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the Standard Model / SO(10) chiral gauge theory

SU(3)xSU(2)xU(1) xU(1)B-L

 (3 ,2) 1/6                              (1,2) -1/2  

 (3*,1) -2/3  (3*,1) 1/3      (1,1) 1       (1,1) 0  

SO(10)

 16

U(1) fermion symmetry broken by chiral anomaly 
        =>  zero modes  ( 4 x m  / SU(2) instanton) 
       =>  <0| ’t Hooft vertex |0>  

’t Hooft vertex for 16 :   16 x 16 x 16 x 16  =>  1 

Complex, but free from gauge anomalies, both local and global ones

It is known that a chiral gauge theory is a difficult case for numerical simulations
because the effective action induced by Weyl fermions has a non-zero imaginary part. But
in view of the recent studies of the simulation methods based on the complex Langevin
dynamics[161–196] and the complexified path-integration on Lefschetz thimbles[197–239],
it would be still interesting and even useful to develop a formulation of chiral lattice gauge
theories by which one can work out fermionic observables numerically as the functions of
link field with exact gauge invariance.

This article is organized as follows. In section 2, we introduce our lattice formulation of
SO(10) gauge theory with left-handed Weyl field in 16 at the classical level. In section 3, we
define the path-integral measures of the left-handed Weyl field and discuss its properties.
In section 4, we examine in detail the the saturation of the right-handed part of the fermion
measure by ’t Hooft vertices. In section 5, we discuss the cases of other anomalous and
anomaly-free chiral gauge theories. Section 6 is devoted to the discussions of the relations
to other approaches/proposals. In section 7, we conclude with a summary and discussions.

2 The SO(10) chiral lattice gauge theory with overlap Weyl fermions

In this section, we describe a construction of the SO(10) chiral gauge theory on the lattice
within the framework of chiral lattice gauge theories based on the lattice Dirac operator
satisfying the Ginsparg-Wilson relation [56, 57]. We assume a local, gauge-covariant lattice
Dirac operator D which satisfies the Ginsparg-Wilson relation. An explicit example of such
lattice Dirac operator is given by the overlap Dirac operator [23, 25], which was derived
from the overlap formalism [28–38]. In this case, our formulation is equivalent to the overlap
formalism for chiral lattice gauge theories5 or the domain wall fermion approach [64, 67].

In the followings, we consider the four-dimensional lattice ⇤ of the finite size L and
choose lattice units a = 1:

⇤ =
�

x = (x1, x2, x3, x4) 2 Z4 | 0  x
µ

< L (µ = 0, 1, 2, 3)
 

. (2.1)

The unit vector in the directions µ(= 0, 1, 2, 3) are denoted as µ̂.

2.1 Gauge field of SO(10)

The gauge field of SO(10) is defined as the link field on the lattice ⇤. The SO(10) link
variables are at first introduced in the (reducible) spinor representaion as the thirty-two
dimensional special unitary matrices, U(x, µ) 2 Spin(10). The generators of Spin(10) are
given by ⌃

ab

= � i

4

⇥

�a,�b

⇤

, where {�a | a = 1, 2, · · · , 10} form the Clifford algebra, �a�b +

at the mirror wall, but interpret them as physical degrees of freedom with very soft form factor caused by
the gradient flow, and that the authors do not try (do not need) to break explicitly the continuous global
symmetries with “would-be gauge anomalies” in the mirror-wall sector, which would be required if one would
try to decouple the mirror-modes as claimed by Eichten and Preskill and by the other authors[81, 83, 102].

5 The overlap formalism gives a well-defined partition function of Weyl fermions on the lattice, which
nicely reproduces the fermion zero mode and the fermion-number violating observables (’t Hooft vertices)
[39–41]. The gauge-invariant construction by Lüscher [56] provides a procedure to fix the ambiguity of
the complex phase of the overlap formula in a gauge-invariant manner for anomaly-free U(1) chiral gauge
theories.
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�b�a = 2�ab (a, b = 1, 2, · · · , 10). An explicit representation for {�a | a = 1, 2, · · · , 10} is
given in the appendix B. The link variables are then parametrized as

U(x, µ) = ei✓
ab(x,µ)⌃

ab

/2 2 Spin(10). (2.2)

We require the admissibility condition on the gauge field,

k1� P (x, µ, ⌫)k < ✏, (2.3)

for all x, µ, ⌫, where the plaquette variables are defined by

P (x, µ, ⌫) = U(x, µ)U(x+ µ̂, ⌫)U(x+ ⌫̂, µ)�1U(x, ⌫)�1. (2.4)

This condition ensures that the overlap Dirac operator[23, 25], which is assumed to act on
the fermion fields in the spinor representations of SO(10), is a smooth and local function
of the gauge field if ✏ < 1/30[27].

To impose the admissibility condition dynamically, we adopt the following action for
the gauge field:

SG =
1

g2

X

x2�

X

µ,⌫

tr{1� P̃ (x, µ, ⌫)}
h

1� tr{1� P̃ (x, µ, ⌫)}/10✏2
i�1

, (2.5)

where the SO(10) link variables are represented in the defining representation as the ten-
dimensional special orthogonal matrices, Ũ(x, µ) 2 SO(10). The generators of SO(10) in
the defining representation are given by {⌃̃

ab

}
cd

= i(�
ac

�
bd

� �
ad

�
bc

) and the link variables
are represented with the same parameters as

Ũ(x, µ) = ei✓
ab(x,µ)⌃̃

ab

/2 2 SO(10). (2.6)

2.2 Weyl field in 16-dimensional spinor representation of SO(10)

The left-handed Weyl field in the 16-dimensional (irreducible) spinor representation of
SO(10) is defined on the lattice ⇤ based on the Ginsparg-Wilson relation. First we in-
troduce a Dirac field on the lattice in the 16-dimensional spinor representation of SO(10),

 (x) = P+ (x),  ̄(x) =  ̄(x)P+, (2.7)

where
P+ =

1 + �11

2
, �11 = �i�1�2 · · ·�10. (2.8)

We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �
µ

1

2

�

r
µ

�r†
µ

�

+
1

2
r

µ

r†
µ

�m0, (2.9)

where r
µ

is the covariant difference operator which acts on  (x) as r
µ

 (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)
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3.7 Gauge field dependence of the Weyl field measure – Locality issue remain-
ing

The variation of the effective action �W [U ] w.r.t. the link field can be derived from the
path-integral definition eq. (3.10) as follows.

