2017年8月1日 @ 京大基研,素粒子物理学の進展

ヒッグスLFVに伴うCLFV過程 $\mu N(eN) \rightarrow \tau X$

M. Takeuchi, YU, & M. Yamanaka, Phys. Lett. B **772**, 279 (2017). arXiv:1705:01059 [hep-ph].

共同研究者

竹内道久²,山中真人³ ¹阪大理,²東大IPMU,³京産大益川塾

目次

1. 導入

- ▶ 荷電レプトンフレーバーの破れ (CLFV)
- > ヒッグス稀崩壊 h → µτ

 $\succ \mu N(eN) \rightarrow \tau X 過程$

2. 定式化

Deep inelastic scattering (DIS)

- $\succ \ell g \to \tau g$
- $\succ \ell g \to \tau q \overline{q}$

3. 結果

4. まとめ

Charged Lepton Flavor Violation (CLFV)

- 新物理探索の有力候補 -

	<i>e</i> ⁻	μ_	$ au^-$	ν_e	ν_{μ}	$\nu_{ au}$	<i>e</i> ⁺	μ^+	$ au^+$	$\overline{\nu_e}$	$\overline{\nu_{\mu}}$	$\overline{\nu_{ au}}$	他
L_e	+1	0	0	+1	0	0	-1	0	0	-1	0	0	0
L_{μ}	0	+1	0	0	+1	0	0	-1	0	0	-1	0	0
L_{τ}	0	0	+1	0	0	+1	0	0	-1	0	0	-1	0

▶ 荷電レプトンにおけるレプトンフレーバー数の破れ = CLFV

例) $\mu^+ \rightarrow e^+\gamma$, $\mu^+ \rightarrow e^+e^-e^+$, $\mu^-N \rightarrow e^-N$, $\tau^+ \rightarrow \mu^+\gamma$, etc.

✓ "ニュートリノセクターでのレプトンフレーバーの破れ"は既知 (ニュートリノ振動)

Higgs "CLFV" decay

• 2015年に LFV 崩壊の報告 (CMSによれば SMから 2.4σ のズレ)

$$Br(h \to \mu \tau) = 0.82 \pm 0.33 \%$$

(CMS & ATLAS, combined)

・上限値 (信頼水準 95%) Br $(h \to \mu \tau) < 1.20$ % $\int |Y_{\tau\mu}|^2 + |Y_{\mu\tau}|^2 < 3.16 \times 10^{-3}$ (参考: Br $(h \to e\tau) < 0.70$ % Br $(h \to e\mu) < 0.036$ %

もしhiggsがLFVを持つならば、他のCLFV探索に影響があるのでは?

τレプトンを用いたCLFV崩壊探索

▶ B-factoryの副産物を利用

$\mu N(eN) \rightarrow \tau X$ 過程

τ

X

N

軽レプトン (e, μ) を核子Nにぶつけて、 τ を生成

これまでの探索例:

