

山本 直希(慶應義塾大学)

「素粒子物理学の進展2017」2017年8月4日

- カイラル輸送現象
- カイラル運動論
- 超新星爆発への応用
- カイラル乱流

輸送現象

- 古典的で身近な例:
 - Ohmの法則: $j_e = \sigma E$
 - Fourierの法則: $j_Q = \kappa(-\nabla T)$

色々な輸送現象

• **19**世紀までに既に分かったもの

•
$$oldsymbol{E}
ightarrow - oldsymbol{
abla} \mu$$
 でもよい.

これで全て?

$j_e \sim B$?

パリティ

 $j_e = \kappa B$

- パリティ変換のもとで $-j_e = \kappa B$ $(B = m{
 abla} imes A)$
- パリティに矛盾しない唯一の可能性: $\kappa = 0$
- 「普通の」金属では起きない

(注) $\boldsymbol{j}_e = \sigma \boldsymbol{E}$ ($\sigma \neq 0$) はパリティと矛盾しない

カイラリティ

 $oldsymbol{j}_e \sim (\mu_{
m R} - \mu_{
m L})oldsymbol{B}$ はパリティと矛盾しない

Chiral magnetic effect

厳密な輸送係数:場の量子論における量子異常と密接に関係 Vilenkin (1980); Nielsen, Ninomiya (1983); Fukushima, Kharzeev, Warringa (2008), ...

Chiral vortical effect

従来の運動論(Boltzmann方程式)では記述できない

Vilenkin (1979); Erdmenger et al. (2009); Banerjee et al. (2011); Son-Surowka (2009); Landsteiner et al. (2011)

カイラル物質

- 初期宇宙における電弱プラズマ
- 重イオン衝突実験におけるQGP
- Weyl半金属 ("3D graphene")

Joyce-Shaposhnikov (1997), ...

Kharzeev-Mclerran-Warringa (2008), ...

Nielsen-Ninomiya (1983), ...

● 超新星におけるニュートリノ物質 NY (2016),...

QGP http://www0.bnl.gov/rhic/news2/

超新星における ニュートリノ物質

超新星爆発

宇宙で最も大きな爆発現象の1つ
大質量星の中性子星への転移&重元素の起源
重力エネルギーの大部分をニュートリノが持ち運ぶ
従来のニュートリノ輸送理論では3次元の超新星爆発が困難

宇宙物理学の未解決問題の1つ

http://www.riken.jp/pr/press/2009/20091211/

ニュートリノの基本的性質

ニュートリノは左巻き(パリティ対称性を破る)

ミクロからマクロヘ

ミクロなパリティの破れ → マクロな流体力学的な振舞い

ミクロ 素粒子標準模型における v のカイラリティ ↓ カイラル運動論 (Boltzmann方程式) ↓ Son-NY, PRL (2012); Stephanov-Yin, PRL (2012) マクロ 超新星の進化 (宇宙最大のパリティの破れ) NY, PRD (2016)

Supernova = Giant parity breaker

 $p + e^{\mathbf{L}} \rightarrow n + \nu_e^{\mathbf{L}}$

超新星のニュートリノ物質

- ニュートリノ平均自由行程 ~ 中心コアで I cm (ρ_N ~ 10¹⁵ g/cm³).
- ニュートリノ物質 = カイラル流体 (µ_v~200 MeV ≫ T~I0 MeV)

= 3次元トポロジカル物質

NY, PRD (2016) [arXiv:1511.00933]

S² (運動量空間) から S² (スピン空間) へのmapping: 巻き数 +

右巻きフェルミオン

カイラリティとトポロジー

カイラリティとトポロジー

左巻きフェルミオン

S² (運動量空間) から S² (スピン空間) へのmapping: 巻き数 −I ニュートリノ物質 = 3次元トポロジカル物質

カイラル運動論

Son-NY, PRL (2012); Stephanov-Yin, PRL (2012)

トボロジーとBerry曲率

- π₂(S²)=±I → *p*=0 でのモノポール
- モノポール "磁場" = Berry曲率 $\Omega_p = \pm \frac{p}{2|p|^3}$

Ω_pは運動方程式・輸送理論を補正

トポロジーが非平衡ダイナミクスに影響 (カイラル運動論)

Berry曲率と運動方程式

Berry曲率と運動方程式

Berry曲率と運動方程式

半古典的な運動方程式:

