-wall fermion with N7 lattice points be-
comes asymptotically equivalent to the standard one with
2N7 lattice points [11]. The Hermitian domain-wall Dirac
operator HDW [12] with the corresponding Pauli–Villars
infrared regulator filed is given in Refs. [9, 11] as

HDW =
1
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sgnrat(HM ), (9)

where the matrix sign function sgnrat(HM ) by use of the
rational approximation is defined as
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with the transfer matrix T (HM ) = (1 − HM )/(1 + HM ).
The kernel operator (the Hermitian Möbius-Dirac opera-
tor) HM is given as

HM = Γ7
2DW

2 +DW
, (11)

where Γ7 is a chirality operator, namely the Pauli matrix
σ3, and DW is the Wilson–Dirac operator with the mass
−M0. Here, 0 < M0 < 2 is required to realize a correct
pole structure, and we set M0 = 1. We adopt the same
choice of parameters as those reported in Ref. [13]. Note
that if we start from the overlap-Dirac operator, which is
realized in the limit of N7 → ∞ and it has an exact sign
function, the theory becomes nonlocal and phenomenolog-
ically unnatural.

To introduce magnetic flux background, we assume that
link functions QM (y5, y6) in the toroidal directions acquire
the following expectation values:

Q5(y5, y6) =

{
1 (y5 ̸= 1),

exp[−iby6] (y5 = 1),
(12)

Q6(y5, y6) = exp[iby5], (13)

where yM ∈ {1/NM , 2/NM , · · · , 1} (M = 5, 6), and b =
2πm is required from the consistency of single particle
wavefunction [14].

IV. (DE)CONSTRUCTED ZERO-MODE
WAVEFUNCTIONS

In order to obtain zero-mode wavefunctions, the main
task is to solve an eigenvalue problem,

HDWψ
(D)
n (y) = λnψ

(D)
n (y), (14)

where y ≡ (y5, y6). Eigenvalues and eigenvectors in the
eigenvalue problem correspond to the KK-decomposed

FIG. 1. A schematic picture of three dimensionally extended
Moose diagram (or discretized toroidal extra directions plus an-
other direction associated with the domain-wall fermion), which
is necessary to utilize the index theorem. Link functions QM (ȳ)
with ȳ = (y5, y6, y7) and M = 5, 6, 7, correspond to gauge fields
in the lattice gauge theory.

mass spectra and mode functions. To realize Gaussian-
localized zero-modes, it is necessary to select appropriate
bases out of eigenvectors in Eq. (14) such that all of kinetic
terms are canonically normalized. This is because, on the
lattice, there is no reason to be eigenstates of a covariant
translational operator Ỹ defined in Ref. [15]. Note that
the zero-mode wavefunctions in Ref. [2] are all eigenstates
of the operator Ỹ .

In our practical calculation, we take the number of lat-
tice points in the seventh direction is sixteen, i.e., N7 = 16,
and set N5 = N6 = 30, 20 and 10 for comparison. Also,
we fix the number of magnetic fluxes as m = 3. Our code
is implemented by Python 3.4 and Numpy with Cython
from the scratch, and the calculation is performed in our
laptop and desktop computers. By the setup previously
shown, it is possible to realize localization profiles of the
KK wavefunctions as well as several lower modes of the
KK mass spectra m2

n = 4πmn (7) as shown in Fig. 2. It is
remarkable that negative chirality modes never appear in
the lowest eigenvalues, as recognized in the continuum the-
ory, and thus the (de)construction mechanism also lead to
chirality projection via the presence of nonvanishing fluxes
(monopoles). Note that the degeneracy of each of KK lev-
els is controlled by N7, while the mass squared ratios of
the KK spectra are determined by N5 and N6. The de-
viation between the continuum and (de)constructed theo-
ries can be recognized, depending on the numbers of N5

and N6. Next, we depict the (de)constructed zero-mode

wavefunctions ψ(D),i
0 (i = 0, 1, 2) in Fig. 3, where one can

easily find satisfactory agreements between each of zero-
mode wavefunctions for Eq. (14) and those in the contin-
uum theory (5). It is also found that the scalar compo-
nents are discretely realized in a similar manner. Thus,
we conclude that the magnetized extra dimensions can be
(de)constructed.
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dard domain-wall Dirac operator. This is due to the fact
that the Möbius domain-wall Dirac operator can realize
more appropriate chiral symmetry [9] only through a slight
extension of the seventh direction in comparison with the
standard one, e.g., Ref. [10]. Also, it is expected that the
Möbius domain-wall fermion with N7 lattice points be-
comes asymptotically equivalent to the standard one with
2N7 lattice points [11]. The Hermitian domain-wall Dirac
operator HDW [12] with the corresponding Pauli–Villars
infrared regulator filed is given in Refs. [9, 11] as

