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■ Electric Dipole Moment  d  
Energy shift of a spin particle in an electric field  

■ Non-zero EDM : P&T (CP through CPT) violation  
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Introduction

→ HEDM is CP-odd !

→ HEDM is P-odd



■ Origin of EDM: CP-violating (CP-odd) interactions 

SM contribution (3-loop diagram) 
Ref: [A. Czarnecki and B. Krause ’97]

CKM: CP violating interaction in SM   
But, electron and quark EDM’s are zero at 1 and 2 loop level. 
at least three loops to get non-zero EDM’s. 
EDM’s are very small in the standard model. 
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nucleon EDM  from CKM : ~ 10-32   [e cm]

CP violation (CPV) in SM is not sufficient to  
reproduce matter/antimatter asymmetry. 
Large CPV beyond SM is required. (Sakharov’s 
three conditions)

•http://www.esa.int/ESA
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SM prediction

Observation
photon: matter
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Fig. 1. Flow diagram of the dependence of the elementary level P,CP-odd processes on the EDMs of composite systems, whose
EDMs can be measurable. “RGE” means renormalization group evolution and “PQM” means Peccei-Quinn mechanism.

negligible due to the small neutrino mass. If the neutrinos are
Majorana fermions the effect of additional CP phases can gen-
erate the electron EDM from the two-loop level, and a larger
value will be allowed for de [62,63,64,65].

Purely gluonic CP-odd processes such as the θ-term or the
Weinberg operator are also known to be very small. The θ-term
generated by the CKM phase is θ̄ ∼ 10−17 [66,67], which yields
a nucleon EDM of |dN | ∼ 10−33e cm. The Weinberg operator
gives an even smaller nucleon EDM, of order 10−40e cm [68].

In the strongly interacting sector, the most widely accepted
leading hadronic CP violation due to the CP phase of the CKM
matrix is generated by the long distance effect. The long dis-
tance contribution of the CKM phase arises from the interfer-
ence between the tree level strangeness violating |∆S| = 1 W
boson exchange process and the penguin diagram (see Fig. 2),
which forms the Jarlskog invariant (7). From a naive dimen-
sional analysis, the nucleon and nuclear EDMs are estimated
as d ∼ O(αs

4πG
2
FJΛ

3
QCD) ∼ 10−32e cm, which is larger than the

contribution from the short distance processes (quark EDM,
chromo-EDM, Weinberg operator, etc). Previous calculations
of the nucleon EDM are in good agreement with this estima-
tions [69,70,71,72,73,74,75,76,77,78].

The CP violating effects in the SM exhibit an EDM well
smaller than the experimental detectability, and a large room
is left for the discovery of new source of CP violation BSM.

u

d

s

u

W

sd

u, d u, d

W

g

t t

Fig. 2. Tree level |∆S| = 1 W boson exchange diagram (left)
and the penguin diagram (right).

2.3 Sources of CP violation from BSM physics

In many scenarios of BSM, large EDMs are predicted, because
of higher order contributions that can arise at the one- or
two-loop levels. These contributions are overwhelmingly ex-
ceed over the loop suppressed SM contribution. In Fig. 4, we
present the typical lowest order CP violating processes of BSM
contributing to the EDMs at the elementary level. In this sub-
section, we would like to elaborate several such well motivated
candidates of BSM which can generate EDMs.
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•Nucleon EDM 

Role of (lattice) QCD : connect quark/gluon-level (effective) operators to 
hadron/nuclei matrix elements and interactions (Form factor, dn) 

Non-perturbative determination is important → Lattice QCD calculation!

Important bottleneck 
of the EDM calculation!

[N. Yamanaka, et al. Eur. Phys. J. A53 (2017) 54, Ginges and Flambaum Phys. Rep. 397, 63, 2004]



199
Hg spin precession (UW) [Graner et al, 2016] 

Ultracold Neutrons in a trap (ILL) [Baker 2006]   

SM nucleon EDMs expectation is 

much smaller than the current bound.  