�⌘�W [U ] =
D

�
X

x2⇤
 ̄(x)P+�⌘D (x) +

X

x2⇤
 T(x)P̂ T

+ i�5CDT
aEa�⌘P̂+ (x)

E

F

�⌦

1
↵

F

= Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
� Tr

�

�⌘P̂+

⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F
.

(3.76)

The first term can be rewritten further using the result of the two-point correlation function
of the left-handed fields eq. (3.73) as

Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
= Tr{P+�⌘DD�1}. (3.77)

It is identified as the physical contribution of the left-handed Weyl fermions. The second
term, on the other hand, represents the gauge field dependence of the Weyl field measure
eq. (3.4) through the right-handed ’t Hooft vertices. It replaces the measure term �iL⌘ =
P

j(vj , �⌘vj)[76, 77]. So we denote this term with �iT⌘,

� iT⌘ ⌘ �Tr
�

�⌘P̂+

⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F
. (3.78)

Then the variation of the effective action is written as

�⌘�W [U ] = Tr{P+�⌘DD�1}� iT⌘. (3.79)

For the gauge transformation, �⌘U(x, µ) = i{!(x)U(x, µ) � U(x, µ)!(x + µ̂)} and
⌘µ(x) = !(x) � U(x, µ)!(x + µ̂)U(x, µ)�1 = �Dµ!(x), the first term gives the gauge
anomaly term,

Tr{P+�⌘DD�1}
�

�

⌘
µ

=�D
µ

!
= �iTr{!�5D}, (3.80)

where, in the weak gauge-coupling expansion, the leading non-trivial term is vanishing
because of the anomaly cancellation condition for the 16-dimensional (irreducible) spinor
representation of SO(10), Tr

�

P+⌃a1b1 [⌃a2b2⌃a3b3+⌃a3b3⌃a2b2 ]
 

= 0. The second term gives

�iT⌘

�

�

⌘
µ

=�D
µ

!
= �iTr

�

[!, P̂+]
⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F

=
⇣

� i
1

2
Tr
�⌦

 +

⇥

 T
+i�5CDC[�

a,!]Ea
⇤↵

F

 

+iTr
�⌦

 +

⇥

 T
+i�5CDT

aEaP̂+

⇤↵

F
!
 

⌘

�⌦

1
↵

F

= +iTr{!�5D}, (3.81)

where the Schwinger-Dyson equations eqs. (3.72) and (3.74) are used at the last equality.
Thus we can check that the effective action is gauge-invariant.

The measure term �iT⌘ is required to be a smooth and local function of the link field
variables, since it appears as an operator of the link field in the Schwinger-Dyson equation
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Ωspin
5(BSpin(10)) = 0

Ω5(Spin(5)xSpin(10)/Z2) = Z2
 [Garcia-Etxebarria-Montero,  Wang-Wen-Witten (2018)]



A Non-Perturbative Definition of the Standard Model
     J. Wang and X.-G. Wen,  arXiv:1809.11171v2 [hep-th]

A gauge-invarinat path-integral measure 
    for the overlap Weyl fermions in 16 of SO(10)
    Y. K.,  arXiv:1710.11618 [hep-lat]

A lattice non-perturbative definition of an SO(10) chiral 
gauge theory and its induced standard model
X.-G. Wen, arXiv:1305.1045 [hep-lat]



I. 格子フェルミオン問題に関する近年の発展

Doubling, NN定理, GW関係式, Domain-wall fermion, overlap fermion

free & interacting SPT phases of matter, gapped boundary phase/Kitaev-Wen機構

the Standard Model / SO(10) chiral gauge theory

    old & new approaches:  

• Eichten-Preskill model 

• DW model with EP boundary int. (Creutz, Rebbi)

• Mirror Overalp fermion model (Poppitz et al.)

• 4D TSC  with Gapped Boundary Phase (Wen, Wang)

II.  符号問題へのアプローチ   cf.  CL, TNRG, etc

Lefschetz-Thimble法(LTM)

一般化法(GLTM), 交換モンテカルロ・テンパリング法(TLTM)

III. 議論・展望

Plan



格子フェルミオンの問題



Dirac 方程式の離散化

∂kψ(x, t) =
(

ψ(x + k̂a, t) − ψ(x, t)
)

/a

H =

3
∑

k=1

αk

1

i

∂

∂xk

+ βm =⇒ Hlat =

3
∑

k=1

αk

1

2i

(

∂k − ∂†
k

)

+ β m

E = ±

√

√

√

√

3
∑

k=1

1

a2
sin2(pka) + m2, p1, p2, p3 ∈

[

−
π

a
,
π

a

]

Hlatの固有値

species doublers 

γ5 = (−i)α1α2α3 ⇒ (−1)n
× (−i)α1α2α3

αk sin(pka) ≃ (−αk)qk

pk = π/a + qk, |qk| ≪ π/a

In[41]:= x@p_D :=
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Sin@p * PiD * Sin@p* PiD + H0.1L^2 ;

In[40]:= values = 8m Ø 0.005<;

In[44]:= Plot@8Evaluate@x@pD êê. valuesD<, 8p, -1.1, 1.1<,
PlotRange Ø 8-0.2, 2.0<, AxesLabel Ø 8 p a ê p, W<D;

-1 -0.5 0.5 1

a p
ÅÅÅÅÅÅÅÅ
p

0.5

1

1.5

2

W

damped-oscillations !"#$.nb 1



Wilson フェルミオン

Sw = a4
∑

x

ψ̄(x)

(

γµ

1

2

(

∇µ −∇
†
µ

)

+
a

2

(

∇µ∇
†
µ

)

+ m0

)

ψ(x)

doublerの質量 : m0 +
∑

µ

a

2

(

2

a
sin

kµa

2

)2

≃ m0 +
2n

a
n = numbers of π

Nielsen-Ninomiya(No-Go)定理

S = a4
∑

x

ψ̄(x) Dψ(x) =

∫ π/a

−π/a

d4k

(2π)4
ψ̄(−k) D̃(k)ψ(k)

D̃(k) is a periodic and analytic function of momentum kµ1.
2.
3.
4.