HDW =
1

2
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where the matrix sign function sgnrat(HM ) by use of the
rational approximation is defined as

sgnrat(HM ) =
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, (10)

with the transfer matrix T (HM ) = (1 − HM )/(1 + HM ).
The kernel operator (the Hermitian Möbius-Dirac opera-
tor) HM is given as

HM = Γ7
2DW

2 +DW
, (11)

where Γ7 is a chirality operator, namely the Pauli matrix
σ3, and DW is the Wilson–Dirac operator with the mass
−M0. Here, 0 < M0 < 2 is required to realize a correct
pole structure, and we set M0 = 1. We adopt the same
choice of parameters as those reported in Ref. [13]. Note
that if we start from the overlap-Dirac operator, which is
realized in the limit of N7 → ∞ and it has an exact sign
function, the theory becomes nonlocal and phenomenolog-
ically unnatural.

To introduce magnetic flux background, we assume that
link functions QM (y5, y6) in the toroidal directions acquire
the following expectation values:

Q5(y5, y6) =

{
1 (y5 ̸= 1),

exp[−iby6] (y5 = 1),
(12)

Q6(y5, y6) = exp[iby5], (13)

where yM ∈ {1/NM , 2/NM , · · · , 1} (M = 5, 6), and b =
2πm is required from the consistency of single particle
wavefunction [14].

IV. (DE)CONSTRUCTED ZERO-MODE
WAVEFUNCTIONS

In order to obtain zero-mode wavefunctions, the main
task is to solve an eigenvalue problem,

HDWψ
(D)
n (y) = λnψ

(D)
n (y), (14)

where y ≡ (y5, y6). Eigenvalues and eigenvectors in the
eigenvalue problem correspond to the KK-decomposed

FIG. 1. A schematic picture of three dimensionally extended
Moose diagram (or discretized toroidal extra directions plus an-
other direction associated with the domain-wall fermion), which
is necessary to utilize the index theorem. Link functions QM (ȳ)
with ȳ = (y5, y6, y7) and M = 5, 6, 7, correspond to gauge fields
in the lattice gauge theory.

mass spectra and mode functions. To realize Gaussian-
localized zero-modes, it is necessary to select appropriate
bases out of eigenvectors in Eq. (14) such that all of kinetic
terms are canonically normalized. This is because, on the
lattice, there is no reason to be eigenstates of a covariant
translational operator Ỹ defined in Ref. [15]. Note that
the zero-mode wavefunctions in Ref. [2] are all eigenstates
of the operator Ỹ .

In our practical calculation, we take the number of lat-
tice points in the seventh direction is sixteen, i.e., N7 = 16,
and set N5 = N6 = 30, 20 and 10 for comparison. Also,
we fix the number of magnetic fluxes as m = 3. Our code
is implemented by Python 3.4 and Numpy with Cython
from the scratch, and the calculation is performed in our
laptop and desktop computers. By the setup previously
shown, it is possible to realize localization profiles of the
KK wavefunctions as well as several lower modes of the
KK mass spectra m2

n = 4πmn (7) as shown in Fig. 2. It is
remarkable that negative chirality modes never appear in
the lowest eigenvalues, as recognized in the continuum the-
ory, and thus the (de)construction mechanism also lead to
chirality projection via the presence of nonvanishing fluxes
(monopoles). Note that the degeneracy of each of KK lev-
els is controlled by N7, while the mass squared ratios of
the KK spectra are determined by N5 and N6. The de-
viation between the continuum and (de)constructed theo-
ries can be recognized, depending on the numbers of N5

and N6. Next, we depict the (de)constructed zero-mode

wavefunctions ψ(D),i
0 (i = 0, 1, 2) in Fig. 3, where one can

easily find satisfactory agreements between each of zero-
mode wavefunctions for Eq. (14) and those in the contin-
uum theory (5). It is also found that the scalar compo-
nents are discretely realized in a similar manner. Thus,
we conclude that the magnetized extra dimensions can be
(de)constructed.
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dard domain-wall Dirac operator. This is due to the fact
that the Möbius domain-wall Dirac operator can realize
more appropriate chiral symmetry [9] only through a slight
extension of the seventh direction in comparison with the
standard one, e.g., Ref. [10]. Also, it is expected that the
Möbius domain-wall fermion with N7 lattice points be-
comes asymptotically equivalent to the standard one with
2N7 lattice points [11]. The Hermitian domain-wall Dirac
operator HDW [12] with the corresponding Pauli–Villars
infrared regulator filed is given in Refs. [9, 11] as