•Nucleon EDM Experiments

|dHg| < 7.4⇥ 10�30 e · cm
|dn| < 2.6⇥ 10�26 e · cm

Current nEDM limits:

■ Several experimental projects are on going. 
nucleon, charged hadrons, lepton,  
PSI EDM, Munich FRMII, SNS nEDM, RCNP/TRIUMF, J-PARC

Neutron	EDM	Searches	
•  Predic.ons	
–  Standard	Model		
|dn|	∼	10-31	e⋅cm	

–  Supersymmetry		
|dn|	∼	10-25	–	10-28	e⋅cm	

•  Experiments	targe.ng	
5�10-28	e⋅cm	precision	
–  PSI	EDM	
– Munich	FRMII	
–  RCNP/TRIUMF	
–  SNS	nEDM	
–  JPARC	
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dim=4,

•Effective CPV operators

✓QCD

dim=6, Weinberg three gluon

dim=5, e, quark EDM

dim=5, chromo EDM

                        :  Strong CP problem 
Dim=5 operators suppressed by             -> effectively dim=6,  
quark EDM … the most accurate lattice data for EDM (~10% for u,d) 
Others are not well determined. cEDM, Weinberg ops just started. 

+
X

C(4q)
i O(4q)

i
dim=6, Four-quark operators

✓̄  O(10�10)
mq/⇤

2



                  induced Nucleon EDMs

[E. Shintani, T. Blum, T. Izubuchi, A. Soni, PRD93, 094503(2015)]

[1] M. Pospelov, A. Ritz, Nuclear Phys. B 573 (2000) 177,  
[2] M. Pospelov, A. Ritz, Phys. Rev. Lett. 83 (1999) 2526,  
[3] J. Hisano, J.Y. Lee, N. Nagata, Y. Shimizu, Phys. Rev. D 
85 (2012) 114044.
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FIG. 11. EDM summary plot for the neutron (top) and proton (bottom) for 2 and 3 flavor QCD.

Triangles denote results of the current study and include statistical and systematic errors, as

described in the text. Results for other methods are also shown: external electric field (�E) [46],

and imaginary ✓ (F
3

(i✓))[44, 45]. Previous results show statistical errors only. Right-triangle is

result in N
f

= 2+ 1+ 1 TM fermion [42] which is including systematic error. The cross symbol in

top panel denotes a range of values from model calculations of neutron EDM based on the baryon

chiral perturbation theory [7, 17, 20].
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method value

ChPT/NDA ⇠ 0.002 e fm

QCD sum rules [1,2] 0.0025± 0.0013 e fm

QCD sum rules [3] 0.0004+0.0003
�0.0002 e fm

Phenomenological estimates Lattice calculations

Phenomenology: |dn| ~ θQCD 10^{-3} e fm -> |θQCD| < 10^{-10} 
Lattice : |dn| ~  θQCD 10^-2 e fm -> severer constraint on |θQCD| 

Problem: a spurious mixing between EDM and magnetic moments in all 
previous lattice computations of nucleon form factor.



Parity mixing problem  
on  

the CP-violating nucleon form factors

Michael Abramczyk, HO, et al, 
Lattice calculation of electric dipole moments and form factors of the nucleon  
Phys.Rev. D96 (2017) no.1, 014501 

https://inspirehep.net/record/1510883


Nucleon form factor in C, P-symmetric world (CP-even) 

(q = p0 � p, Q2 = �q2)

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

�
up,�

(/p�mN )up = 0

up : spinor wave function for the nucleon ground state |p,σ> 

N N

J : electromagnetic current

Definition of nucleon form factors



Nucleon form factor in CP-broken world

hp0,�0|Jµ|p,�i = ūp0,�0


F1(Q

2)�µ + F2(Q
2)
i�µ⌫q⌫
2mN

� F3(Q
2)
�5�µ⌫q⌫
2mN

�
up,�

P, T even P, T odd

CP-odd form factor F3 is introduced. 
the same spinor up (F1, F2 are same as CP-even case.)    
Non-zero F3 is a signature of the CP violation (F3= 0 -> CP-even) 
permanent EDM:  

Definition of nucleon form factors

Refs. [many textbooks, e.g. Itzykson, Zuber, “Quantum Field Theory“]

All previous lattice studies (prior to 2017) use a different spin structure for 
the form factors. (Refs. original works [S. Aoki, et al., 2005])



revisit of the nucleon CP-odd (EDM) form 



Lattice nucleon operator for sink and source N = u[uTC�5d]

h0|N |p,�iCP�even = Zup,� Nucleon ground state in CP-even vacuum

up is a solution spinor of the free Dirac equation: (/p�mN )up = 0

Nucleon 2 point function in CP-even world

C2pt(~p; t)CP�even = hN(~p; t)| ¯N(~p; 0)iCP�even

= hN(~p, t)