 $\dot{\boldsymbol{x}} = \hat{\boldsymbol{p}} + \dot{\boldsymbol{p}} \times \boldsymbol{\Omega}_{\boldsymbol{p}} = (1 + \boldsymbol{B} \cdot \boldsymbol{\Omega}_{\boldsymbol{p}})^{-1} [\hat{\boldsymbol{p}} + \boldsymbol{E} \times \boldsymbol{\Omega}_{\boldsymbol{p}} + (\hat{\boldsymbol{p}} \cdot \boldsymbol{\Omega}_{\boldsymbol{p}})\boldsymbol{B}]$ $\dot{\boldsymbol{p}} = \boldsymbol{E} + \dot{\boldsymbol{x}} \times \boldsymbol{B} = (1 + \boldsymbol{B} \cdot \boldsymbol{\Omega}_{\boldsymbol{p}})^{-1} [\boldsymbol{E} + \hat{\boldsymbol{p}} \times \boldsymbol{B} + (\boldsymbol{E} \cdot \boldsymbol{B})\boldsymbol{\Omega}_{\boldsymbol{p}}]$

Boltzmann方程式: $\frac{dn_{p}}{dt} = \frac{\partial n_{p}}{\partial t} + \dot{x} \cdot \frac{\partial n_{p}}{\partial x} + \dot{p} \cdot \frac{\partial n_{p}}{\partial p} = c[n_{p}]$

$$\begin{aligned} (1 + \boldsymbol{B} \cdot \boldsymbol{\Omega}) \frac{\partial n_{\boldsymbol{p}}}{\partial t} + [\boldsymbol{v} + \boldsymbol{E} \times \boldsymbol{\Omega} + (\boldsymbol{v} \cdot \boldsymbol{\Omega}) \boldsymbol{B}] \cdot \frac{\partial n_{\boldsymbol{p}}}{\partial \boldsymbol{x}} \\ + [\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} + (\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{\Omega}] \cdot \frac{\partial n_{\boldsymbol{p}}}{\partial \boldsymbol{p}} = c[n_{\boldsymbol{p}}] \end{aligned}$$

Son-NY, PRL (2012); Stephanov-Yin, PRL (2012)

- 左巻き・右巻きを区別
- 量子異常やCMEを再現

ニュートリノ輸送

Son-NY, PRD (2013); Chen-Son-Stephanov, PRL (2015)

重力崩壊型 超新星 への応用

乱流カスケードと爆発

順カスケード
(3D 通常の物質) 爆発しにくい

F. Hanke (2014)

逆カスケード (2D 通常の物質) 爆発しやすい

3D カイラル物質では?

Neutrino radiation chiral hydro

- 超新星にはニュートリノだけでなく原子核・電子も存在.
- コア外部ではニュートリノに対して流体力学が使えない
 - → Neutrino radiation *chiral* hydrodynamics
 - = 原子核・電子の流体力学 + ニュートリノカイラル運動論

NY, work in progress

カイラル流体力学

エネルギー運動量の保存: $\partial_{\mu}T^{\mu\nu} = 0$ カレントの保存: $\partial_{\mu}j^{\mu} = 0$

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} + (\text{dissipation})$$

Son-Surowka (2009); Neiman-Oz (2011)

ニュートリノ流体力学

NY, PRD (2016) [arXiv:1511.00933]

V

• $|v| \ll 1$ でのカイラル流体方程式: $(\epsilon + P)(\partial_t + v \cdot \nabla)v = -\nabla P + \nu \nabla^2 v$ $\partial_t (n + \kappa v \cdot \omega) + \nabla \cdot j = 0, \qquad j = nv + \kappa \omega$ CVE

● ヘリシティの保存:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\int d^3 x \, n + \int d^3 x \, \kappa v \cdot \omega \right) = 0$$

ニュートリノ# 流体ヘリシティ

カイラル乱流のスケール則

NY, PRD (2016) [arXiv:1603.08864]

● "慣性領域" での唯一のスケール対称性:

$$oldsymbol{x} o l oldsymbol{x}, \quad t o l^{1-h}t, \quad oldsymbol{v} o l^h oldsymbol{v}, \quad \mu o l^p \mu_b$$
 $oldsymbol{h} = 0, \qquad p = -1$

- エネルギースペクトル: $\mathcal{E}_v(l^{-1}k, l^{-1}t) = l\mathcal{E}_v(k, t)$ → $\mathcal{E}_v(k, t) = k^{-1}\psi_v(kt)$ 唯一の自己相似解
- スケーリング解での流体エネルギーの相関長:

$$\xi_v(t) = \xi_v(t_s) \left(rac{t}{t_s}
ight)$$
 逆カスケードを示唆
(爆発に有利)