HDW =
1

2
sgnrat(HM ), (9)

where the matrix sign function sgnrat(HM ) by use of the
rational approximation is defined as

sgnrat(HM ) =
1− (T (HM ))N7

1 + (T (HM ))N7
, (10)

with the transfer matrix T (HM ) = (1 − HM )/(1 + HM ).
The kernel operator (the Hermitian Möbius-Dirac opera-
tor) HM is given as

HM = Γ7
2DW

2 +DW
, (11)

where Γ7 is a chirality operator, namely the Pauli matrix
σ3, and DW is the Wilson–Dirac operator with the mass
−M0. Here, 0 < M0 < 2 is required to realize a correct
pole structure, and we set M0 = 1. We adopt the same
choice of parameters as those reported in Ref. [13]. Note
that if we start from the overlap-Dirac operator, which is
realized in the limit of N7 → ∞ and it has an exact sign
function, the theory becomes nonlocal and phenomenolog-
ically unnatural.

To introduce magnetic flux background, we assume that
link functions QM (y5, y6) in the toroidal directions acquire
the following expectation values:

Q5(y5, y6) =

{
1 (y5 ̸= 1),

exp[−iby6] (y5 = 1),
(12)

Q6(y5, y6) = exp[iby5], (13)

where yM ∈ {1/NM , 2/NM , · · · , 1} (M = 5, 6), and b =
2πm is required from the consistency of single particle
wavefunction [14].

IV. (DE)CONSTRUCTED ZERO-MODE
WAVEFUNCTIONS

In order to obtain zero-mode wavefunctions, the main
task is to solve an eigenvalue problem,

HDWψ
(D)
n (y) = λnψ

(D)
n (y), (14)

where y ≡ (y5, y6). Eigenvalues and eigenvectors in the
eigenvalue problem correspond to the KK-decomposed

FIG. 1. A schematic picture of three dimensionally extended
Moose diagram (or discretized toroidal extra directions plus an-
other direction associated with the domain-wall fermion), which
is necessary to utilize the index theorem. Link functions QM (ȳ)
with ȳ = (y5, y6, y7) and M = 5, 6, 7, correspond to gauge fields
in the lattice gauge theory.

mass spectra and mode functions. To realize Gaussian-
localized zero-modes, it is necessary to select appropriate
bases out of eigenvectors in Eq. (14) such that all of kinetic
terms are canonically normalized. This is because, on the
lattice, there is no reason to be eigenstates of a covariant
translational operator Ỹ defined in Ref. [15]. Note that
the zero-mode wavefunctions in Ref. [2] are all eigenstates
of the operator Ỹ .

In our practical calculation, we take the number of lat-
tice points in the seventh direction is sixteen, i.e., N7 = 16,
and set N5 = N6 = 30, 20 and 10 for comparison. Also,
we fix the number of magnetic fluxes as m = 3. Our code
is implemented by Python 3.4 and Numpy with Cython
from the scratch, and the calculation is performed in our
laptop and desktop computers. By the setup previously
shown, it is possible to realize localization profiles of the
KK wavefunctions as well as several lower modes of the
KK mass spectra m2

n = 4πmn (7) as shown in Fig. 2. It is
remarkable that negative chirality modes never appear in
the lowest eigenvalues, as recognized in the continuum the-
ory, and thus the (de)construction mechanism also lead to
chirality projection via the presence of nonvanishing fluxes
(monopoles). Note that the degeneracy of each of KK lev-
els is controlled by N7, while the mass squared ratios of
the KK spectra are determined by N5 and N6. The de-
viation between the continuum and (de)constructed theo-
ries can be recognized, depending on the numbers of N5

and N6. Next, we depict the (de)constructed zero-mode

wavefunctions ψ(D),i
0 (i = 0, 1, 2) in Fig. 3, where one can

easily find satisfactory agreements between each of zero-
mode wavefunctions for Eq. (14) and those in the contin-
uum theory (5). It is also found that the scalar compo-
nents are discretely realized in a similar manner. Thus,
we conclude that the magnetized extra dimensions can be
(de)constructed.
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FIG. 2. The KK spectra in the continuum (black cross symbols)
and (de)constructed (colored dots) theories, where the square
(rhombus and circle) symbols denote those of N5 = N6 = 30
(20 and 10), respectively.

