Phase Transitions in Twin Higgs Models

Kohei Fujikura (TITECH)

Collaborators: Kohei Kamada (IBS), Yuichiro Nakai (Rutgers.U), Masahide Yamaguchi (TITECH).

Contents

- Naturalness of the Higgs mass
- Twin Higgs Models
- Phase Transitions in Twin Higgs Models (Cosmological impact)

Contents

Naturalness of the Higgs mass

Twin Higgs Models

Phase Transitions in Twin Higgs Models (Cosmological impact)

Standard Model is incomplete

SM describes phenomenology around the electroweak scale However, there are problems...

Dynamics of Electroweak Symmetry Breaking V(H) V(H) V(H) V(H) V(H) V(f) V(H) V(f) V(f)V

Naturalness of the Higgs mass

SUPERSYMMETRY

SUSY provides an excellent solution to Hierarchy Problem

Quadratic divergence is cancelled by Top partner (Stop). (SUSY protects quadratic divergence mass corrections.)

Soft SUSY-breaking mass is important for fine-tuning.

Scalartop is a colored state
Strong Bounds

Soft Mass must be Heavy $M_{soft} >> \mathcal{O}(1)$ TeV Little Hierarchy Problem! $\Lambda < 0.01$

6

Hierarchy Problem

Contents

Naturalness of the Higgs mass

D Twin Higgs Models

Phase Transitions in Twin Higgs Models (Cosmological impact)

 m_e is the only parameter which breaks the $U(1)_A$ symmetry. When we take $m_e \to 0$ limit, $U(1)_A$ symmetry is restored. $\delta m_e \to 0, \ (m_e \to 0) \longrightarrow \delta m_e \propto m_e$

U(1) Toy Model (Symmetry Protection)

Twin Higgs

[Z. Chacko, H.-S. Goh, and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006)]

Twin Higgs provides an elegant solution to the Little Hierarchy Problem

SM Higgs is considered as pseudo-Nambu-Goldstone Boson

$$\mathcal{H} = egin{pmatrix} \Phi_1 \ \Phi_2 \ \Phi_3 \ \Phi_4 \end{pmatrix}$$
 U(4) Fundamental Representation

Spontaneous symmetry breaking $U(4) \rightarrow U(3)$ $V = \lambda \left(|\mathcal{H}|^2 - \frac{f^2}{2} \right)^2 \qquad \langle \Phi_4 \rangle = f/\sqrt{2}$

/ 本 \

7 Goldstone Modes + one massive mode

4 of them are identified with Standard Model Higgs

SM-like Higgs: $H_A \equiv \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$ Another Higgs : $H_B = \begin{pmatrix} \Phi_3 \\ \Phi_4 \end{pmatrix}$

Mass corrections

In general, matter sector breaks the U(4) symmetry explicitly $-y_t \bar{Q}_L \tilde{H}_A u_R + h.c.$ $H_A : SU(2)_W \times U(1)_Y$

SM Higgs cannot be considered as pNGB

$$\begin{array}{ll} \hat{u}: \text{Twin top quark} & \text{Introduce copy of SM} \\ & -\hat{y}_t \bar{\hat{Q}}_L \tilde{H}_B \hat{u}_R + h.c. & H_B: SU(2)_{\hat{W}} \times U(1)_{\hat{Y}} \\ V_{\text{eff}} \supset -\frac{3}{8\pi^2} \Lambda^2 (y_t^2 |H_A|^2 + \hat{y}_t^2 |H_B|^2) + \frac{9}{64\pi^2} \Lambda^2 (g_2^2 |H_A|^2 + \hat{g}_2^2 |H_B|^2) \\ & y_t = \hat{y}_t, \ g_2 = \hat{g}_2 \\ V_{\text{eff}} \supset \left(-\frac{3y_t^2}{8\pi^2} + \frac{9g_2^2}{64\pi^2} \right) \Lambda^2 (|H_A|^2 + |H_B|^2) & \text{the U(4) symmetry} \\ \end{array}$$

Twin Higgs

Let us introduce copy of SM

Higgs Mixing

Every quadratic divergent mass corrections are cancelled by its Twin partner

Most important point is that the Twin partners do not have SM charge! (Neutral Naturalness)

Higgs potential

Sub-leading correction does not respect the U(4) symmetry

$$V(\varphi)_{\rm CW} = n \frac{m^4(H_A, H_B)}{64\pi^2} \log \left[\frac{m^2(H_A, H_B)}{\Lambda^2} \right]$$

$$V_{\rm eff} = \frac{\lambda \left(|H_A|^2 + |H_B|^2 - \frac{f^2}{2} \right)^2}{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking U(4) \rightarrow U(3)$$

$$This term must be dominant compared to U(4) breaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$Freaking term (A >> \sigma, \kappa)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^2 + |H_B|^4)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \sigma f^2 |H_A|^2 + \kappa (|H_A|^2 + |H_B|^4)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \kappa (|H_A|^2 + |H_B|^4)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \kappa (|H_A|^2 + |H_B|^4)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2} + \kappa (|H_A|^2 + |H_B|^2)$$

$$I = \frac{\lambda (|H_A|^2 + |H_B|^2 - \frac{f^2}{2})^2}{\lambda (|H_A|^2 - \frac{f^2}{2})^2} + \kappa (|H_A|^2 + \|H_B|^2 + \|H_B|^2 + \|H_B|^2}$$

$$\sigma,~\kappa$$
 : Technically Natural

Low-Energy Effective Theory

Integrating Out Massive Mode $|H_B|^2 = \frac{f^2}{2} - |H_A|^2$ $V_{\text{eff}}^{\text{low-energy}} = \left(\sigma f^2 - \kappa f^2\right) |H_A|^2 + 2\kappa |H_A|^4$

