Cassiopeia A 中性子星の 冷却曲線とアクシオン

基研研究会 PPP2018 2018年8月10日

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, [arXiv: 1806.07151].

▶ Cas A 中性子星

▶ 中性子星標準冷却理論とCas A

▶ アクシオン放出による冷却

Cas A 中性子星

3 Cassiopeiae

天球図譜 (1729)

1680年8月16日に 3 Cassiopeiae を記録した。

しかしながら、それ以後同じ場所に 星が観測されることはなかった。

Flamstead A.F.

Cassiopeia A (Cas A)

超新星残骸

 $d = 3.4^{+0.3}_{-0.1} \text{ kpc}$

超新星残骸の運動から,爆発年は1681 ± 19 年と推定された。 中心部に中性子星が発見された。

Cas A NS Cooling

THE ASTROPHYSICAL JOURNAL LETTERS, 719:L167–L171, 2010 August 20 © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

DIRECT OBSERVATION OF THE COOLING OF THE CASSIOPEIA A NEUTRON STAR

CRAIG O. HEINKE¹ AND WYNN C. G. HO² ¹ Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7, Canada; heinke@ualberta.ca ² School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK; wynnho@slac.stanford.edu *Received 2010 April 14; accepted 2010 July 8; published 2010 August 2*

Chandra

Today's topic

Cas A 中性子星の冷却曲線は、標準冷却理論 によって記述しうる。

D. Pager, M. Prakash, J. M. Lattimer, and A. W. Steiner, Phys .Rev. Lett. **106**, 081101 (2011); See also, P. S. Shternin, D. G. Yakovlev, C. O. Heinke, W. C. G. Ho, and D. J. Patnaude, MNRS 412, L108 (2011).

中性子の超流動相転移が重要な役割を担う。

アクシオン放出などの冷却源が加わると、理論 予言が観測と合わなくなる。

そのような冷却源に対し制限を与える。

中性子星標準冷却理論とCas A

Size of neutron star vs Kyoto

▶ 半径およそ10 km ▶ 1—2 太陽質量

原子核密度くらいの 超高密度!

● 中性子, 陽子, 電子は全てフェルミ縮退。 ● 中性子, 陽子は<mark>超流動・超伝導</mark>状態にある。

Standard Cooling

<u>温度発展の方程式</u>

$$C(T)\frac{dT}{dt} = -L_{\nu} - L_{\gamma} - L_{\text{cool}}$$

C(T): 中性子星の熱容量 L_v: ニュートリノ放出ルミノシティ L_γ: 光子放出ルミノシティ L_{cool}: 他の冷却源のルミノシティ

<u>光子放出</u>

 $L_{\gamma} = 4\pi R^2 \sigma_{\rm SB} T_s^4$ およそ十万歳以降に支配的。

<u>ニュートリノ放出</u>十万歳以前に支配的。

- Direct Urca process (逆) β崩壊。重い星でのみ起こる。
- Modified Urca process 支配的。
- ▶ 制動放射
- ▶ PBF過程。

核子のクーパー対が生じた直後に起き, ニュートリノ放出を増大させる。

Pairing effects on neutron star cooling

中性子星内の核子はクーパー対を形成する。

- ▶ 中性子一重項 ¹S₀ 地殻でのみ生じる。
- ▶ 陽子一重項 ¹S₀
 ▶ 中性子三重項 ³P₂

<u>クーパー対の影響</u>

- ▶ ニュートリノの放射を抑制する。 エネルギー・ギャップのため。
- ▶ クーパー対が壊れて再形成する (PBF) 際にニュートリノを 放射する。

相転移温度よりわずかに低い温度 でのみ生じ,ニュートリノ放出を その間増大させる。

Surface temperature

観測されるのは中性子星の表面温度なので,これを内部温度と 関連付けなければならない。

軽元素量が増えると表面温度は高くなる。

軽元素の熱伝導性が高いため。

Slow neutrino emission

<u>modified Urca + 制動放射</u>

$$L_{\nu} = L_9 T_9^8, \quad L_9 \sim 10^{40} \text{ erg} \cdot \text{s}^{-1}$$

$$\blacksquare \quad T_9 = \left(\frac{C_9 \cdot 10^9 \text{ K}}{6L_9 t}\right)^{\frac{1}{6}} \sim \left(\frac{1 \text{ year}}{t}\right)^{\frac{1}{6}}$$
内部温度の時間依存性は $T \propto t^{-\frac{1}{6}}$

表面温度と内部温度の関係式

$$T_9 \simeq 0.1288 \times \left(\frac{T_{s6}^4}{g_{14}}\right)^{0.455}$$
 $T_{s6} = T_s/(10^6 \text{ K})$