2

4
X

k,�

|k,�ihk,�|
2Ek

3

5 ¯N(~p; 0)iCP�even + (excited states)

!
t!1

|Z|2 e
�Ept

2Ep
(

X

�

up,�ūp,�)

= |Z|2e�EptmN � i/p

2Ep

Completeness condition for free Dirac 
spinor

(From now on excited states are omitted.)



Nucleon ground state in CP-broken vacuum

is a solution spinor of the free Dirac equation: 

Completeness condition for free Dirac 
spinor

h0|N |p,�i��CP = Zũp,�

Asymptotic state is modified: (CP-violating) γ5 mass is allowed in general.

ũp (/p�mNe�2i↵�5)ũp = 0

C2pt(~p; t)��CP = hN(~p; t)|N̄(~p; 0)i��CP

= |Z|2 e
�Ept

2Ep
(
X

�

ũp,�
¯̃up,�)

= |Z|2e�EptmNe2i↵�5 � i/p

2Ep

ũp = ei↵�5up is a solution to the above Dirac equation.
X

�

ũp,�
¯̃up,� = ei↵�5(

X

�

up,�ūp,�)e
i↵�5 = mNe2i↵�5 � i/p

[Completeness condition for free Dirac spinor with γ5 mass]

Nucleon 2 point function in CP-broken world



①

C3pt(~p0, t; ~p, ⌧)��CP =
X

~y,~z

e�i~p0·~y+i~p·~zhN(~y, t)Jµ(~z, ⌧)N̄(0)i��CP

= |Z|2 e
�Ep0 (t�⌧)�Ep(⌧)

4Ep0Ep

X

�,�0

hN(p0)|p0,�i��CP hp0,�|Jµ|p,�0i��CP hp,�0|N(p)i��CP

② ③

h0|N |p,�i��CP = Zũp,�① & ③:

②:

: defined in the rotated spinor basis       F̃1, F̃2, F̃3 (ũ)

(
F2(Q2) 6= F̃2(Q2)

F3(Q2) 6= F̃3(Q2)

hp0,�0|Jµ|p,�i��CP = ¯̃up0,�0


F̃1(Q

2)�µ + F̃2(Q
2)
i�µ⌫q⌫
2mN

� F̃3(Q
2)
�5�µ⌫q⌫
2mN

�
ũp,�

(ũ)(u)

Calculation of 3 point function in CP-broken world

Refs: original works since 2005

“All” previous (prior 2017) lattice studies:

Two form factors are different!



There is a spurious contribution of order (α F2) to the previous lattice results. 
In other words, CP violation effects come from both tilde{F3} and α, not only tilde{F3}. 

(F2 + iF3�5) = e2i↵�5
(

˜F2 + i ˜F3�5), ,
(

˜F2 = cos (2↵)F2 + sin (2↵)F3

˜F3 = � sin (2↵)F2 + cos (2↵)F3

[textbook]

¯̃up0,�0


F̃1�

µ + (F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
ũp,� = ūp0,�0


F̃1�

µ + e2i↵�5(F̃2 + iF̃3�5)
i�µ⌫q⌫
2mN

�
up,�

⌘ ūp0,�0


F1�

µ + (F2 + iF3�5)
i�µ⌫q⌫
2mN

�
up,�[conventional “lattice” parametrization 

since 2005]

Relation between two spinor basis

This mixing angle α has to be calculated, and rotated away to get “net” CP-violation effect. 

Similar issues in the ChPT (perturbative) calculations? (α may appear in the mass correction.)

A simple relations between                          and{F1, F2, F3} {F̃1, F̃2, F̃3}



Numerical check using the chromo EDM operator 

Form factor method  
vs  

Energy shift method

Computational resources : ACCC HOKUSAI greatwave, Fermilab, JLab [USQCD project]



How to calculate CP-odd interaction on a lattice

Linearization of CP-odd interaction (e.g.：θ-EDM)

e�SQCD�i✓Q = e�SQCD
⇥
1� i✓Q+O(✓2)

⇤

hOi��CP = hOiCP�even � i✓hQ · OiCP�even +O(✓2)

(CP-even) (CP-odd)
Q: topological charge,  θ << 1 

c.f. Dynamical simulation including CP-odd interactions

Original (CP-even) gauge configurations can be used. No sign problem.