D̃(k) ∝ iγµkµ for |kµ| ≪ π/a

D̃(k) is invertible for all       except kµ kµ = 0

γ5D̃(k) + D̃(k)γ5 = 0

∂l

∂kl
D̃(k) =

∑

x

e
ikx(ix)l

D(x) < ∞ =⇒ ∥D(x)∥ < Ce
−γ|x|解析性と局所性:



Block-spin変換

e−S′[ψ′,ψ̄′] =

∫ ∏
x

dψ(x)dψ̄(x) e−SW [ψ,ψ̄]
×

exp

{

−α
∑

x
′

(

ψ̄′(x′) − Ψ̄(x′; ψ̄)
)

(ψ′(x′) − Ψ(x′;ψ))

}

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

❣"
"

"
"

x′ = na′

}

b(x′)ψ′(x′) ⇐
Z

24

∑

x∈b(x′)

ψ(x) = Ψ(x′;ψ)

Ginsparg-Wilson 関係式

S∗ = a4
∑

x

ψ̄(x)D∗ψ(x)

IR fixed point : 

（局所的な低エネルギー有効作用）

Ginsparg-Wilson(1982) 

Chiral 対称性  　(cf. NN定理)

δαψ(x) = iαγ5(1 − 2aD)ψ(x), δαψ̄(x) = iα ψ̄(x)γ5

Luscher (1999) 

γ5D
∗−1 +D∗−1γ5 =

2

α0
aγ5δxy

S∗ = a4
∑

x

ψ̄(x)Dψ(x)

Ea(x)Ea(x) = 1

SMC =
∑

x

{
z

2
ψM(x)T cDC(D

(2)
w −m0)ψM(x)− λ

(
ψM(x)T iγ3cDCΓ

aψM(x)
)2}

S ′
MC =

∑

x

{z
2
ψM(x)T cDC(D

(2)
w −m0)ψM(x)− λ

(
ψM(x)T iγ3cDCΓ

aψM(x)
)
Ea(x)

}

ZDW = det(D(5)
w −m0ϵ(t5)/a)

Z ′
DW = det(D(5)

w −m0/a)
∣∣∣
Dir.

det(D(5)
w −m0/a)

∣∣∣
Dir.

= detDeff × det(D(5)
w −m0/a)

∣∣∣
AP

Hw = γ5(Dw −m0/a)

lim
N→∞

Deff =
1

2a

(
1 + γ5

Hw√
H2

w

)

Ĥw±|V±⟩ = E0|V±⟩

⟨V + |V−⟩ = det(v†+iv−j)

ZψL = ⟨V + |V−⟩ = det(v†+iv−j)

ZψL,ψR = detDeff

1

0



Domain-wall fermion

✲ x5 = ta5
✑

✑
✑

✑
✑

✑
✑✑

✑
✑

✑
✑

✑
✑

✑✑

t = 0

ΨL(x) −m0+m0

1

det(D(5)
w −m0/a)

∣∣∣
Dir.

= detDeff × det(D(5)
w −m0/a)

∣∣∣
AP

Hw = γ5(Dw −m0/a)

lim
N→∞

Deff =
1

2a

(
1 + γ5

Hw√
H2

w

)

eiπ
∫
M5 w2(TM)w3(TM) = 1

ψαL(x)

ψα
′

R (x)

random Ea(x)

〈
XaXa

〉
= 1− 9

32

1

V

∑

k ̸=0

4

−D̃(k) + 2

Caba1b1···
µµ1··· (k, p1, · · · )

( δηUµ(x) = iηµ(x)Uµ(x) )

Ea(x)Ea(x) = 1

(Ea(x)Ea(x) = 1)

(Q = 2)

Q = odd integer

Q = 0

τa
′

1

det(D(5)
w −m0/a)

∣∣∣
Dir.

= detDeff × det(D(5)
w −m0/a)

∣∣∣
AP

Hw = γ5(Dw −m0/a)

lim
N→∞

Deff =
1

2a

(
1 + γ5

Hw√
H2

w

)

eiπ
∫
M5 w2(TM)w3(TM) = 1

ψαL(x)

ψα
′

R (x)

random Ea(x)

〈
XaXa

〉
= 1− 9

32

1

V

∑

k ̸=0

4

−D̃(k) + 2

Caba1b1···
µµ1··· (k, p1, · · · )

( δηUµ(x) = iηµ(x)Uµ(x) )

Ea(x)Ea(x) = 1

(Ea(x)Ea(x) = 1)

(Q = 2)

Q = odd integer

Q = 0

τa
′

1

det(D(5)
w −m0/a)

∣∣∣
Dir.

