K中間子の精密測定で探る物理

北原 鉄平 Karlsruhe Institute of Technology (KIT)

基研研究会 素粒子物理学の進展2018

2018年8月7日

EVIDENCE FOR THE EXISTENCE OF NEW UNSTABLE ELEMENTARY PARTICLES

By DR. G. D. ROCHESTER

AND DR. C. C. BUTLER Physical Laboratories, University, Manchester

NATURE December 20, 1947

 $3\,\mathrm{cm}$

EVIDENCE FOR THE EXISTENCE OF NEW UNSTABLE ELEMENTARY PARTICLES

By DR. G. D. ROCHESTER

AND DR. C. C. BUTLER Physical Laboratories, University, Manchester

NATURE December 20, 1947

Discovery of Kaon

"V particle"

A GOLDEN CHANNEL

Discovery of <u>CP violation</u> ['64]

<u>GIM mechanism</u> and <u>prediction of charm</u> ['64-70] \rightarrow <u>November Revolution</u> (J/ψ) ['74]

CKM matrix and prediction of <u>beauty/truth</u> ['73]

Kaon physics is still an exciting field!

- Discovery channel \rightarrow Precision physics: FCNC and CP violation can be probed precisely using rare decay channels Br~ $O(10^{-11})$
- There are many promising on-going experiments for kaon precisions; LHCb / NA62 / KOTO / KLOE-2 / TREK
- One can test our understanding of the SM, unitarity of CKM and ChPT, and also probe physics beyond the SM

collider search

could give stronger constraints

 $K_S \rightarrow \mu^+ \mu^-$

Lattice [RBC-UKQCD] perturbative calculations meson effective theory (ChPT/dual QCD)

E[']K and *E*K discrepancies?

 $K_L \rightarrow \pi \pi$

CP-violating

FCNC

reduce Th uncertainty

Understanding of ChPT $K_{S} \rightarrow \pi^{0} \mu^{+} \mu^{-} K_{S} \rightarrow \mu^{+} \mu^{-} \gamma$ $K_{S} \rightarrow 4l$ $K_{S} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$

reduce Th uncertainty

 $K_L \rightarrow \pi^0 l^+ l^-$

NA62

CPV decay less sensitive because of LD contributions

correlations

 $K \xrightarrow{(+)} \pi^0 \nu \bar{\nu}$

lfuv

- LHCb experiment has been designed for efficient reconstructions of *b* and *c*
- Huge production of strangeness [O(10¹³)/fb⁻¹ K⁰s] is suppressed by its trigger efficiency [ε~1-2%@LHC Run-I, ε~18%@LHC Run-II]
- LHCb Upgrade (LS2=Phase I upgrade, LS4=Phase II upgrade) could realize high efficiency for *K*⁰_S [ε~90%@LHC Run-III] [M. R. Pernas, HL/HE LHC meeting, FNAL, 2018]
- In LHC Run-III and HL-LHC, we could probe the *ultra* rare decay $Br \sim O(10^{-11})$

Kaon & CP violation

Kaon = bound state of $\bar{s}d$ and *CP* transformation

$$CP|K^{0}\rangle = |\overline{K}^{0}\rangle, \qquad CP|\overline{K}^{0}\rangle = |K^{0}\rangle,$$
$$CP|K^{0}_{1,2}\rangle = \pm |K^{0}_{1,2}\rangle, \quad \text{where } |K^{0}_{1,2}\rangle \equiv \frac{1}{\sqrt{2}}\left(|K^{0}\rangle \pm |\overline{K}^{0}\rangle\right)$$

 $|K_{1,2}^0\rangle$ are *CP*-eigenstates but are not mass-eigenstates, because nature does not respect the *CP* symmetry

Short-lived mass eigenstate $|K_S\rangle \simeq \frac{1}{\sqrt{1+|\epsilon_K|^2}} \left(|K_1^0\rangle + \epsilon_K |K_2^0\rangle\right)$ Long-lived mass eigenstate $|K_L\rangle \simeq \frac{1}{\sqrt{1+|\epsilon_K|^2}} \left(|K_2^0\rangle + \epsilon_K |K_1^0\rangle\right)$

Lifetime difference is so large and mass difference is small (opposite from *B*⁰)

 $\begin{aligned} \tau_S &= 0.89 \times 10^{-10} \,\text{sec.} & c\tau_S &= 2.6 \,\text{cm} \\ \tau_L &= 511 \times 10^{-10} \,\text{sec.} & c\tau_L &= 15 \,\text{m} \end{aligned} \quad \Delta M_K &= 3.4 \times 10^{-12} \,\text{MeV} \end{aligned}$

Kaon & CP violation

The *CP* violation was measured by

 $\mathcal{A}(K_L \text{ (almost } CP \text{ odd}) \to \pi^+ \pi^- (CP \text{ even})) \propto \varepsilon_K = \mathcal{O}(10^{-3}) \neq 0$