Non-perturbative treatment of CP-odd interactions. 
Analytic continuation to imaginary θ. 
Need additional simulation. 
Check linearity of θ  (ensemble generation for various imaginary θ)

hOi✓ ⇠
Z

DU(O)e�SQCD�✓imagQ [R. Horsley et al.  (2008); H. K. Guo, et al., 2015)]



•Chromo EDM operator 

Dimention 5 CP violating operator, mixing with dim-3 pseudo scalar operator. 

Beyond standard model origin 

Chiral symmetry is important.  
The clover term in Wilson-type action = Chromo-magnetic dipole moment 
(chromo-MDM). 

In presence of CPv, additional operator mixing of chromo-MDM appears. 

➡We use chirally symmetric domain wall fermion  
(gauge ensemble by RBC-UKQCD 

Nucleon EDMs on a Lattice at the Physical Point LATTICE2018, East Lansing, MI, July 22-28

    

Sergey N. Syritsyn

Quark Chromo-EDM on a Lattice

Chiral symmetry is important: 
O(a) clover term in, e.g., Wilson fermion action ≣ chromo-magnetic DM

Lclover = a
c

4
q̄ [Gµ⌫�

µ⌫ ] q

LcEDM =
X

q=u,d

�̃q
2
q̄ [Gµ⌫�

µ⌫�5] q

In presense of CPv,  condensate is realigned  q ! ei�5⌦q

hvac|Lm + L��CP |⇡ai = 0so that

leading to mixing (chromo)EDM ⟺(chromo)MDM:
�LcEDM = �(q̄ [D̃qGµ⌫�

µ⌫�5] q) = q̄ [{⌦, D̃q}Gµ⌫�
µ⌫ ] q) ⇠ �LcMDM

dim-5 operator : O(a-2) mixing with dim-3 pseudoscalar density 
⇒ evaluate&subtract p,nEDM induced by PS density P = q̄�5q

[T.Bhattacharya et al, 1502.07325]

Lclover = aq̄ [Gµνσ
µν ] q



1. Form factor method



Mixing parameter induced by cEDM 

C2pt(~p; t)��CP = |Z|2e�EptmNe2i↵�5 � i/p

2Ep

= |Z|2 e
�Ept

2Ep
[(mN � i/p) + 2i↵mN�5] +O(↵2)

(CP-even) (CP-odd)

↵eff (t) = �
Tr

⇥
T+�5C

CP�odd

2pt (t)
⇤

Tr [T+C2pt(t)]

C

CP�odd

2pt (t) = hN(t)N̄(0)
X

x

O
cEDM

(x)i

14

Figure 9: Plateau plots for the neutron and proton Pauli form factors: the three smallest Q2 > 0 points. Results for the
243 × 64 (left) and 163 × 32 (right) lattices.

Figure 10: Chiral rotation angle α5 of the proton field induced by u- and d-quark cEDM interactions on the 243 × 64 (left)
and 163 × 32 (right) lattices. The angles α5 for the neutron are related by the SU(2)f symmetry u ↔ d. The chromo-EDM
interactions are not renormalized and may contain mixing with other operators.

point functions (61). Expanding the ratio in α5 ∝ cψG, we get

Tr
[

T
(

RNJN̄ − icψG δ
CPRNJN̄ +O(c2ψG)

)] t→∞
=

∑

i=1,2

[

K(T )
R i + iα5K({T,γ5})

R i

]

Fi +K(T )
R 3F3 +O(α5

2) , (65)

where K(T )
R 1,2,3 are the kinematic coefficients (C9-C12) for form factors F1,2,3 computed with the polarization matrix

T and with K → KR (C14). Matching the O(cψG terms in the above expansion and neglecting excited states, we

Mixing angle α depend strongly on the flavor involved in cEDM. 

For proton, its strength for U-cEDM is large, no signal for D-cEDM. 

For nucleon,  no signal for U-cEDM. 