H1: Search for LFV $(e^-p: 13.7 \text{ pb}^{-1})$, $e^+p: 66.5 \, \mathrm{pb}^{-1}$) Selection results Selection efficiency HERA (ep collider) での S_0^R V_0^R $\tilde{S}_{1/2}^L$ $V_{1/2}^{L}$ Channel Data SM MC m_{LQ} e^-p 60.9% 57.7% $ep \rightarrow \mu X$ 0 0.18 ± 0.06 150 GeV58.0%60.1% Leptoquark探索 500 GeV 47.2% 38.5% 42.3%37.8% e^+p 57.9%58.7%0 1.03 ± 0.32 150 GeV55.5%55.8%500 GeV40.9% 40.5%36.6% 41.4% $ep \rightarrow \tau X$ e^-p 0 0.75 ± 0.21 150 GeV28.3%27.6%27.1%28.1%Aktas et al., Eur. Phys. J. C 52, 833 (2007). 21.3%500 GeV 14.4% 17.1% 13.8% e^+p 1 4.90 ± 0.85 150 GeV26.8%26.4%26.9%27.0%16.7%14.1%500 GeV17.0% 17.3%7.8%8.9% $ep \rightarrow \tau X$ e^-p 0 0.28 ± 0.19 150 GeV9.0% 7.6% $\hookrightarrow \tau \rightarrow e\nu_e\nu_\tau$ 500 GeV 6.7%4.0%5.2%3.8% 8.3% 7.2%7.3% e^+p 0 1.24 ± 0.55 150 GeV8.4%5.1%500 GeV4.8% 4.0%5.3% $ep \rightarrow \tau X$ 0 0.18 ± 0.06 150 GeV 7.4%7.6%7.6%7.4% e^-p 500 GeV 6.3%4.7%5.4%4.6% $\hookrightarrow \tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ e^+p 0 1.03 ± 0.32 150 GeV7.8% 8.0% 8.1% 7.8%500 GeV 5.2%5.2%4.5%5.3%11.9%12.2%11.9%11.8% $ep \rightarrow \tau X$ e^-p 0 0.29 ± 0.06 150 GeV $\hookrightarrow \tau \rightarrow h\nu_{\tau}$ 500 GeV 8.3% 5.7% 6.5% 5.4% e^+p 1 2.63 ± 0.57 150 GeV10.7% 11.2%11.5%10.8%500 GeV 7.0% 6.4% 5.6%6.7%

μビームを用いた実験も技術的には可能? (COMPASS実験(LHC)など)

Higgs交換による $\mu N(eN) \rightarrow \tau X$

S. Kanemura, Y. Kuno, M. Kuze, & T. Ota, Phys. Lett. B 607, 165 (2005).

従来の解析について

1. ボトム PDFを用いて断面積の評価がされていた

ボトムがmasslessだと見なせない領域で ボトム PDF (5-flavor PDF) を使っていいのか?

・ボトム数保存のために終状態は bb であるべき

終状態質量による相空間の抑制を無視できないはず

核子ターゲット実験の場合 τb 閾値: $E_\ell > 19 \text{GeV} \longrightarrow \tau b \overline{b}$ 閾値: $E_\ell > 55 \text{GeV}$

2.素過程として、quarkとの反応のみ考えられてきた

higgsのような"重いフェルミオンと強く結合する粒子"がCLFVの源なら、 gluonとの反応も大きいのではないか? (quark loopを通して結合)

- gluonのPDFは非常に大きくなる
- 終状態に重いハドロンを作る必要がない

本研究

2. これまで考えられていなかった素過程を評価に取り入れる

この素過程を含めることで全断面積の増加を期待

2. 定式化

レプトン-核子散乱

パートン描像

✓ Q² ≫ M² であるとき、パートンを自由粒子として取り扱い可能 (インパルス近似)

パートン間の干渉を無視し、反応の全断面積を素過程断面積の和で記述 $\sigma = \sum_i \int_0^1 \sigma_i(\xi) f_i(\xi) d\xi$

断面積の計算方法

1.素過程の断面積 $\hat{\sigma}$ を計算 (このとき、gluonの運動量は ξP)

 ξ : momentum fraction

x: Bjorken 変数 y:非弾性度 (x, y のとり得る領域は τ 質量によって制限) C.H. Albright, C. Jarlskog, Nucl. Phys. B **84**, 467 (1975).