= detDeff × det(D(5)
w −m0/a)

∣∣∣
AP

Hw = γ5(Dw −m0/a)

lim
N→∞

Deff =
1

2a

(
1 + γ5

Hw√
H2

w

)

Ĥw±|V±⟩ = E0|V±⟩

ZψL = ⟨V + |V−⟩

eiπ
∫
M5 w2(TM)w3(TM) = 1

ψαL(x)

ψα
′

R (x)

random Ea(x)

〈
XaXa

〉
= 1− 9

32

1

V

∑

k ̸=0

4

−D̃(k) + 2

Caba1b1···
µµ1··· (k, p1, · · · )

( δηUµ(x) = iηµ(x)Uµ(x) )

Ea(x)Ea(x) = 1

(Ea(x)Ea(x) = 1)

(Q = 2)

1

Neuberger(1998) 

Kaplan(1992) Shamir(1993) 

局所的低エネルギー有効作用 -> Dirac operator w/ GW rel. & gauge covariance

Overlap Dirac operator  : ゲージ共変なGW rel. の解

Dw =

4
∑

µ=1

{

γµ

1

2

(

∇µ −∇
†
µ

)

+
a

2
∇µ∇

†
µ

}

D =
1

2a

(

1 + X
1

√

X†X

)

, X = aDw − m0, X†
= γ5Xγ5

ZDW = det(D(5)
w −m0ϵ(t5)/a)

Z ′
DW = det(D(5)

w −m0/a)
∣∣∣
Dir.

det(D(5)
w −m0/a)

∣∣∣
Dir.

= detDeff × det(D(5)
w −m0/a)

∣∣∣
AP

Hw = γ5(Dw −m0/a)

lim
N→∞

Deff =
1

2a

(
1 + γ5

Hw√
H2

w

)

Ĥw±|V±⟩ = E0|V±⟩

ZψL = ⟨V + |V−⟩ = det(v̄Dv)

eiπ
∫
M5 w2(TM)w3(TM) = 1
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Eigenvalue distribution :

D =
1

2a

(

1 + γ5

Hw
√

H2
w

)
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Eigenvalue flow : 

Zero modes :

γ5ψ0 = ±ψ0Dψ0 = 0

Index :

Index(D) = n+ − n
−

Index(D) = Trγ5(1 − aD) (= Q)

∵ Dγ5ψ0 = (−γ5D + 2aDγ5D)ψ0 = 0

Topological charge = chiral anomaly

Q = −

1

2
Tr

{

Hw
√

H2
w

}

= Trγ5(1 − aD)

Index theorem

cf. Iwasaki, Yoshie, Ito (1987)



Defined with all components of the Dirac field  (x),  ̄(x), the Weyl field measure is
manifestly invariant under the SO(10) gauge transformation. It also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. As to the global U(1) fermion symmetry of the left-handed field  �(x),
 ̄�(x), the fermionic measure transforms as

�
↵

D[ �]D[ ̄�] = �i
X

x2�
↵(x)tr{P̂� � P+}(x, x)⇥D[ �]D[ ̄�] (3.13)

with a local parameter ↵(x), and it gives rise to the non-trivial chiral anomaly in the U(1)
Ward-Takahashi relation. One may consider the similar global U(1) fermion symmetry of
the right-handed field  +(x),  ̄+(x), but it is broken explicitly by the ’t Hooft vertexes,
T+(x) and T̄+(x), down to Z4 ⇥ Z4, one Z4 for the field  +(x) and the other Z4 for the
anti-field  ̄+(x). The reason for the two independent Z4 is that the bilinear kinetic term of
the right-handed field,

P

x2⇤  ̄+(x)D +(x), is not introduced here. Conversely, this Z4 ⇥
Z4 symmetry prohibits such bilinear terms of the right-handed field to appear, as long as
it is not broken spontaneously.

3.2 The Weyl field measure in terms of chiral basis

In the definition of the Weyl field measure, eqs. (3.4) and (3.5), the part of the Dirac
field measure, D[ ]D[ ̄], may be formulated in chiral components by using the chiral bases
defined with the chiral projectors P̂± and P±. In the given topological sector U[Q], it reads

D
?

[ �]D?

[ ̄�]D?

[ +]D?

[ ̄+] =

n/2+8Q
Y

j=1

dc
j

n/2
Y

k=1

dc̄
k

n/2�8Q
Y

j=1

db
j

n/2
Y

k=1

db̄
k

, (3.14)

where n = dim⇤ ⇥ 4 ⇥ 16 and {c
j

, c̄
k

} and {b
j

, b̄
k

} are the Grassmann coefficients in the
expansion of the chiral component fields,

 �(x) =
X

j

v
j

(x)c
j

,  ̄�(x) =
X

k

c̄
k

v̄
k

(x), (3.15)

 +(x) =
X

j

u
j

(x)b
j

,  ̄+(x) =
X

k

b̄
k

ū
k

(x), (3.16)

in terms of the chiral orthonormal bases defined by

P+ ⌦ P̂�vi(x) = v
i

(x) (i = 1, · · · , n/2 + 8Q); (v
i

, v
j

) = �
ij

, (3.17)
v̄
k

(x)P+ ⌦ P+ = v̄
k

(x) (k = 1, · · · , n/2); (v̄
k

, v̄
l

) = �
kl

. (3.18)

P+ ⌦ P̂+ui(x) = u
i

(x) (i = 1, · · · , n/2� 8Q); (u
i

, u
j

) = �
ij

, (3.19)
ū
k

(x)P� ⌦ P+ = ū
k

(x) (k = 1, · · · , n/2); (ū
k

, ū
l

) = �
kl

. (3.20)

The basis vectors u
i

(x) and v
i

(x) depend on the gauge field through the chiral projectors
P̂±, while the basis vectors ū

k

(x) and v̄
k

(x) can be chosen so that they are independent
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Overlap Weyl fermion

ψ+(x) = P̂+ψ(x) ψ̄(x)+ = ψ̄(x)P−

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

Khop = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

1

vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

Lη ≡ −i
∑

x

v†j(x)δηvj(x) ⇒ {vj(x)}

{vj(x)}

D[ψ−]D[ψ̄−] ≡ D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)]