24^3 x 64 lattice, proton



Result of F3 form factor (L=24)

R: kinetic factor

GE: Sachs electric form factor

•

C

CP�odd

3pt (T, t) = hN(T )Jµ(t)N̄(0)
X

x

[O
cEDM

(x)]i
a standard plateau method: 

R(T, t) =
CCP�odd

3pt (T, t)

c2pt(t)

s
c02pt(T )c

0
2pt(t)c2pt(T � t)

c2pt(T )c2pt(t)c02pt(T � t)

“correct” F3 : (1 + ⌧)F3(Q
2) =

mN

qzR
Tr

⇥
T+
Sz

·R(T, t)µ=4
⇤
� ↵GE(Q

2)

projection operator : 

C3pt(~p0, t; ~p, ⌧)��CP =
X

~y,~z

e�i~p0·~y+i~p·~zhN(~y, t)Jµ(~z, ⌧)N̄(0)i��CP

= |Z|2 e
�Ep0 (t�⌧)�Ep(⌧)

4Ep0Ep

X

�,�0

hN(p0)|p0,�i��CP hp0,�|Jµ|p,�0i��CP hp,�0|N(p)i��CP

Recall the 3 pt functions:
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Figure 12: Linear Q2 fits to the neutron EDFF F3 (same data as in Fig. 11) including only the three smallest Q2 > 0 points
and source-sink separations T = 8a, 10a. Results for the 243 × 64 (left) and 163 × 32 (right) lattices.

Figure 13: Plateau plots for the neutron EDFF form factors: the three lowest Q2 > 0 points. Results for the 243 × 64 (left)
and 163 × 32 (right) lattices.

We have computed the neutron correlation functions with two values of the electric field E = E0 and 2E0. The results
for both ensembles are shown in Fig. 14. We choose t = 6 . . . 9 as the common plateau to estimate the value of ζ on
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Linear Q^2 fit to nucleon F3 form factor

mπ = 340[MeV]



2. Energy shift method



Lattice QCD with background constant electric field

24^3x 64 lattice minimal value of E (|n|=1)

Uniform electric field preserving translational invariance and periodic 
boundary conditions on a lattice (Euclidean imaginary electric field) 
used for the nucleon polarizability [W. Detmold, Tiburzi, and Walker-
Loud, (2009)] 
First applied to the CP-violation effects. 
No sign problem: Analytic continuation of CP-odd interaction

strength of E field

charge quanta

Charge quantization due to finite volume.



Nucleon 2 point function with a constant Ez-field

Energy shift : 

(CP-even) (CP-odd)(t >> 1)

“Effective” energy shift  (extraction of the term proportion to linear-time)

spin dependent interaction energy 
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Only neutron is considered.  (Analysis of charged particle propagators is more complicated.) 

Non-zero signal for spectator d-cEDM.  

Effective energy plateau around t = 6~10. 

Results for |Ez|=1, |Ez|=2 are consistent.  -> Higher order effects of E-field can be neglected. 

mπ = 340[MeV]



u-cEDM: New and Old formula results give similar value consistent with energy shift method. 
d-cEDM: “new” formula result is consistent with the energy shift method.  
“old” F3 has a sizable mixing due to large α (cEDM mixing α ~ 30)   [c.f. α for topological charge]
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Implication of new formula for the theta induced EDM 



Dim=4 : QCD theta term



Reanalysis of “lattice” θ induced EDM
Correction is simple: 

Correction made   
by ourselves

Ref[1] : C. Alexandrou et al., Phys. Rev. D93, 074503 (2016),    
Ref[2] : E. Shintani et al., Phys.Rev. D72, 014504 (2005). 
Ref[3] : F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys.Rev. D73, 054509 (2006)  
Ref[4] : F. K. Guo et al., Phys. Rev. Lett. 115, 062001 (2015). 

After removing spurious contributions, no signal of EDM. 
The lattice results are consistent with phenomenological estimates.