X

h

ho:CLFV結合定数

(higgs 稀崩壊からの上限値を仮定)

$$lg \to \tau g$$

Higgs-glu-glu 結合

▶ 終状態クォークの質量を考慮して断面積を評価可能

x と ξ の関係

運動量保存より、 $p_f^2 = (p_i + q)^2$ = $2\xi P \cdot q - Q^2$ $\xi = \frac{Q^2 + p_f^2}{Q^2} x$ $\left(x = \frac{Q^2}{2P \cdot q}\right)$ $p_f^2 = 0 \text{ Obset}, \xi = x \text{ が成立}$

 $lg \rightarrow \tau q \overline{q}$

※ *ξ* = *x* ではないことに注意

 $\ell < 11eV Cla \ell g \rightarrow \ell g \text{ JNATC} = \mathbf{F}$ $1.8 \div (E_{\ell} = 50 \text{GeV})$ $1.8 \div (E_{\ell} = 500 \text{GeV})$

高エネルギーでは tī のチャンネルが開いて、主要な寄与に

探索実験に向けて

1. 固定ターゲット実験 1年に得られるイベント数 N $N \simeq 6 \times 10^{-16} \cdot N_{\ell} \left(\frac{\sigma}{1 \text{fb}} \right) \left(\frac{T_m}{1 \text{g} \cdot \text{cm}^{-2}} \right)$ $N_{\ell} : 年当たりに作られる <math>\ell$ の数 $T_m : ターゲットの \text{ cm}^2$ 当たりの質量 ~ $100 \text{g} \cdot \text{cm}^{-2}$ $\ell = 10^{-10}$ $\ell = 10^{-10}$ $\ell = 10$

ILC (PWFA): $E_e = 500 \text{GeV} (5 \text{TeV}), N_e = 10^{22}/\text{year} \implies \mathcal{O}(10) (\mathcal{O}(10^3)) \text{ events/year}$ $\mu N \rightarrow \tau X$

neutrino factry : $E_{\mu} = \mathcal{O}(100)$ GeV, $N_{\mu} = 10^{20}$ /year $\Rightarrow \mathcal{O}(10^{-1})$ events/year

2. コライダー実験

 $ep \rightarrow \tau X$

TLHeC (VHE-TLHeC) : $\sqrt{s} \simeq 1.3(3.5)$ TeV

ルミノシティ $\simeq \mathcal{O}(10^3) \text{ fb}^{-1}/\text{year}$

 $\Rightarrow \mathcal{O}(100)$ events

 10^{2}

 $E_{\ell}^{\text{Lab.}}[\text{GeV}]$

 10^{3}

4. まとめ

まとめ

- CLFVは新物理探索のための有力なprobe
- higgsのLFV崩壊 ($h \rightarrow \mu \tau$) があるとすれば 他のCLFV探索でも見えるはず
- •今回 $lN \rightarrow \tau X$ 過程に注目
- higgsが仲介するとすれば、核子中のgluonの寄与が重要
- •終状態粒子の質量は重要な因子となるはず

可能な限り質量を適切に取り扱える定式化によって評価

- ・新しく導入したグルーオン過程は $E_{\ell} < 1$ TeVで重要
- $eN \rightarrow \tau X$ は将来の実験での検証可能性あり (SMヒッグスLFVの場合 $\mu N \rightarrow \tau X$ は難しそう?)

発展

▶ ℓN 散乱による $B \rightarrow K \ell \overline{\ell}$ anomaly検証可能性について

詳細は 山中さんのポスター発表にて

Ex. Backup

 $eg \rightarrow \tau q \overline{q} \geq eq \rightarrow \tau q$ の比較 10⁰ 10⁻² 10⁻⁴ σ [fb] 10⁻⁶ 10⁻⁸ $eg \to \tau b\overline{b}$ $(eb \to \tau b) + (e\bar{b} \to \tau \bar{b})$ $eg \rightarrow \tau c \overline{c}$ – – 10⁻¹⁰ $(ec \rightarrow \tau c) + (e\overline{c} \rightarrow \tau \overline{c})$ $eg \rightarrow \tau s \overline{s}$ — - - $(es \rightarrow \tau s) + (e\overline{s} \rightarrow \tau \overline{s})$ — – 10⁻¹² 10¹ 10² 10³ 10⁴ \sqrt{s} [GeV]