 $K^0 \rightarrow \pi^+\pi^-, \pi^0\pi^0$

K^0 →ππ: two types of *CP* violation

• two types of *CP* violation: indirect *CPV* $\varepsilon_{\mathbf{K}}$ & direct *CPV* $\varepsilon'_{\mathbf{K}}$:

 $\mathcal{A}\left(K_L \to \pi^+ \pi^-\right) \propto \varepsilon_K + \varepsilon'_K \quad \text{with} \quad \varepsilon_K = \mathcal{O}(10^{-3}) \neq 0 \quad \begin{array}{c} \text{[Christenson, Cronin, Fitch, Turlay '64} \\ \text{with Nobel prize]} \end{array}$ $\mathcal{A}\left(K_L \to \pi^0 \pi^0\right) \propto \varepsilon_K - 2\varepsilon'_K \qquad \varepsilon'_K = \mathcal{O}(10^{-6}) \neq 0 \quad \begin{array}{c} \text{[NA48/CERN and KTeV/FNAL '99]} \end{array}$

$$\mathbf{\mathsf{Re}}\left(\frac{\varepsilon'_K}{\varepsilon_K}\right) = \frac{1}{6} \left[1 - \frac{\mathcal{B}(K_L \to \pi^0 \pi^0)}{\mathcal{B}(K_S \to \pi^0 \pi^0)} \frac{\mathcal{B}(K_S \to \pi^+ \pi^-)}{\mathcal{B}(K_L \to \pi^+ \pi^-)}\right] = \mathcal{O}(10^{-3})$$

 $\Delta S=2$ Indirect *CP* violation [Kaon mixing]

W box $\varepsilon_K \propto \operatorname{Im}\left[(V_{ts}^* V_{td})^2\right]$

$$S \xrightarrow{V_{td}} d$$

$$u,c,t \xrightarrow{u,c,t} d$$

$$d \xrightarrow{V_{td}} S$$

 $K^0 \longleftrightarrow \overline{K}^0$

$$\varepsilon'_K \propto \operatorname{Im}\left[V_{ts}^* V_{td}\right]$$

*E*_K discrepancy

$\varepsilon_{\rm K}$ discrepancy ~ $|V_{\rm cb}|$ discrepancy

Recent progress on exclusive $|V_{cb}|$ in $B \rightarrow D^*$ transition

 $B \rightarrow D^{*} \ell \bar{\nu}$ [Belle, 1702.01521]
Model independent form factors parametrization [Boyd-Grinstein-Lebed (BGL) '97] $|V_{cb}|_{BGL}^{excl.} = (40.6^{+1.2}_{-1.3}) \times 10^{-3} \quad [Bigi, Gambino, Schacht '17] \quad \text{Error will be reduced by future lattice result}}$ + Similar recent progress [Grinstein, Kobach '17, Bernlochner, Ligeti, Papucci, Robinson '17]

Formulae of CP violating decay

Precise definitions of $K \rightarrow \pi \pi$ system $\eta_{00} \equiv \frac{\mathcal{A}(K_L \rightarrow \pi^0 \pi^0)}{\mathcal{A}(K_S \rightarrow \pi^0 \pi^0)} \stackrel{exp.}{\equiv} (2.220 \cdot 10^{-3}) \cdot e^{43.52^{\circ}i} \qquad \epsilon_K \equiv \frac{2\eta_{+-} + \eta_{00}}{3} \quad \in \mathbb{C}$ $\eta_{+-} \equiv \frac{\mathcal{A}(K_L \rightarrow \pi^+ \pi^-)}{\mathcal{A}(K_S \rightarrow \pi^+ \pi^-)} \stackrel{exp.}{\equiv} (2.232 \cdot 10^{-3}) \cdot e^{43.51^{\circ}i} \qquad \epsilon'_K \equiv \frac{\eta_{+-} - \eta_{00}}{3} \quad \in \mathbb{C}$

Pion isospin decomposition of the physical states

$$\begin{aligned} |\pi^{0}\pi^{0}\rangle &= \sqrt{\frac{1}{3}} |\pi\pi\rangle_{I=0} - \sqrt{\frac{2}{3}} |\pi\pi\rangle_{I=2} \\ |\pi^{+}\pi^{-}\rangle &= \sqrt{\frac{2}{3}} |\pi\pi\rangle_{I=0} + \sqrt{\frac{1}{3}} |\pi\pi\rangle_{I=2} \end{aligned} \qquad \text{Two pions } (I=1) \text{ can decompose} \\ \text{into } I=0,2 \text{ states with CG coefficients} \end{aligned}$$
$$\epsilon_{0} &\equiv \frac{\mathcal{A}(K_{L} \to (\pi\pi)_{0})}{\mathcal{A}(K_{S} \to (\pi\pi)_{0})} \qquad \epsilon_{2} &\equiv \frac{1}{\sqrt{2}} \frac{\mathcal{A}(K_{L} \to (\pi\pi)_{2})}{\mathcal{A}(K_{S} \to (\pi\pi)_{0})} \ll \epsilon_{0} \qquad \omega &\equiv \frac{\mathcal{A}(K_{S} \to (\pi\pi)_{2})}{\mathcal{A}(K_{S} \to (\pi\pi)_{0})} \ll \epsilon_{0} \end{aligned}$$
$$\text{then} \qquad \epsilon_{K} &= \epsilon_{0} - \sqrt{2}\epsilon_{2}\omega + \mathcal{O}(\epsilon_{0}\omega^{2}) \qquad \epsilon'_{K} &= \epsilon_{2} + \frac{\omega}{\sqrt{2}} (\epsilon_{2} - \epsilon_{0}) + \mathcal{O}(\epsilon_{0}\omega^{2}) \end{aligned}$$