Dim=5 : qEDM 



N N

Γ

quark EDM operator 

Dimension 5 CP violating operator  
No need for CP-odd form factor 

→ No spurious mixing problem in quark EDM 
dq ~ mq in most models,    

→ strange quark contribution (disconnected diagram) is important. 

hN |�( ̄� · F̃ )
�Aµ

|Ni /✏k�µ⌫qkhN | ̄��⌫ )|Ni

⇠✏k�µ⌫qkūN��⌫uN(nucleon tensor charge)

F3

2mN
⌘ dN / gT dN = dug

u
T + ddg

d
T + dsg

s
T

hN | ̄��⌫ |Ni = gT ūN��⌫uN

N N N N N N

Γ

Γ

Γ

Strange contribution : purely disconnected diagrams (noisy)

ms/md ⇠ 20
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FIG. 10. Comparison of our results (red circles) for gu�d
S (left) and gu�d

T (right) with a number of other recent lattice QCD
results (blue squares) and with phenomenology (green triangles). With filled squares we denote extrapolated values at the
physical pion mass, whereas with the open squares we show the lattice results from the various collaborations at their lowest
pion mass, for the cases that mlow

⇡  150 MeV. The red vertical band showing our value and its error is to help guide the eye.
The solid error bars denote statistical errors whereas the dashed error bars, when available, show the statistical and systematic
uncertainties added in quadrature.

In Fig. 11 we compare our results for the connected parts of the isoscalar scalar and tensor charges with selected
results from the PNDME and the LHPC collaborations at various pion masses, using the lattice ensembles described
previously, as well as with TMF from a gauge ensemble at m

⇡

= 373 MeV [17]. Regarding gu+d

S

, PNDME obtained
results at two pion masses, m

⇡

= 220 MeV and 310 MeV using clover valence quarks on N
f

= 2 + 1 + 1 HISQ sea
fermions [62] and performed a linear extrapolation to the physical point to obtain gu+d

S

= 7.15(65), which agrees
with our value. The same group calculated gu+d

T

on the nine gauge ensembles for which they obtained the isovector
charges [7] and after performing a chiral extrapolation they obtain gu+d

T

= 0.598(33), which is in good agreement with
the value extracted in this work. In general, there is agreement among lattice QCD for gu+d

S

and gu+d

T

over a range of
pion masses. The tendency for lower values regarding gu+d

S

and higher values regarding gu+d

T

at heavier pion masses
can be explained by the fact that older results have typically used smaller sink-source time separations. Since these
quantities are a↵ected by excited state contaminations that tend to decrease and increase their values, respectively,
contributions from excited states might explain the higher and lower values, respectively, obtained in more recent
calculations.

Besides our computation, only the PNDME has evaluated the disconnected contributions [18, 63] at pion masses
around m

⇡

= 220 MeV and m
⇡

= 310 MeV. Disconnected contributions, besides the physical ensemble, were also
computed for a gauge ensemble of N

f

= 2 + 1 + 1 twisted mass fermions at m
⇡

= 373 MeV [17]. We compare our
results for the scalar and tensor charges regarding the disconnected isoscalar as well as the strange contributions in
Figs. 12 and 13, respectively. As can be seen, both ETMC and PNDME obtain results for the disconnected part of
gu+d

T

that are consistent with zero. On the other hand, the disconnected contribution to gu+d

S

is found by both to be
non-zero and positive. The same is true for gs

S

and gs

T

. PNDME finds larger values for gs

S

by about two standard
deviations at m

⇡

= 220 MeV. It would be interesting for other collaborations to compute gs

S

directly at the physical
point in order to have a direct comparison. The ETMC results concerning the disconnected gu+d

S

and gs

S

using the
N

f

= 2 + 1 + 1 ensemble at m
⇡

= 373 MeV [17] are obtained at t
s

= 1.65 fm which is compatible with the separation
taken at the physical ensemble from this study, however, the lower values from the former work corroborate the fact
that the scalar matrix element is severely contaminated from excited state e↵ects, that tend to decrease its value.