ψ−(x) = P̂−ψ(x) ψ̄−(x) = ψ̄(x)P+

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

4

Narayanan-Neuberger Luscher

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�
↵

 �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�
↵

 ̄�(x) = �i↵  ̄�(x)
⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is broken due to the non-trivial transformation property of
the Weyl field path-integral measure, as we will see below, and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a

�(x)V
a

�(x), V a

�(x) =  �(x)
Ti�5CD

Ta �(x), (2.17)

T̄�(x) =
1

2
V̄ a

�(x)V̄
a

�(x), V̄ a

�(x) =  ̄�(x)i�5CD

Ta

† ̄�(x)
T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. In particular, under P (space reflections) and C (charge conjugation)
the action is not invariant, while under CP the action is transformed into the same form,
but the definitions of the chiral projection for the fields and anti-fields are interchanged:

 �(x) = P̂� (x) )  �(x) = P� (x), (2.19)
 ̄�(x) =  ̄P+(x) )  ̄�(x) =  ̄{�5P̂+�5}(x). (2.20)

But the effective action of the gauge field turns out to be CP invariant. This CP transfor-
mation property of the model will be discussed below.
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ū v̄ u v 8Q

Sw = a4
∑
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ψ̄−(x)Dψ−(x)

SEP =
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ψ̄(x)γµP−
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2
(∇µ −∇†

µ)ψ(x)

− λ

24
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ψ−(x)

T iγ5CDT
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]2 − λ

24
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2
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µ)ψ(x) +
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2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

1

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

vj(x) → ṽj(x) = vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dc̃j =
∏

j

dcj × detQ[U ]
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(∇µ −∇†

µ)ψ(x)

− λ

24
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ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)
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]2 − λ

48
△
[
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aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
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]
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[
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1

Path Integral measure

the chiral determinant as vacuum overlap
zero-modes
VEV of  ’t Hooft vertex. 

and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CD

T aEa(x)P̂+, not P̂ T

+{i�5C
d

P+T aEa(x)}P̂+, appears for the field  +(x),
while P�i�5CD

T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S

W

[ �, ̄�]+
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.10)

In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:

D[E] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dEa(x)�(
q

Eb(x)Eb(x)� 1) (3.11)

D[Ē] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dĒa(x)�(
q

Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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choose the bases of the Dirac fields, {uj(x), vj(x)}, and {ūk(x), v̄k(x)}, so that the jacobian
factors, det(uj(x), vj(x)), and det(ūj(x), v̄j(x)), are unity independent of the gauge field.
In this choice of the chiral bases, the pfaffian can be evaluated as

pf

 

�P̂ T
+ i�5CDT

aEaP̂+ �P̂ T
�DTP T

+

P+DP̂� �P�i�5CDT
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a†ĒaūT ).

(3.25)

Thus the effective action �W [U ], with our definition of the Weyl field measure eq. (3.4), has
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ū i�5CDT
a†ĒaūT
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The first factor in the r.h.s. of eq. (3.25) is nothing but the chiral determinant in
the overlap formalism.[30–32] In the weak gauge-coupling limit, the matrix (v̄Dv) shows
the massless singularity associated with the free left-handed Weyl field. With the periodic
boundary condition, in particular, (v̄Dv) is not invertible because there appear the zero
modes in the eigenvalues of D, which have zero index n+�n� = 0. In the topologically non-
trivial sectors, the matrix (v̄kDvi) is not a square matrix and det(v̄Dv) vanishes identically.
This is due to the appearance of the chiral zero modes with a non-trivial index n+ � n� =

�8Q 6= 0. These zeromodes, saturated by the insetion of the ’t Hooft vertices in terms
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0 0 �(ū i�5CDT
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(matrix shape is variable, can be rectangular)
Luscher’s approach: reconstruct the chiral basis

locality
lattice symmetries
gauge-invariance

successful for the U(1), SU(2)L x U(1)Y cases, 
but not yet for non-Abelian cases.

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

vj(x) → ṽj(x) = vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dc̃j =
∏

j

dcj × detQ[U ]

D[ψ−]D[ψ̄−] ≡ D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)]

ψ−(x) = P̂−ψ(x) ψ̄−(x) = ψ̄(x)P+

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

1

“determinant line bundle”



Topological Insulators/Superconductors
Symmetry Protected Topological (SPT) Phases of Matter

dimensional model SOv implies that the domain wall fermion path-integral measure is prop-
erly saturated at around the right-handed boundary with the fields,  (x, L5),  ̄(x, L5)P�,
even when the spin fields Ea(x), Ēa(x) have the disordered nature. Moreover, the CP
symmetry is restored in the limit L5 ! 1.

Thus the five-dimensional domain wall fermion model defined by the action eq. (6.67)
provides a very explicit and well-defined implementation of the proposal by Creutz, Tytgat,
Rebbi, Xue for the (more general) case of the SO(10) chiral gauge theory. And our four-
dimensional lattice model defined with the path-integration measure for the left-handed
Weyl field eq. (6.1) is nothing but the low energy effective theory of the five-dimensional
domain wall model in the limit L5 ! 1 (a05 ! 0).

In this repect, we note that one may define the action of such a SO(10) domain wall
fermion model simply by

S0
DW/Mi =

L5
X

t=1

X

x2⇤
 ̄(x, t)

�

[1 + a05(D4w �m0)]�tt0 � P��t+1,t0 � P+�t,t0+1

 

 (x, t0)

�
X

x2⇤
{y Xa(x)qT+(x)i�5CDT

aP+q+(x) + ȳ X̄a(x)q̄+(x)P�i�5CDT
a†q̄+(x)

T }

+ SX [Xa]. (6.70)

Note here that the bounary interaction terms are formulated solely with the boundary
field variables, q(x) =  �(x, 1) +  +(x, L5), q̄(x) =  ̄�(x, 1) +  ̄+(x, L5), which are first
introduced by Shamir and Furman[62, 63]. In this action, the global U(1) symmetry of the
five-dimensional Wilson fermion fields is broken to Z4 by the boundary Yukawa couplings.
The CR5 and P symmetries are also broken to the CPR5 symmetry in the same manner.
We note, however, that this model ends up with the overlap fermion model S0

Mi/Ov with
the Yukawa couplings eq. (6.28) in the limit L5 ! 1 in the same subtraction scheme.
Therefore, this type of the Majorana-Yukawa couplings at the boundary are singular in the
large limit.