Probing new physics by precision measurements of kaon decays

Teppei Kitahara: Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

Formulae of *CP* violating decay cont.

Then,

$$\frac{\epsilon'_K}{\epsilon_K} = \left(\epsilon_2 + \frac{\omega}{\sqrt{2}} \left(\epsilon_2 - \epsilon_0\right)\right) \left(\epsilon_0 - \sqrt{2}\epsilon_2\omega\right)^{-1} + \mathcal{O}(\omega^2)$$
$$= \frac{1}{\sqrt{2}} \left[\frac{\mathcal{A}(K_L \to (\pi\pi)_2)}{\mathcal{A}(K_L \to (\pi\pi)_0)} - \frac{\mathcal{A}(K_S \to (\pi\pi)_2)}{\mathcal{A}(K_S \to (\pi\pi)_0)}\right] + \mathcal{O}(\omega^2)$$

 $K_{L} \text{ and } K_{S} \text{ also can be decomposed into isospin eigenstates } (K^{0}, \overline{K}^{0})$ $|K_{S}\rangle \equiv \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|\delta_{\epsilon}|^{2}}} \left((1+\delta_{\epsilon})|K^{0}\rangle + (1-\delta_{\epsilon})|\overline{K}^{0}\rangle \right)$ $|K_{L}\rangle \equiv \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+|\delta_{\epsilon}|^{2}}} \left((1+\delta_{\epsilon})|K^{0}\rangle - (1-\delta_{\epsilon})|\overline{K}^{0}\rangle \right)$

Let us define isospin amplitudes

$$\mathcal{A}(K^0 \to (\pi\pi)_I) \equiv \mathcal{A}_I e^{i\delta_I} \qquad \qquad \delta_I \text{ is a strong phase, which comes from} \\ \mathcal{A}(\overline{K}^0 \to (\pi\pi)_I) \equiv \overline{A}_I e^{i\delta_I} = A_I^* e^{i\delta_I} \qquad \qquad \text{the final pion state re-scattering}$$

then
$$\frac{\mathcal{A}(K_L \to (\pi\pi)_2)}{\mathcal{A}(K_L \to (\pi\pi)_0)} = e^{i(\delta_2 - \delta_0)} \frac{i \operatorname{Im}(A_2) + \delta_{\epsilon} \operatorname{Re}(A_2)}{i \operatorname{Im}(A_0) + \delta_{\epsilon} \operatorname{Re}(A_0)}$$
$$\frac{\mathcal{A}(K_S \to (\pi\pi)_2)}{\mathcal{A}(K_S \to (\pi\pi)_0)} = e^{i(\delta_2 - \delta_0)} \frac{\operatorname{Re}(A_2) + i \delta_{\epsilon} \operatorname{Im}(A_2)}{\operatorname{Re}(A_0) + i \delta_{\epsilon} \operatorname{Im}(A_0)}$$

Probing new physics by precision measurements of kaon decays

Teppei Kitahara: Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

Formulae of *CP* violating decay cont.

Using
$$\epsilon_K = |\epsilon_K| e^{i\phi_{\epsilon}} = \epsilon_0 - \sqrt{2}\epsilon_2\omega + \mathcal{O}(\epsilon_0\omega^2) \simeq \frac{i\mathrm{Im}(A_0) + \delta_{\epsilon}\mathrm{Re}(A_0)}{\mathrm{Re}(A_0) + i\delta_{\epsilon}\mathrm{Im}(A_0)}$$

$$\frac{\epsilon'_K}{\epsilon_K} = \frac{i}{\sqrt{2}|\epsilon_K|} e^{i(\delta_2 - \delta_0 - \phi_\epsilon)} \frac{\operatorname{Re}(A_2)}{\operatorname{Re}(A_0)} \left(\frac{\operatorname{Im}(A_2)}{\operatorname{Re}(A_2)} - \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} \right) + \mathcal{O}((\delta_\epsilon, \,\omega) \cdot 1 \text{st term})$$

$$\phi_{\epsilon} = \tan^{-1} \frac{2\Delta M_K}{\Delta \Gamma}$$

$$ie^{i(\delta_2 - \delta_0 - \phi_{\epsilon})} = 0.9990 + 0.04i \left[\delta_0 = (38.3 \pm 1.3)^{\circ}, \ \delta_2 \approx -7^{\circ}, \ \phi_{\epsilon} = (43.52 \pm 0.05)^{\circ} \ (\text{exp.}) \right]$$
$$= 0.98 + 0.19i \ (\delta_0 = (23.8 \pm 5.0)^{\circ}, \ \delta_2 = (-11.6 \pm 2.8)^{\circ} \ (Lattice))$$