V. CONCLUSION AND DISCUSSION

In this Letter, we have reconstructed the toroidal com-
pactification with magnetic fluxes on the basis of an idea by
Arkani-Hamed et al., (de)construction. As a main result,
we have concretely established the renormalizable, asymp-
totically free, four dimensional local gauge theories where
family replications, e.g., three-generation structures of the
SM fermions, originate from nonvanishing magnetic fluxes
in the toroidal compactification. Because the toroidal com-
pactification with fluxes possesses nontrivial topological in-
dex, it turned out that the (de)construction of such a sit-
uation is required to utilize the three dimensional Moose
diagram with the Wilson fermion, namely the domain-wall
fermion. This is why the the Ginsparg–Wilson relation
[16] along with extra dimensional directions approximately
holds. In this case, since the total topological index is
zero, contributions from the zero-modes and the heaviest
KK modes (i.e., doubler modes) cancel out each other. As
long as we focus on the lower modes, nontrival topological
index is effectively realized for the 6D theory. In addition,
the localization profiles of multiple zero-mode wavefunc-
tions in the continuum theory have been realized by the
multiplicity of the latticized gauge theories. It should be
noted that from (de)constructing points of view, we as-
sume the exact four dimensional chiral gauge theories in
our setup, and the formulation of the chiral gauge theories
is beyond the scope of our paper.

Although it is not mentioned in the main text, we
can reproduce effective coupling constants, especially
(three-point) Yukawa coupling constants, after dimen-
sional reduction. If we focus on the lowest modes
among the KK-decomposed modes, the 6D fields are ex-
pressed as Ψ(xµ, z) =

∑
j χ

j
0(x

µ)ψj
+,0(z) and Φ(xµ, z) =

∑
j ϕ

j
0(x

µ)φj+,0(z), respectively. Then, integrating out
6D Yukawa interaction terms, e.g., the interaction among
quarks and the Higgs boson in the SM, along two extra

dimensions is expressed as

LYukawa ∝
∫

T 2

d2zΨ(xµ, z)Ψ̄(xµ, z)Φ(xµ, z)

=

(∫

T 2

d2z ψi
+,0(z)

(
ψj
+,0(z)

)†
φk0(z)

)

× χi
0(x

µ)χ̄j
0(x

µ)ϕk
0(x

µ). (15)

Thus, the effective Yukawa couplings are calculated by
overlap integrations of three kinds of the zero-mode wave-
functions [2]:

yijk =

∫

T 2

d2z ψi
+,0(z)

(
ψj
+,0(z)

)†
φk0(z), (16)

up to an overall factor. Since the zero-mode wavefunc-
tions succeeded to be (de)constructed, the corresponding
Yukawa coupling constants should be calculated as follows:

y(D)
ijk =

∑

y

ψ(D),i(y)
(
ψ(D),j(y)

)†
φ(D),k(y). (17)

Detailed analyses of the (de)constructed Yukawa couplings
are left for our future work. In particular, corrections from
small values of N5, N6 and N7 to Yukawa couplings are
characteristic features of our setup. Those might be de-
tected in the future experiments [17].

As a related topic, the lattice quantum chromodynamics
with magnetic fluxes is actively investigated in the context
of the relativistic heavy ion collision at LHC and RHIC. El-
liptic flows of the quark gluon plasma generate the hugest
magnetic field in the world, and thus researches of the
equation of states and phase transition with external mag-
netic fluxes have attracted much attentions [18–20]. A cru-
cial difference between such researches and ours appears in
a coupling to gluons, which makes the system under con-
sideration more intricate, and for example they derive chi-
ral symmetry breaking. For this reason, our setup is not
related to such researches directly. However, our research
in this Letter provides a great insight of the role of chiral
symmetry on the lattice in the presence of the external
magnetic fluxes.