6.5 cf. Topological Insulators/Superconductors with gapped boundary phases

It has been proposed by Wen, by You, BenTov and Xu, and by You and Xu[123–126] to
use the 4D Topological Insulators(TIs)/Superconductors(TSCs) with the gapped boundary
phases in order to formulate the 3+1D chiral gauge theories in the Hamiltonian formalism.
These authors have considered the same 4D TI with the time-reversal symmetry defined by
the following quantum Hamiltonian,

Ĥ4DTI =
⌫
X

i=1

X

p

âi(p)
†
n

4
X

k=1

↵k sin(pk) + �
⇣

⇥

4
X

k=1

cos(pk)� 4
⇤

+m
⌘o

âi(p), (6.71)

where âi(p) and âi(p)† are fermionic annihilation-creation operators in momentum space,
satisfying the canonical anti-commutation relations, âi(p)âj(p0)† + âj(p0)†âi(p) = �p,p0�i,j .
The alpha and beta matrices are chosen here as ↵k = �3 ⌦ �k (k = 1, 2, 3), ↵4 = �2 ⌦ I,
and � = ��1 ⌦ I. The generator of the time-reversal symmetry transformation is given as
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T = K (iI⌦�2), where K stands for complex conjugation. This 4D quantum lattice fermion
model is nothing but the Hamiltonian formulation of Kaplan’s 5-dim. domain wall fermion
defined with the Wilson term.[60, 61] It was first examined by Creutz and Horvath[121]
to study the chiral property of the massless lattice fermions realized as Shockley surface
states, and later by X.-L. Qi, Hughes and S.H. Zhang[122] as a 4D extension of the 2D
Integer Quantum Hall Effect (IQHE).

The insulator is in topological phase for m > 0 and in trivial phase for m < 0. On
the 3D boundary of the domain wall due to the change of the mass parameter from m > 0

to m < 0, there appear ⌫(2 Z) copies of two-component (right-handed) Weyl fermions at
low energy |pl| ⌧ 0 (l = 1, 2, 3) assuming the thermodynamic limit of the 4D space. These
Weyl fermions are protected from acquiring mass by the topological index defined by the
second Chern character of the U(1) bundle associated with the connection

P

k  
†
k� k and

the time reversal symmetry. This gapless boundary phase can be described by the low
energy effective Hamiltonian,

Ĥ(bd)
3D =

⌫
X

i=1

Z

d3x  ̂i(x)
†
n

3
X

l=1

(�i)�l@l
o

 ̂i(x). (6.72)

The generator of the time-reversal symmetry transformation acting the effective Hamilto-
nian is given as T = K (i�2).

For the case ⌫ = 16, the authors have proposed the boundary interaction terms to fully
gap the boundary phase with the sixteen massless Weyl fermions, or the bulk interaction
terms to be able to interpolate between the topological and trivial phases without closing
the mass gap nor breaking the symmetries. In fact, the boundary/bulk interaction terms
introduced in these works are the SO(10)-invariant quartic (or Yukawa) term

Ô(x) =
1

2

⇥

 ̂(x)TCDŤ
a ̂(x)�  ̂(x)†CDŤ

a† ̂(x)†T
⇤2 (6.73)

assuming that the sixteen massless Weyl fermions are in the 16 of SO(10) and its descendants
with reduced symmetries, SO(7)⇥SO(3) and SO(6)⇥SO(4)(=SU(4)⇥SU(2)⇥SU(2)). It is
quite interesting to see that these are essentially identical to the SO(10)-invariant quartic
terms of the ’t Hooft vertices, T+(x), T̄+(x),

OT(x) = T+(x) + T̄+(x) (6.74)

=
1

23
⇥

 T(x)CDT
a (x)

⇤2
+

1

23
⇥

 ̄(x)CDT
a† ̄(x)T

⇤2
, (6.75)

and their descendants.
Wen, in particular, have considered the SO(10) chiral gauge theory as a target theory[123].

The author have proposed to use the following SO(10)-invariant boundary interaction terms,

Ĥ3D,10 =

Z

d3x
n

 ̂(x)T i�2Ť
a�a(x) ̂(x)

� ̂(x)†i�2Ťa†�a(x) ̂(x)† +H[�a(x)]
o

, (6.76)
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ZDW = det(D(5)
w −m0ϵ(t5)/a)

Z ′
DW = det(D(5)

w −m0/a)
∣∣∣
Dir.

det(D(5)
w −m0/a)

∣∣∣
Dir.

= detDeff × det(D(5)
w −m0/a)

∣∣∣
AP

Hw = γ5(Dw −m0/a)

lim
N→∞

Deff =
1

2a

(
1 + γ5

Hw√
H2

w

)

Ĥw±|V±⟩ = E0|V±⟩

ZψL = ⟨V + |V−⟩ = det(v̄Dv)

eiπ
∫
M5 w2(TM)w3(TM) = 1

ψαL(x)

ψα
′

R (x)

random Ea(x)