 $\simeq 1$

In my knowledge, this is accidental incident

dispersive treatment from $K^+ \rightarrow \pi^+ \pi^- l^+ \nu$ 6 Solution 1 Solution 2 $\mathbf{5}$ Solution 3 Solution 4 4 Uncertainty [$\delta_0^0(s)$ 3 2 38° 0.2 0.4 0.6 0.8 1 1.21.4 1.61.82 0 \sqrt{s}/GeV [Colangelo, Passemar, Stoffer '15]

Formulae of *CP* violating decay cont.

- General remarks
 - This formula is modified by $m_u \neq m_d$ [Cirigliano,Pich,Ecker,Neufeld,PRL 03']
 - Theoretical value of $\varepsilon'_{K}/\varepsilon_{K}$ is almost real number
 - $|\epsilon_K|$, Re A_0 , and Re A_2 have been measured by experiments very precisely
 - Theorist calculates $\text{Im}A_0$, and $\text{Im}A_2$ for $\epsilon'_{\text{K}}/\epsilon_{\text{K}}$
 - Experiments can precisely probe $\mathcal{E}'_{\mathbf{K}}/\mathcal{E}_{\mathbf{K}}$ by the following combination

For experimentalists

$$\operatorname{Re}\left[\frac{\epsilon'_{K}}{\epsilon_{K}}\right] \simeq \frac{1}{6} \frac{|\eta_{+-}|^{2} - |\eta_{00}|^{2}}{|\eta_{+-}|^{2}} = \frac{1}{6} \left(1 - \frac{\frac{\operatorname{Br}(K_{L} \to \pi^{0} \pi^{0})}{\operatorname{Br}(K_{S} \to \pi^{0} \pi^{0})}}{\frac{\operatorname{Br}(K_{L} \to \pi^{+} \pi^{-})}{\operatorname{Br}(K_{S} \to \pi^{+} \pi^{-})}}\right)$$

Probing new physics by precision measurements of kaon decays

Teppei Kitahara: Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

Direct *CP* violation in $K^0 \rightarrow \pi\pi$

Further strong suppression of ε'_{K} comes from the smallness of the $\Delta I=3/2$ amplitude (i.e. $\Delta I=1/2$ rule) and an accidental cancellation between the SM penguins

 $\mathcal{A}(K^{0} \to (\pi\pi)_{I}) \equiv \mathcal{A}_{I}e^{i\delta_{I}} \qquad I: \text{two-pion isospin=0,2} \quad \text{pion = isospin triplet} \\ \mathcal{A}(\overline{K}^{0} \to (\pi\pi)_{I}) \equiv \overline{A}_{I}e^{i\delta_{I}} = A_{I}^{*}e^{i\delta_{I}} \qquad \delta_{I}: \text{strong phase} \\ \hline \underbrace{\frac{\varepsilon'_{K}}{\varepsilon_{K}} = \frac{1}{\sqrt{2}|\epsilon_{K}|\text{Re}A_{0}} \frac{\text{Re}A_{2}}{\text{Re}A_{0}} \left(-\text{Im}A_{0} + \frac{\text{Re}A_{0}}{\text{Re}A_{2}}\text{Im}A_{2}\right)}_{\text{sensitive}} \\ \Delta I = 1/2 \text{ rule: factor = 0.04} \\ \text{Accidental cancellation} \\ \hline \mathcal{O}(\alpha_{s}) \stackrel{!}{\sim} \frac{1}{\omega}\mathcal{O}(\alpha) \\ \hline \mathcal{O}(\alpha_{s}) \stackrel{!}{\sim} \frac{1}{\omega}\mathcal{O$

where $\frac{1}{\omega} \equiv \frac{\text{Re}A_0}{\text{Re}A_2} = 22.46 \text{ (exp.)}$

Lattice result

Serious noise comes from disconnected diagrams in lattice simulation

Probing new physics by precision measurements of kaon decays

Teppei Kitahara: Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

ε'_K/ε_K discrepancy

- Lattice result with recent progress on the short-distance physics predicts $\varepsilon'_{\rm K}/\varepsilon_{\rm K} = O(10^{-4})$ which is below the experimental average **at 2.8-2.9** or level NNLO QCD in progress [Cerdà-Sevilla, Gorbahn, Jäger, Kokulu, 1611.08276]
- A large-N_c analyses (dual QCD method) including final-state interaction (FSI) are consistent with lattice results[Buras, Gerard, '15, '17]
- ChPT including FSI predicts $\varepsilon'_{\rm K}/\varepsilon_{\rm K} = O(10^{-3})$ with large error which is consistent with measured values [Gisbert, Pich '18]
- Main difference comes from $B_6^{(1/2)} = 0.6$ (lattice) vs 1.5 (ChPT)
- The lattice simulation includes FSI as the Lellouch-Lüscher finite-volume correction and explained ΔI =1/2 rule for the first time. But, the strong phase of *I*=0 is smaller than a phenomenological expectation **at 2.8** σ level [Colangelo, Gasser, Leutwyler '01, Colangelo, Passemar, Stoffer '15]
- For *I*=2 decay, lattice/dual QCD/ChPT give well consistent results