VII. CONCLUSIONS

The nucleon scalar and tensor charges are computed within lattice QCD using simulations generated with two dy-
namical degenerate light quarks with mass fixed to reproduce approximately the physical pion mass. Both isoscalar and
isovector combinations are obtained including the disconnected contributions. We also compute the nucleon strange
and charm scalar and tensor charges for the first time. After a careful investigation of excited states contributions we

Recent results: the isovector tensor charge

Ref. [C. Alexandrou, et al., PRD 95, 114514(2017)]

All lattice results are very accurate and show consistency among them. 
The lattice error is much smaller than phenomenological estimates. 
lattice : important input for nEDM

This work

ETM(2016)

χQCD(2016)

RQCD(2016)

Ling et al.(2017)

BMW(2016)

Lutz et al.(2014)

QCDSF-UKQCD(2012)

Ruiz de Elvira et al.(2017)

Yao et al.(2016)

Hoferichter et al.(2015)

Alarcon et al.(2012)
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FIG. 12. Our result for �
⇡N

(filled square) compared with those from recent direct evaluations in

lattice QCD (open squares, RQCD [9], �QCD [8], ETM [11]), analyses of lattice QCD data using

Feynman-Hellmann theorem (black triangles, QCDSF-UKQCD [7], Lutz et al. [72], BMW [10],

Ling et al. [73]) and phenomenological studies (open circles, Alarcón et al. [12], Hoferichter et al.

[13], Yao et al. [15], Ruiz de Elvira et al. [16]). As for our result, the smallest error bar denotes

the statistical one, and the largest one also takes into account those due to the extrapolation and

the discretization.

VI. TENSOR CHARGES

For the tensor charges (9), we consider up, down and strange quark contributions, �u, �d

and �s, which are needed to study new physics e↵ects to nucleon observables in the flavor

basis. We also report on the isovector tensor charge

g
T

⌘ 1

2m
N

hp|ūi�
03

�
5

u� d̄i�
03

�
5

d|pi = �u� �d, (37)

which has been studied in one-loop ChPT [67, 76] and previous lattice studies [18, 21, 61,

62, 69, 77, 78].

Figure 14 shows the e↵ective values of the tensor charges at m
ud

= 0.015. The Gaussian

smearing works well to obtain plateaux, from which we determine the tensor charges by the

constant fit in �t and �t0. Numerical results are summarized in Table VII. �2/d.o.f.<1.3

at all simulation points. The isovector charge g
T

is purely connected contribution, and is

determined with an accuracy of a few %. We observe that disconnected contributions to �u

26

•



Recent results: the strange quark tensor charge

The disconnected part of the tensor charges is consistent with zero. 
Need more precision.
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FIG. 13. Comparison of our results using the physical ensemble (red circles) for the strange charges gsS (left) and gsT (right)
with the results from the PNDME collaboration, using Nf = 2 + 1 + 1 staggered fermions (green triangles) from Ref. [63] for
gsS and Ref. [18] for gsT .

are found to be more severe in the case of the scalar as compared to the tensor. We note that since these results were
produced using one ensemble of twisted mass clover-improved fermions we cannot provide systematics errors due to
finite lattice spacing or volume e↵ects. This will be done in future studies.

Results from other lattice QCD groups close to the physical point are only reported for the isovector and the
connected isoscalar combinations. Overall lattice QCD results are in agreement with a couple of exceptions and
produce non-zero values for the scalar strange and charm charges, whereas the strange and charm tensor charge are
consistent with zero.
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Current status of lattice EDMs 

θ-EDM  
Many lattice results: after correcting spurious mixing, results consistent with zero.  

chromo-EDM  
Exploratory studies started.  
Nonzero signals for bare operators. Need to calculate operator mixing and 
renormalization -> position space renormalization. 
(c.f. RI-MOM: Bhattacharya, et al., “15)   

quark-EDM 
u,d quark: 10% error,     s-quark: need better precision 

Weinberg operator 
Just started. 

 4 quark operators 

Not explored yet.



Summary
Precision study of Nucleon structure is important.  

EDM  
■ Beyond the Standard model physics searches using nuclei are competitive and 

complementary to the energy frontier new physics searches.  

Lattice computation of EDM  
■ Reanalysis of the lattice method to compute the (CP-odd) nucleon form factors.  
• There exists a spurious mixing between MDM and EDM form factors on lattice. 

■ Lattice numerical confirmation of “new” form factor formula 
• proposal to calculate EDM on a lattice using energy shift, that is not affected 

the mixing problem. 
• cEDM operator is used to check the consistency between “new” form factor 

method and the energy shift method. 
■ All the previous lattice θ-EDM results using the form factor method must to be 

corrected. 
• Resulting EDM form factor |F3| are reduced, become one σ signal or less. 
• High precision computation is more important. 

■ Various nucleon EDM computations on lattice are ongoing.