〈
XaXa

〉
= 1− 9

32

1

V

∑

k ̸=0

4

−D̃(k) + 2

Caba1b1···
µµ1··· (k, p1, · · · )
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).
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Breakdown of the topological classification Z for gapped phases of noninteracting
fermions by quartic interactions
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The conditions for both the stability and the breakdown of the topological classification of gapped
ground states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion
interactions are given for any dimension of space. This is achieved by encoding the effects of
interactions on the boundary gapless modes in terms of boundary dynamical masses. Breakdown
of the noninteracting topological classification occurs when the quantum nonlinear sigma models
for the boundary dynamical masses favor quantum disordered phases. For the tenfold way, we
find that (i) the noninteracting topological classification Z2 is always stable, (ii) the noninteracting
topological classification Z in even dimensions is always stable, (iii) the noninteracting topological
classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly for
any dimension and any defining symmetries. We also apply our method to the three-dimensional
topological crystalline insulator SnTe from the symmetry class AII+R, for which we establish the
reduction Z → Z8 of the noninteracting topological classification.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSs) of noninteracting fermions are character-
ized by topological numbers (Z or Z2) that encode the
non-trivial topology of the occupied single-particle wave
functions and are accompanied by gapless excitations
that are localized along any boundary.1,2 The integer
quantum Hall effect (IQHE) is characterized by the Hall
conductivity quantized by the integer ν = 1, 2, · · · in
units of e2/h. The topological integer ν counts the num-
ber of extended chiral edge modes propagating at the
boundary of the sample. The Z2 topological insulator is
characterized by the parity of the number of Kramers’
doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip supercon-
ductor,3,4 both instances are now understood to be non-
trivial entries in the periodic table (i.e., the tenfold way)
for noninteracting topological insulators and supercon-
ductors.5–7

The gapless modes appearing at the boundary in the
IQHE are robust to both elastic and inelastic scattering
resulting from one-body impurity potentials and many-
body electron-electron interactions.8,9 Similarly, the gap-
less modes in the Z2 TIs are immune to both backscat-
tering resulting from one-body impurity potentials and
many-body electron-electron interactions, provided time-
reversal symmetry (TRS) is neither explicitly nor spon-
taneously broken.10–13

Given the robustness to many-body fermion-fermion
interactions of the edge states in the IQHE, it was a re-
markable observation made by Fidkowski and Kitaev in
2010 that it is is possible to gap out eight Majorana zero
modes localized at the end of a one-dimensional topo-
logical superconducting wire through many-body inter-
actions without closing the spectral gap in the bulk.14,15

In the terminology of the tenfold way,5–7 it was demon-
strated in Refs. 14 and 15 that the Z topological classi-
fication for the noninteracting one-dimensional symme-
try class BDI, when interpreted as a superconductor, is
(i) unstable to quartic contact interactions that neither
break explicitly nor spontaneously the TRS, and (ii) this
instability reduces the noninteracting topological classi-
fication Z to Z8.
Subsequently, noninteracting two-dimensional topolog-

ical crystalline superconductors (TCSs) from the sym-
metry class DIII+R (where “+R ” indicates the pres-
ence of an additional reflection symmetry) and three-
dimensional topological superconductors from the sym-
metry class DIII were shown in Refs. 16 and 17 and
Refs. 18–22 to display the reduction patterns Z → Z8
and Z → Z16, respectively, when perturbed by quar-
tic contact interactions that neither break explicitly nor
spontaneously the defining symmetries.23 The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. 21.
We present in Sec. II a method that allows to de-

rive the reduction pattern of all noninteracting topologi-
cal insulators and superconductors without and with re-
flection symmetries for any dimensionality d of space in
the presence of quartic contact interactions that neither
break explicitly nor spontaneously the defining symme-
tries. This method relies on the topology of the classify-
ing spaces from K-theory. It extends the applicability of
K-theory for obtaining the tenfold way of noninteracting
fermions,6,24 to obtaining the breakdown of the tenfold
way induced by interactions.
This method is applied first to the breakdown of the

tenfold way in Sec. III.25 In doing so, we prove the fol-
lowing properties that we report in Table I.

1. All Z2 entries of the periodic table irrespectively
of the dimensionality of space are stable to quartic
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The conditions for both the stability and the breakdown of the topological classification of gapped
ground states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion
interactions are given for any dimension of space. This is achieved by encoding the effects of
interactions on the boundary gapless modes in terms of boundary dynamical masses. Breakdown
of the noninteracting topological classification occurs when the quantum nonlinear sigma models
for the boundary dynamical masses favor quantum disordered phases. For the tenfold way, we
find that (i) the noninteracting topological classification Z2 is always stable, (ii) the noninteracting
topological classification Z in even dimensions is always stable, (iii) the noninteracting topological
classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly for
any dimension and any defining symmetries. We also apply our method to the three-dimensional
topological crystalline insulator SnTe from the symmetry class AII+R, for which we establish the
reduction Z → Z8 of the noninteracting topological classification.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSs) of noninteracting fermions are character-
ized by topological numbers (Z or Z2) that encode the
non-trivial topology of the occupied single-particle wave
functions and are accompanied by gapless excitations
that are localized along any boundary.1,2 The integer
quantum Hall effect (IQHE) is characterized by the Hall
conductivity quantized by the integer ν = 1, 2, · · · in
units of e2/h. The topological integer ν counts the num-
ber of extended chiral edge modes propagating at the
boundary of the sample. The Z2 topological insulator is
characterized by the parity of the number of Kramers’
doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip supercon-
ductor,3,4 both instances are now understood to be non-
trivial entries in the periodic table (i.e., the tenfold way)
for noninteracting topological insulators and supercon-
ductors.5–7

The gapless modes appearing at the boundary in the
IQHE are robust to both elastic and inelastic scattering
resulting from one-body impurity potentials and many-
body electron-electron interactions.8,9 Similarly, the gap-
less modes in the Z2 TIs are immune to both backscat-
tering resulting from one-body impurity potentials and
many-body electron-electron interactions, provided time-
reversal symmetry (TRS) is neither explicitly nor spon-
taneously broken.10–13

Given the robustness to many-body fermion-fermion
interactions of the edge states in the IQHE, it was a re-
markable observation made by Fidkowski and Kitaev in
2010 that it is is possible to gap out eight Majorana zero
modes localized at the end of a one-dimensional topo-
logical superconducting wire through many-body inter-
actions without closing the spectral gap in the bulk.14,15