[e.g., hep-ph/0201071, 1807.10837]

Lattice simulation with improved methods and higher statistics is on-going [1711.05648]

$\varepsilon'_{\rm K}/\varepsilon_{\rm K}$ in the BSM

Several types of BSM can explain $\varepsilon'_{K}/\varepsilon_{K}$ discrepancy

Probing new physics by precision measurements of kaon decays

Teppei Kitahara: Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

$\varepsilon'_{\rm K}/\varepsilon_{\rm K}$ in the SMEFT

- Recently, HMEs of **general four-quark operators** and **a chromomagnetic operator** contributing to $\varepsilon'_{K}/\varepsilon_{K}$ have been calculated by dual QCD approach [Aebischer, Buras, Gérard, 1807.01709]
 - HMEs of SM four-quark operators are consistent with lattice [RBC-UKQCD, PRD '15, PRL '15]
 - HME of the chromomagnetic operator is consistent with lattice $(K \rightarrow \pi)$ [ETM collaboration, '18]
 - $\Delta S=2$ ($\epsilon_{\rm K}$) HMEs B_1 [Buras, Gérard, Bardeen, '14] and B_2 - B_5 [Buras, Gérard, 1804.02401] are consistent with lattices [ETM, SWME and RBC-UKQCD]
- Based on dual QCD results, master formula for ε'_K/ε_K in the SM effective field theory (SMEFT) is derived [Aebischer, Bobeth, Buras, Gérard, Straub, 1807.02520, 1808.00466] and are implemented in the open source code *flavio* [Straub et al, DOI: 10.5281/zenodo.1326349]

$$\left(\frac{\varepsilon'}{\varepsilon}\right)_{\rm BSM} = \sum_{i} P_i(\mu_{\rm ew}) \,\,{\rm Im}\left[C_i(\mu_{\rm ew}) - C'_i(\mu_{\rm ew})\right]$$

some tensor four-quark operators are sensitive to $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$

Gluino-box contribution

[Kagan, Neubert, PRL '99, Grossman, Kagan, Neubert, JHEP '99, TK, Nierste, Tremper, PRL '16]

In the supersymmetric models, the gluino box can significantly contribute to $\epsilon'_{\rm K}/\epsilon_{\rm K}$

In spite of QCD correction, gluino box **can** break isospin symmetry through mass difference between right-handed up and down squarks, which contributes **Im**A2

 $m_{\bar{U}} \neq m_{\bar{D}} \xrightarrow{\text{RGE}}$ EW penguin operator Q_8 is generated at the low energy scale

with HMEs \longrightarrow contributes to ImA2 \longrightarrow $\epsilon'_{K}/\epsilon_{K}$ anomaly can be solved

SUSY contributions to $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$

[TK, Nierste, Tremper, PRL '16] [Crivellin, D'Ambrosio, TK, Nierste '17]

• We take all SUSY masses equal to M_s , except for the gaugino masses (*M*₃) and the right-handed up-type squark mass ($m_{\overline{U}}$)

 $K^{0} \rightarrow \mu^{+}\mu^{-}$

There is no single photon exchange in $P \rightarrow l^+l^-$

No contribution from single photon diagrams

 $K^{\nu} \rightarrow \mu^{+}\mu^{-}$

- There is no single photon exchange in $P \rightarrow l^+l^-$
- Two photons exchange give dominant contributions in $K^0 \rightarrow \mu^+ \mu^-$

$K_L \rightarrow \mu^+ \mu^-$

 $K_{\rm L} \rightarrow \mu^+ \mu^- = |\text{S-wave}|^2 + |\text{P-wave}|^2$

P-wave is significantly suppressed in the SM

$K_S \rightarrow \mu^+ \mu^-$

 $K_{\rm S} \rightarrow \mu^+ \mu^- = |{\rm S-wave}|^2 + |{\rm P-wave}|^2 \leftarrow \text{no interference if } \mu \text{ polarizations are not measured}$

$$K^0 \rightarrow \mu^+ \mu^-$$
 systems

SM predictions: [Ecker, Pich '91, Isidori, Unterdorfer '04, TK, D'Ambrosio '17]

$$\mathcal{B}(K_L \to \mu^+ \mu^-)_{\text{SM}} = \begin{cases} (6.85 \pm 0.80 \pm 0.06) \times 10^{-9}(+) & A \\ (8.11 \pm 1.49 \pm 0.13) \times 10^{-9}(-) & \pm \\ \text{LD} & \text{other} \end{cases}$$