カイ ラル 電磁 流体 への 拡張

δB

最初に一様な $\mu_5 \equiv \mu_R - \mu_L$ があると仮定

Chiral magnetic effect $\delta j \sim \mu_5 \delta B$

正のフィードバック:不安定性

量子異常は不安定性を緩和

Anomalous Maxwell equations

● Maxwell方程式 + CME:

$$abla imes oldsymbol{B} = rac{\partial oldsymbol{E}}{\partial t} + oldsymbol{j}_{\mathrm{EM}}, \quad
abla imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$

 $\nabla \cdot \boldsymbol{B} = 0, \qquad \nabla \cdot \boldsymbol{E} = 0$

$$\boldsymbol{j}_{\mathrm{EM}} = \sigma \boldsymbol{E} + \sigma_A \boldsymbol{B}$$
CME

Chiral MHD への拡張

|v| ≪1でのカイラル電磁流体 (MHD) 方程式:

$$(\epsilon + P)(\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}) = -\frac{1}{2}\boldsymbol{\nabla} \boldsymbol{B}^2 + (\boldsymbol{B} \cdot \boldsymbol{\nabla})\boldsymbol{B} + \nu \boldsymbol{\nabla}^2 \boldsymbol{v}$$

$$\partial_t \boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B}) + \kappa_B \eta \boldsymbol{\nabla} \times \boldsymbol{B} + \eta \boldsymbol{\nabla}^2 \boldsymbol{B}$$
CME

$$\partial_t n_5 + \boldsymbol{v} \cdot \boldsymbol{\nabla} n_5 = -C\eta[\kappa_B \boldsymbol{B}^2 - (\boldsymbol{\nabla} \times \boldsymbol{B}) \cdot \boldsymbol{B}]$$

anomaly

(簡単のため、渦度やCVEを無視)

Preliminary result (v field)

Masada-Kotake-Takiwaki-NY, in preparation

Preliminary result (B field)

Masada-Kotake-Takiwaki-NY, in preparation

Conclusion & Outlook

• 相対論的な非平衡・量子多体系:

Chirality = Topology

- ミクロなchirality → マクロな乱流現象(逆カスケード)
- Neutrino radiation chiral hydro ではどうか?
- カイラル運動論の初期宇宙への応用?

Backup slides

Full chiral kinetic theory (for charged chiral particles)

Substitute modified EOM into

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \mathbf{\underline{\dot{x}}} \cdot \frac{\partial f}{\partial x} + \mathbf{\underline{\dot{p}}} \cdot \frac{\partial f}{\partial p} = C[f]$$

$$\begin{aligned} (1 + \boldsymbol{B} \cdot \boldsymbol{\Omega_p}) \frac{\partial f}{\partial t} + \left[\tilde{\boldsymbol{v}} + \tilde{\boldsymbol{E}} \times \boldsymbol{\Omega_p} + (\tilde{\boldsymbol{v}} \cdot \boldsymbol{\Omega_p}) \boldsymbol{B} \right] \cdot \frac{\partial f}{\partial \boldsymbol{x}} \\ + \left[\tilde{\boldsymbol{E}} + \tilde{\boldsymbol{v}} \times \boldsymbol{B} + (\tilde{\boldsymbol{E}} \cdot \boldsymbol{B}) \boldsymbol{\Omega_p} \right] \cdot \frac{\partial f}{\partial \boldsymbol{p}} = C[f] \end{aligned}$$

$$\epsilon_{p} = |p|(1 - B \cdot \Omega), \quad \tilde{v} \equiv \frac{\partial \epsilon_{p}}{\partial p}, \quad \tilde{E} \equiv E - \frac{\partial \epsilon_{p}}{\partial x}$$

Son-NY, PRL (2012); Stephanov-Yin, PRL (2012)

ニュートリノ平均自由行程

Textbook formula: $l_{\rm mfp} = (\sigma_A n_A)^{-1}$

$$\sigma_A \sim G_F^2 E_\nu^2 A^2 \qquad n_A = \rho/(Am_N)$$

$$E_{\nu} \simeq \mu_e = (3\pi^2 \rho Y_e / m_N)^{1/3}$$

$$l_{\rm mfp} \sim 10^7 \ {\rm cm} \left(\frac{\rho}{10^{10} \ {\rm g/cm^3}}\right)^{-\frac{5}{3}} \left(\frac{A}{56}\right)^{-1} \left(\frac{Y_e}{26/56}\right)^{-\frac{2}{3}}$$