E. H. Gudmundsson, C. J. Pethick, and R. I. Epstein (1983).

Slow neutrino emission and Cas A NS

表面温度の時間依存性は $T_s \propto t^{-0.09}$

10年で 0.3% しか減少しない。

Cas A 中性子星の温度減少を説明することはできない。

PBF によってニュートリノ放射を増幅させる。

この過程は臨界温度近傍でしか働かないので,超流動 相転移温度がCas A 中性子星の内部温度よりも少しだけ 高い場合にのみこのシナリオは実現可能。

Fit with minimal cooling

標準冷却理論によるCas A 中性子星表面温度のフィットが 行われた。

K. G. Elshamouty, C. O. Heinke, W. C. Ho, A. Y. Potekhin, Phys .Rev. C91, 015806 (2015).

Cooling source and Cas A NS

もしも他に冷却源があったならば,中性子星の温度は 標準冷却の場合よりも低くなる。

冷却源の効果が強すぎると, Cas A中性子星観測時の 温度よりも低い温度が予言されることになる。

このような冷却源に対し観測結果は制限を与える!

以下では、冷却源としてアクシオン放出を考察する。

アクシオン放出による冷却

Axion

有効ラグランジアン

アクシオン: Peccei-Quinn 対称性に伴うNGボソン。

R. D Peccei and H. R. Quinn (1977); S. Weinberg (1978); F. Wilczek (1978).

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^{2} + \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu} + \sum_{q} \frac{C_{q}}{2f_{a}} \bar{q} \gamma^{\mu} \gamma_{5} q \partial_{\mu} a + \dots$$

f_a: アクシオン崩壊定数

<u>アクシオン・核子有効結合定数</u>

$$\mathcal{L}_{\text{int}} = \sum_{N=p,n} \frac{C_N}{2f_a} \bar{N} \gamma^{\mu} \gamma_5 N \,\partial_{\mu} a$$

 $C_N = \sum_{q=u,d,s} \left(C_q - \frac{m_*}{m_q} \right) \Delta q^{(N)}$

核子行列要素

$$2s_{\mu}^{(N)}\Delta q^{(N)} \equiv \langle N|\bar{q}\gamma_{\mu}\gamma_{5}q|N\rangle$$

$$m_* \equiv \frac{m_u m_d m_s}{m_u m_d + m_u m_s + m_d m_s}$$

Axion-nucleon couplings

KSVZ axion model J. E. Kim (1970); M. A. Shifman, A. I. Vainshtein, V. I. Zakharov (1980).

$$C_q = 0$$
 $P_p = -0.47(3), \quad C_n = -0.02(3)$

誤差の範囲内で Cn はゼロになりうる。

DFSZ axion model A. R. Zhitnitsky (1980); M. Dine, W. Fischler, M. Srednicki (1981).

$$C_{u,c,t} = \frac{1}{3}\cos^2\beta, \quad C_{d,s,b} = \frac{1}{3}\sin^2\beta$$

$$C_p = -0.182(25) - 0.435\sin^2\beta$$

$$C_n = -0.160(25) + 0.414\sin^2\beta$$
-般にどちらも同程度の値。

Axion emission processes

<u>アクシオンの放出過程</u>

- PBF
- ▶ 制動放射

NSCoolなるpublic codeにこれらの過程を組み込んだ。

- <u>もろもろの詳細</u>
 - ▶ APR 状態方程式
 - ▶ 中性子星質量: M = 1.4M_☉
 - ▶ 中性子 ¹S₀ ギャップ: SFB model あまり結果に影響しない。
 - ▶ 陽子 ¹S₀ ギャップ: CCDK model

十分大きなギャップさえあれば何を選んでもだいたい一緒。

- ▶ 中性子 ³P₂ ギャップ
 - ギャップの高さ ($\propto T_c$) ・幅をフリー・パラメーターとした。

Luminosity of axion emission

アクシオン放出がニュートリノ放出と同程度に強くなりうる。

 $C_n \simeq 0$ でもアクシオンは十分な強度で放出される。

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, [arXiv: 1806.07151].

Core temperature of Cas A NS

Cas A 中性子のコア温度 (2000年1月30日)

f_a ≤ a few × 10⁸ GeV のとき、コア温度は低くなりすぎる。
 表面層に含まれる軽元素の量により大きな不定性が生じる。
 K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, [arXiv: 1806.07151].

Cooling curves vs data

既存の制限と同程度に強い制限が得られた。

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, [arXiv: 1806.07151].