$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{\text{SM}} = [4.99(\text{LD}) + 0.19(\text{SD})] \times 10^{-12} & \text{C} \\ = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12} & \text{L} \end{cases}$$

An unknown sign ambiguity $\pm = \operatorname{sgn} \left[\frac{\mathcal{A}(K_L \to \gamma \gamma)}{\mathcal{A}(K_L \to (\pi^0)^* \to \gamma \gamma)} \right]$

changes the relative sign between LD and SD

Both of $K_L \rightarrow \mu^+ \mu^-$ and $K_S \rightarrow \mu^+ \mu^-$ are dominated by the *CP*-conserving long-distance contributions (two photon exchanges)

LD

other

Current bounds:

 $\mathcal{B}(K_L \to \mu^+ \mu^-)_{exp} = (6.84 \pm 0.11) \times 10^{-9}$ [BNL E871 '00]

 $\mathcal{B}(K_S \rightarrow \mu^+ \mu^-)_{exp} < 0.8 \times 10^{-9}$ [LHCb Run-I full data '17]

LHCb Upgrade is aiming to reach the SM sensitivity of $K_S \rightarrow \mu\mu$ [D. M. Santos, HQL2018]

Interference between *K*_L **and** *K*_S

When the same final states exist in K_L and K_S decays, the interference between K_L and K_S initial states gives a contribution

Such an interference is discussed from '67 (Sehgal and Wolfenstein), and has been observed and utilized in many processes:

e.g., $K^0 \rightarrow \pi\pi$, $K^0 \rightarrow 3\pi^0$, $K^0 \rightarrow \pi^+\pi^-\pi^0$, and $K^0 \rightarrow \pi^0 e^+e^-$

Interference between Ks and KL

Neutral kaon state (t=0) evolves into a mixture of $K_1(t)$ (CP-even) ad $K_2(t)$ (CP-odd) states CP impurity $\bar{\epsilon} \simeq \epsilon_K \simeq \mathcal{O}(10^{-3})$ $\overset{(-)}{|K^{0}(t)\rangle} = \frac{1}{\sqrt{2}(1\pm\bar{\epsilon})} \left[e^{-iH_{S}t} \left(|K_{1}\rangle + \bar{\epsilon}|K_{2}\rangle \right) \pm e^{-iH_{L}t} \left(|K_{2}\rangle + \bar{\epsilon}|K_{1}\rangle \right) \right],$ KL Ks Decay intensity of neutral kaon beam into f states $I(K \to f)(t) = \frac{1+D}{2} \left| \langle f | -\mathcal{H}_{\text{eff}}^{|\Delta S|=1} | K^0(t) \rangle \right|^2 + \frac{1-D}{2} \left| \langle f | -\mathcal{H}_{\text{eff}}^{|\Delta S|=1} | \overline{K}^0(t) \rangle \right|^2$ $\bullet \quad |\mathcal{A}(K_S \to f)|^2$ $= \frac{1}{2} \left[\left\{ (1 - 2D\operatorname{Re}[\bar{\epsilon}]) |\mathcal{A}(K_1)|^2 + 2\operatorname{Re}\left[\bar{\epsilon}\mathcal{A}(K_1)^*\mathcal{A}(K_2)\right] \right\} e^{-\Gamma_S t} \right]$ + { $(1 - 2D\operatorname{Re}[\bar{\epsilon}]) |\mathcal{A}(K_2)|^2 + 2\operatorname{Re}[\bar{\epsilon}\mathcal{A}(K_1)\mathcal{A}(K_2)^*]$ } $e^{-\Gamma_L t} \qquad \longleftarrow |\mathcal{A}(K_L \to f)|^2$ $+ \left\{ 2D\operatorname{Re}\left[e^{-i\Delta M_{K}t} \left(\mathcal{A}(K_{1})^{*}\mathcal{A}(K_{2}) + \bar{\epsilon}|\mathcal{A}(K_{1})|^{2} + \bar{\epsilon}^{*}|\mathcal{A}(K_{2})|^{2} \right) \right] \quad \text{Interference} \\ + \left\{ 2D\operatorname{Re}\left[e^{-i\Delta M_{K}t} \left(\mathcal{A}(K_{1})^{*}\mathcal{A}(K_{2}) + \bar{\epsilon}|\mathcal{A}(K_{1})|^{2} + \bar{\epsilon}^{*}|\mathcal{A}(K_{2})|^{2} \right) \right] \quad \text{Interference} \\ + \left\{ 2D\operatorname{Re}\left[e^{-i\Delta M_{K}t} \left(\mathcal{A}(K_{1})^{*}\mathcal{A}(K_{2}) + \bar{\epsilon}|\mathcal{A}(K_{1})|^{2} + \bar{\epsilon}^{*}|\mathcal{A}(K_{2})|^{2} \right) \right] \quad \text{Interference} \\ + \left\{ 2D\operatorname{Re}\left[e^{-i\Delta M_{K}t} \left(\mathcal{A}(K_{1})^{*}\mathcal{A}(K_{2}) + \bar{\epsilon}|\mathcal{A}(K_{1})|^{2} + \bar{\epsilon}^{*}|\mathcal{A}(K_{2})|^{2} \right) \right] \quad \text{Interference} \\ + \left\{ 2D\operatorname{Re}\left[e^{-i\Delta M_{K}t} \left(\mathcal{A}(K_{1})^{*}\mathcal{A}(K_{2}) + \bar{\epsilon}|\mathcal{A}(K_{1})|^{2} + \bar{\epsilon}^{*}|\mathcal{A}(K_{2})|^{2} \right) \right] \right\} \right\}$ A dilution factor **D** is a measure of the initial (t=0) asymmetry