It should be mentioned to a relation between our model
and an effective Hamiltonian of 3D topological insulators
(TI) [21, 22]. As introduced previously, our Lagrangian is
the Wilson fermion in the 3D, and is coincident with the
effective Hamiltonian of 3D TI. Recently, surface states of
3D TI with the external magnetic field have been observed
in an experiment [23]. It would indicate that the physics of
3D TI is the same as the extra dimensional theory which
can predict family replications of elementary particles.
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V. CONCLUSION AND DISCUSSION

In this Letter, we have reconstructed the toroidal com-
pactification with magnetic fluxes on the basis of an idea by
Arkani-Hamed et al., (de)construction. As a main result,
we have concretely established the renormalizable, asymp-
totically free, four dimensional local gauge theories where
family replications, e.g., three-generation structures of the
SM fermions, originate from nonvanishing magnetic fluxes
in the toroidal compactification. Because the toroidal com-
pactification with fluxes possesses nontrivial topological in-
dex, it turned out that the (de)construction of such a sit-
uation is required to utilize the three dimensional Moose
diagram with the Wilson fermion, namely the domain-wall
fermion. This is why the the Ginsparg–Wilson relation
[16] along with extra dimensional directions approximately
holds. In this case, since the total topological index is
zero, contributions from the zero-modes and the heaviest
KK modes (i.e., doubler modes) cancel out each other. As
long as we focus on the lower modes, nontrival topological
index is effectively realized for the 6D theory. In addition,
the localization profiles of multiple zero-mode wavefunc-
tions in the continuum theory have been realized by the
multiplicity of the latticized gauge theories. It should be
noted that from (de)constructing points of view, we as-
sume the exact four dimensional chiral gauge theories in
our setup, and the formulation of the chiral gauge theories
is beyond the scope of our paper.

Although it is not mentioned in the main text, we
can reproduce effective coupling constants, especially
(three-point) Yukawa coupling constants, after dimen-
sional reduction. If we focus on the lowest modes
among the KK-decomposed modes, the 6D fields are ex-
pressed as Ψ(xµ, z) =

∑
j χ

j
0(x

µ)ψj
+,0(z) and Φ(xµ, z) =

∑
j ϕ

j
0(x

µ)φj+,0(z), respectively. Then, integrating out
6D Yukawa interaction terms, e.g., the interaction among
quarks and the Higgs boson in the SM, along two extra

dimensions is expressed as

LYukawa ∝
∫

T 2

d2zΨ(xµ, z)Ψ̄(xµ, z)Φ(xµ, z)

=

(∫

T 2

d2z ψi
+,0(z)

(
ψj
+,0(z)

)†
φk0(z)

)

× χi
0(x

µ)χ̄j
0(x

µ)ϕk
0(x

µ). (15)

Thus, the effective Yukawa couplings are calculated by
overlap integrations of three kinds of the zero-mode wave-
functions [2]:

yijk =

∫

T 2

d2z ψi
+,0(z)

(
ψj
+,0(z)

)†
φk0(z), (16)

up to an overall factor. Since the zero-mode wavefunc-
tions succeeded to be (de)constructed, the corresponding
Yukawa coupling constants should be calculated as follows:

y(D)
ijk =

∑

y

ψ(D),i(y)
(
ψ(D),j(y)

)†
φ(D),k(y). (17)

Detailed analyses of the (de)constructed Yukawa couplings
are left for our future work. In particular, corrections from
small values of N5, N6 and N7 to Yukawa couplings are
characteristic features of our setup. Those might be de-
tected in the future experiments [17].

As a related topic, the lattice quantum chromodynamics
with magnetic fluxes is actively investigated in the context
of the relativistic heavy ion collision at LHC and RHIC. El-
liptic flows of the quark gluon plasma generate the hugest
magnetic field in the world, and thus researches of the
equation of states and phase transition with external mag-
netic fluxes have attracted much attentions [18–20]. A cru-
cial difference between such researches and ours appears in
a coupling to gluons, which makes the system under con-
sideration more intricate, and for example they derive chi-
ral symmetry breaking. For this reason, our setup is not
related to such researches directly. However, our research
in this Letter provides a great insight of the role of chiral
symmetry on the lattice in the presence of the external
magnetic fluxes.

It should be mentioned to a relation between our model
and an effective Hamiltonian of 3D topological insulators
(TI) [21, 22]. As introduced previously, our Lagrangian is
the Wilson fermion in the 3D, and is coincident with the
effective Hamiltonian of 3D TI. Recently, surface states of
3D TI with the external magnetic field have been observed
in an experiment [23]. It would indicate that the physics of
3D TI is the same as the extra dimensional theory which
can predict family replications of elementary particles.
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