It should match with SM Higgs potential!

$$2\kappa = \lambda_{\rm SM}, \ (\sigma - \kappa)f^2 = \lambda_{\rm SM}v_{\rm SM}^2$$

 $V_{\text{eff}}^{\text{low-energy}}$ is valid up to $\Lambda \sim 4\pi f$ $\Lambda \sim 5\text{TeV} \leftrightarrow f \sim 400\text{GeV}$ How is the tuning? $\Delta_{\sigma} = \frac{2\frac{v_{SM}^2}{f^2}}{1-2\frac{2v_{SM}^2}{f^2}} \sim 2\frac{v_{SM}^2}{f^2}$ $\Delta_{\sigma} > \frac{1}{10} \longrightarrow \frac{v_{SM}}{f} > 0.23$ 15

Contents

- Naturalness of the Higgs mass
- Twin Higgs Models

Phase Transitions in Twin Higgs Models (Cosmological impact) Cosmology! Twin Higgs

Collider searches

Large Hadron Collider

Gravitational wave

LISA, DECIGO and BBO

Thermal History of the early Universe

Spontaneous symmetry breaking in the early Universe

Phase transition

First-order phase transition and GW

First order phase transition

First order phase transition proceeds through bubble nucleation

 $T \neq T_C$

There are three sources of the
Gravitational WaveBubble collisionsSound Wave of the cosmic plasma

Turbulence of the plasma

Electroweak Phase Transition in SM

M. LAINE (2000)

Phase Transition(s) in Twin Higgs Models

There are two spontaneous symmetry breakings (Global U(4) symmetry and EW symmetry) $V_{\text{eff}} = \lambda \left(|H_A|^2 + |H_B|^2 - \frac{f^2}{2} \right)^2 + \sigma f^2 |H_A|^2 + \kappa (|H_A|^4 + |H_B|^4)$ (1) $(0, 0) \to (0, v_B) \to (v_A, v_B)$ H_B U(4) Breaking Phase Transition

Electroweak Phase Transition (2) $(0, 0) \to (v_A, v_B)$ v_B – U(4) Breaking Phase Transition and Electroweak Phase Transition occur simultaneously (3) $(0, 0) \to (v_A, 0) \to (v_A, v_B)$ (3) $\rightarrow H_A$ Electroweak Phase Transition

U(4) Breaking phase Transition v_A

We consider the case (1)

Electroweak Phase Transition $H_A = \begin{pmatrix} 0\\ \frac{\phi_A}{\sqrt{2}} \end{pmatrix}, \ H_B = \begin{pmatrix} 0\\ \frac{\phi_B}{\sqrt{2}} \end{pmatrix}$ Background field Take account of d.o.f Field dependent mass $n_W = 6$, : $m_W^2 = \frac{g_2^2 \phi_A^2}{4}$, $SU(2)_W$ $n_{\hat{W}} = 9, : m_{\hat{W}}^2 = \frac{\hat{g}_2^2 \phi_B^2}{4}$ $SU(2)_{\hat{W}}$ $n_Z = 3$, : $m_Z = (g_1^2 + g_2^2) \frac{\phi_A^2}{4}$ $U(1)_Y$ $n_t = -12$, : $m_t^2 = \frac{y_t^2 \phi_A^2}{2}$ Top quark $n_{\hat{t}} = -12, : m_{\hat{t}}^2 = \frac{y_t^2 \phi_B^2}{2}$ Twin Top quark $V(\phi_A, \phi_B T) = V_0 + V_{CW} + V_{Thermal} + V_{ring}$ Integrating out massive mode $\phi_B^2 = f^2 - \phi_A^2$ $V(\phi_A, T)$

22

Validity of the perturbation in finite temperature

Result of the electroweak phase transition

Large breaking scale f

- thermal decoupling (Boltzmann suppression)
- Twin sector corrections do not give a contribution

Sphaleron decoupling condition cannot be satisfied

U(4) Breaking Phase Transition without UV completion

Thanks to the Twin \mathbb{Z}_2 symmetry, the situation is similar to the electroweak phase transition in SM.

U(4) breaking Phase Transition Twin Z_2 Symmetry

 $y_t \simeq \widehat{y}_t, \ g_2 \simeq \widehat{g}_2$

Electroweak phase transition in SM

Well known

Situation is similar to electroweak phase transition in SM

$$\begin{split} SU(2)_{\widehat{W}} : \ \widehat{g}_2 \leftrightarrow SU(2)_W : \ g_2 \\ \left| \frac{\widehat{g}_2(\Lambda) - g_2(\Lambda)}{g_2(\Lambda)} \right| \lesssim 0.1 \\ \text{Breaking Scale} : \ f \leftrightarrow v_{SM} \\ \text{(Critical Temperature is different)} \\ \text{Twin Top Quark} : \ \widehat{y}_t \leftrightarrow \text{Top Quark} : \ y_t \\ \text{Higg self} - \text{coupling} : \ \lambda + \kappa \leftrightarrow \lambda_{SM} \end{split}$$

In SM, order of electroweak phase transition depends on λ_{SM}/g_2^2 [K. Rummukainena, M. Tsypinb, K. Kajantiec, M. Laine, and M. Shaposhnikov] (1998)

We can use the result of electroweak phase transition in SM !

Result of the U(4) Phase Transition

Summary

Twin Higgs provides excellent solution to the Little Hierarchy problem

Electroweak phase transition cannot be analyzed perturbatively in Twin Higgs Models

It is difficult to realize the first-order U(4) breaking phase transition without any UV completion

 We also analyze the U(4) breaking phase transition with light twin stops in SUSY completion and calculate a typical GW amplitude