$$D = \frac{K^0 - \overline{K}^0}{K^0 + \overline{K}^0}$$

Interference between *K*_L **and** *K*_S

Dominant interference term [TK, D'Ambrosio, PRL '17]

Interference comes from $K_S \rightarrow \mu\mu$ S-wave SD times $K_L \rightarrow \mu\mu$ S-wave CPC LD; $K_S \rightarrow \mu\mu$ P-wave LD is dropped

- Proportional to direct CPV
- Insensitive to indirect CPV $\overline{\epsilon}$

$$y'_{7A} = -0.654(34), \ A^{\mu}_{L\gamma\gamma} = \pm 2.01(1) \cdot 10^{-4} \cdot [0.71(101) - i5.21]$$

top loop $\gamma\gamma$ loop sign ambiguity

Direct *CP* asymmetry in $K_S \rightarrow \mu \mu$

[TK, D'Ambrosio, PRL '17] [Chobanova, D'Ambrosio, TK, Martinez, Santos, Fernandez, Yamamoto '18] [Endo, Goto, TK, Mishima, Ueda, Yamamoto, '18]

- Interference contribution is comparable size to CPC of $K_S \rightarrow \mu\mu$ thanks to the large absorptive part of long-distance contributions to $K_L \rightarrow \mu\mu$
- The unknown sign of $\mathcal{A}(K_L \to \gamma \gamma)$ can be probed, which reduces theoretical uncertainty of $K_L \to \mu \mu$

SUSY contributions to $K^0 \rightarrow \mu^+ \mu^-$

One of the MSSM scenario from Chobanova, D'Ambrosio, TK, Martinez, Santos, Fernandez, Yamamoto '18

mass difference between right-handed squarks, large $\tan\beta$, light $M_A \sim \text{TeV}$

See also Leptoquark study: $B(K_S \rightarrow \mu \mu) \sim O(10^{-10})$ is possible [Bobeth, Buras '18]

$K_{\rm L} \rightarrow \pi^0 \nu \bar{\nu}$ and $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Both channels are theoretical clean and very sensitive to short-distance contributions (there is no LD contribution), especially $K_L \rightarrow \pi^0 \nu \nu$ is purely *CPV* decay $s \rightarrow d$ FCNC

almost *CP* odd *K*_L $\overset{\overline{d}}{\underset{V_{ts}}{\longrightarrow} U} \overset{\overline{d}}{\underset{V_{ts}}{\longrightarrow} U} \overset{\overline{d}}{\underset{V_{td}}{\longrightarrow} U}} \overset{\overline{d}}{\underset{V_{td}}{\longrightarrow} U} \overset{\overline{d}}{\underset{V_{td}}{\longrightarrow} U}} \pi^{0} J^{PC} = 0^{++} \rightarrow CP = \text{odd}} \rightarrow CP \text{ even}$

SM predictions: [Buras, Buttazzo, Girrbach-Noe, Knegjens '15]

$$\begin{aligned} \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} &= (8.4 \pm 1.0) \times 10^{-11} , \quad (9.11 \pm 0.72) \times 10^{-11} \\ \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM} &= (3.4 \pm 0.6) \times 10^{-11} , \quad (3.00 \pm 0.31) \times 10^{-11} \\ \text{CKM from tree} & \text{CKM from tree+loop} \end{aligned}$$

Previous results:

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp}} = 17.3^{+11.5}_{-10.5} \times 10^{-11} \qquad \text{[E949, BNL '08]}$$
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\text{exp}} \le 2.6 \times 10^{-8} \qquad \text{[E391a, J-PARC '10]}$$

On-going experiments

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 2.8^{+4.4}_{-2.3} \times 10^{-10} (68\% \text{ CL})$$

$$\sim 20 \text{ SM events are expected before LS2}$$
[NA62, 2016data, FPCP2018]
Results

On-going experiments

Note: Although Z' FCNC scenario can also explain $\varepsilon'_{K}/\varepsilon_{K}$, a correlation to $\mathcal{B}(K \to \pi \nu \bar{\nu})$ is **model-dependent**