Conclusion

- Cas A 中性子星の冷却曲線は、標準冷却理論
 によって記述しうる。
- 冷却源が加わると理論予言が観測と合わなくなるため、これに対し制限が課される。
- アクシオンに対し既存の制限と同じくらい強い 制限が得られるとわかった。

Spectral fit of Cas A NS

K. G. Elshamouty, C. O. Heinke, W. C. Ho, A. Y. Potekhin, Phys .Rev. C91, 015806 (2015).

- ▶ 磁場なしの炭素大気模型によってCas A 中性子星のX線 スペクトルをうまくフィットできる。 C. O. Heinke, W. C. Ho, Nature 462, 71 (2009).
- ▶ 重力赤方偏移の効果を用いて中性子星の質量を見積もれる。

$M \simeq (1.4 \pm 0.3) M_{\odot}$

Neutrino emission

これらの過程はフェルミ面近傍で起こる。

$$p_{\rm F} \simeq 300 \times \left(\frac{\rho_0}{2 \times 10^{14} \text{ g/cm}^3} \right)^{\frac{1}{3}} \text{MeV}$$
 $p_F \gg T, m_n - m_p$

Direct Urca が起こると、ニュートリノ放出ルミノシティは 非常に強くなる。

Direct Urca process $n \rightarrow p + e^- + \nu$, $e^- + p \rightarrow n + \nu$

上の近似が成り立つ限りにおいて, 陽子・電子のフェルミ 運動量は高々 O(10) MeV.

運動量保存

 $p_p + p_e > p_n$ ニュートリノの運動量は無視できる。

したがって, Direct Urca が生じるのは, 上の近似が成り立たない ほどの高密度領域でのみ。

Direct Urca condition

 $M \simeq (1.4 \pm 0.3) M_{\odot}$

Cooling curves

Direct Urca が起こると中性子星は急激に冷える。

Neutrino emission

他のニュートリノ放出過程は、他の粒子との運動量交換を伴う。

Cas A NS cooling

<u>Cas A NS 温度データ</u>

TABLE I. Chandra ACIS-S Graded mode temperatures.

ObsID	Year	$T_{\rm eff}{}^{\rm a}$	[×10 ⁶ K]
114	2000.08	$2.145^{+0.009}_{-0.008}$	
1952	2002.10	$2.142^{+0.009}_{-0.008}$	
5196	2004.11	$2.118\substack{+0.011\\-0.007}$	
$(9117, 9773)^{\mathrm{b}}$	2007.93	$2.095\substack{+0.007 \\ -0.010}$	
$(10935, 12020)^{\mathrm{b}}$	2009.84	$2.080\substack{+0.009 \\ -0.008}$	
$(10936, 13177)^{\mathrm{b}}$	2010.83	$2.070\substack{+0.009 \\ -0.009}$	10年で 3-4% 減少
14229	2012.37	$2.050\substack{+0.009 \\ -0.008}$	
14480	2013.38	$2.075\substack{+0.009 \\ -0.009}$	
14481	2014.36	$2.045^{+0.009}_{-0.009}$	

K. G. Elshamouty, C. O. Heinke, W. C. Ho, A. Y. Potekhin, Phys .Rev. C91, 015806 (2015).

¹S₀ neutron gap

¹S₀ proton gap

K. G. Elshamouty, C. O. Heinke, W. C. Ho, A. Y. Potekhin, Phys .Rev. C91, 015806 (2015).

中性子三重項超流動の臨界点以前のニュートリノ放射を抑制 するため,ギャップの大きい CCDK model を用いた。

³P₂ neutron gap

理論の不定性は大きい

K. G. Elshamouty, C. O. Heinke, W. C. Ho, A. Y. Potekhin, Phys .Rev. C91, 015806 (2015).

▶ 波数 k_F に関するガウス分布でモデル。 ▶ 高さ, 幅, 位置をフリー・パラメーターとした。

Luminosity of axion emission

KSVZの場合と比べてアクシオン放出強度は高い。

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, arXiv:1806.07151.

Neutron star structure

Hyperons, π/K condensation, quarks (?)

Temperature distribution

D. Page, J. M. Lattimer, M. Prakash, A. W. Steiner [arXiv: 1302.6626].

Cas A NS Cooling

D. Pager, M. Prakash, J. M. Lattimer, and A. W. Steiner, Phys .Rev. Lett. **106**, 081101 (2011); See also, P. S. Shternin, D. G. Yakovlev, C. O. Heinke, W. C. G. Ho, and D. J. Patnaude, MNRS 412, L108 (2011).