Modified Z-coupling scenario

For gauge-invariant predictions, **SMEFT** should be introduced

[Endo, TK, Mishima, Yamamoto, '16] [Bobeth, Buras, Celis, Jung,'17] [Endo, Goto, TK, Mishima, Ueda, Yamamoto, '18]

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_L}{\Lambda^2} i(H^{\dagger} \overleftrightarrow{D_{\mu}} H) (\overline{Q}_L \gamma^{\mu} Q'_L) + \frac{c_R}{\Lambda^2} i(H^{\dagger} \overleftrightarrow{D_{\mu}} H) (\overline{d}_R \gamma^{\mu} d'_R),$$

$$= \mathcal{L}_{\rm SM} - \frac{\sqrt{2} v M_Z}{\Lambda^2} \left(c_L \overline{s} \gamma^{\mu} Z_{\mu} P_L d + c_R \overline{s} \gamma^{\mu} Z_{\mu} P_R d \right) + \dots$$

→ After EWSB, in addition to FCNC terms, some NG boson vertices emerge

Constraint comes from $\Delta S=2$ process: ε_K

 $\begin{array}{ccc} (H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\overline{s}_{R}\gamma^{\mu}d_{R}) & \text{@high scale} & \begin{array}{c} \text{top-Yukawa RG} \\ \hline \Delta S = 1 \end{array} & \begin{array}{c} \overline{s}_{L}\gamma_{\mu}d_{L})(\overline{s}_{R}\gamma^{\mu}d_{R}) & \text{@low scale} \\ \hline \Delta S = 2 \end{array}$

$B(K_{\rm L} \rightarrow \pi^0 v \bar{v})$ in Z scenario (MSSM)

Conclusions

Kaon physics can probe *CP***-violating FCNC from various ways**

- First lattice result and theory calculations indicate $\varepsilon'_{\rm K}/\varepsilon_{\rm K}$ discrepancy in $K^0 \rightarrow \pi\pi$ (2.8-2.9 σ)
- $\square \qquad \mathcal{B}(K_S \to \mu^+ \mu^-)|_{\text{MSSM}} \sim \mathcal{O}(1) \times 10^{-11} \text{ can be probed by LHCb Upgrade}$
- LHCb Upgrade could open a short distance window by the interference effect in $K^0 \rightarrow \mu^+ \mu^-$
- 10% precisions in $K_L \rightarrow \pi^0 v v$ and $K^+ \rightarrow \pi^+ v v$ are crucial

Trojan Penguin

1111 11

BAGRUP

Dilution factor *D*

[D'Amborosio, TK '17]

- Since $f_s(\mu^2) = f_{\bar{s}}(\mu^2)$ (PDF in *p*), $\sigma(pp \to K^0X) \simeq \sigma(pp \to \overline{K}^0X)$ and then D = 0 in LHC
- Nonzero dilution factor D could be obtained by an accompanying charged kaon tagging and a charged pion tagging

Probing new physics by precision measurements of kaon decays

Teppei Kitahara: Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

Progress on RG evolution

Analytic solution of *f*=3 QCD-NLO RG evolution has a unphysical singularity [Ciuchini,Franco,Martinelli,Reina '93, '94, Buras,Jamin,Lautenbacher '93]

- Similar singularities exist in QED-NLO and QCD-QED-NLO RG evolutions
- Singularity-free analytic solutions are obtained using more generalized ansatz for the NLO evolution matrices [TK, Nierste, Tremper, JHEP '16]
 - $\ln \alpha_s(\mu_2)/\alpha_s(\mu_1)$ terms are added compared to the previous solution
 - Contribution of order α^2/α_s^2 is also included for the first time and we find it is numerically irrelevant in the SM \rightarrow good perturbation theory

Dual QCD approach

- Effective theory **focusing the meson evolution** which matches the quarkgluon evolution (SD RGE) at the matching scale $\mu = O(1)$ GeV
 - It cannot be achieved in ChPT where a matching to SD physic leads to large uncertainty
- Inclusion of vector meson is crucial for the meson running and the matching

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \left[\text{Tr} |D^{\mu}U|^2 + r \text{Tr}(mU^{\dagger} + \text{h.c.}) - \frac{r}{\Lambda_{\chi}^2} \text{Tr}(mD^2U^{\dagger} + \text{h.c.}) \right]$$
$$- \frac{1}{4} \text{Tr} V_{\mu\nu}^2 - a \frac{f_{\pi}^2}{4} \text{Tr} \left[\partial_{\mu}\xi^{\dagger}\xi + \partial_{\mu}\xi\xi^{\dagger} - 2igV_{\mu} \right]^2 \quad \text{with}$$
$$r(\mu) = \frac{2m_K^2}{m_s(\mu) + m_d(\mu)}$$
pseudoscalar octet Π : $U = \exp\left(i\frac{\Pi}{f_{\pi}}\right) \equiv \xi\xi$

vector-meson nonet V_{μ} : gauge boson of a hidden U(3) local symmetry [Bando, Kugo, Uehara, Yamawak, Yanagida '85, Bando, Kugo, Yamawaki, '88]