In the terminology of the tenfold way,5–7 it was demon-
strated in Refs. 14 and 15 that the Z topological classi-
fication for the noninteracting one-dimensional symme-
try class BDI, when interpreted as a superconductor, is
(i) unstable to quartic contact interactions that neither
break explicitly nor spontaneously the TRS, and (ii) this
instability reduces the noninteracting topological classi-
fication Z to Z8.
Subsequently, noninteracting two-dimensional topolog-

ical crystalline superconductors (TCSs) from the sym-
metry class DIII+R (where “+R ” indicates the pres-
ence of an additional reflection symmetry) and three-
dimensional topological superconductors from the sym-
metry class DIII were shown in Refs. 16 and 17 and
Refs. 18–22 to display the reduction patterns Z → Z8
and Z → Z16, respectively, when perturbed by quar-
tic contact interactions that neither break explicitly nor
spontaneously the defining symmetries.23 The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. 21.
We present in Sec. II a method that allows to de-

rive the reduction pattern of all noninteracting topologi-
cal insulators and superconductors without and with re-
flection symmetries for any dimensionality d of space in
the presence of quartic contact interactions that neither
break explicitly nor spontaneously the defining symme-
tries. This method relies on the topology of the classify-
ing spaces from K-theory. It extends the applicability of
K-theory for obtaining the tenfold way of noninteracting
fermions,6,24 to obtaining the breakdown of the tenfold
way induced by interactions.
This method is applied first to the breakdown of the

tenfold way in Sec. III.25 In doing so, we prove the fol-
lowing properties that we report in Table I.

1. All Z2 entries of the periodic table irrespectively
of the dimensionality of space are stable to quartic
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the
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of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.
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CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).

[Kitaev (2009) ][Morimoto et al (2015)]“Periodic table’’ for TI, TSC / Effect of interaction



[Kapustin et al (2015)]

Table 1: Spin and Pin± Bordism Groups

d = D + 1 ΩSpin
d (pt) ΩPin−

d (pt) ΩPin+

d (pt) ΩSpin
d (BZ2)

1 Z2 Z2 0 Z2
2

2 Z2 Z8 Z2 Z2
2

3 0 0 Z2 Z8

4 Z 0 Z16 Z

5 0 0 0 0

6 0 Z16 0 0
7 0 0 0 Z16

8 Z2 Z2
2 Z2 × Z32 Z2

9 Z2
2 Z2

2 0 Z4
2

10 Z2
2 × Z Z2 × Z8 × Z128 Z3

2 Z4
2 × Z

Table 2: Interacting Fermionic SPT Phases

d = D + 1 no symmetry T 2 = 1 T 2 = (−1)F unitary Z2

1 Z2 Z2 0 Z2
2

2 Z2 Z8 Z2 Z2
2

3 Z 0 Z2 Z8 × Z

4 0 0 Z16 0
5 0 0 0 0
6 0 Z16 0 0

7 Z2 0 0 Z16 × Z2

8 0 Z2
2 Z2 × Z32 0

9 Z2
2 Z2

2 0 Z4
2

10 Z2
2 Z2 × Z8 × Z128 Z3

2 Z4
2
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2
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4 Z 0 Z16 Z

5 0 0 0 0

6 0 Z16 0 0
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4 0 0 Z16 0
5 0 0 0 0
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2 Z2 × Z8 × Z128 Z3
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).
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Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.
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no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry
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which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
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fermions by quartic interactions

Takahiro Morimoto,1 Akira Furusaki,2, 1 and Christopher Mudry3

1RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan
2Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan

3Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
(Dated: September 7, 2015)

The conditions for both the stability and the breakdown of the topological classification of gapped
ground states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion
interactions are given for any dimension of space. This is achieved by encoding the effects of
interactions on the boundary gapless modes in terms of boundary dynamical masses. Breakdown
of the noninteracting topological classification occurs when the quantum nonlinear sigma models
for the boundary dynamical masses favor quantum disordered phases. For the tenfold way, we
find that (i) the noninteracting topological classification Z2 is always stable, (ii) the noninteracting
topological classification Z in even dimensions is always stable, (iii) the noninteracting topological
classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly for
any dimension and any defining symmetries. We also apply our method to the three-dimensional
topological crystalline insulator SnTe from the symmetry class AII+R, for which we establish the
reduction Z → Z8 of the noninteracting topological classification.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSs) of noninteracting fermions are character-
ized by topological numbers (Z or Z2) that encode the
non-trivial topology of the occupied single-particle wave
functions and are accompanied by gapless excitations
that are localized along any boundary.1,2 The integer
quantum Hall effect (IQHE) is characterized by the Hall
conductivity quantized by the integer ν = 1, 2, · · · in
units of e2/h. The topological integer ν counts the num-
ber of extended chiral edge modes propagating at the
boundary of the sample. The Z2 topological insulator is
characterized by the parity of the number of Kramers’
doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip supercon-
ductor,3,4 both instances are now understood to be non-
trivial entries in the periodic table (i.e., the tenfold way)
for noninteracting topological insulators and supercon-
ductors.5–7

The gapless modes appearing at the boundary in the
IQHE are robust to both elastic and inelastic scattering
resulting from one-body impurity potentials and many-
body electron-electron interactions.8,9 Similarly, the gap-
less modes in the Z2 TIs are immune to both backscat-
tering resulting from one-body impurity potentials and
many-body electron-electron interactions, provided time-
reversal symmetry (TRS) is neither explicitly nor spon-
taneously broken.10–13

Given the robustness to many-body fermion-fermion
interactions of the edge states in the IQHE, it was a re-
markable observation made by Fidkowski and Kitaev in
2010 that it is is possible to gap out eight Majorana zero
modes localized at the end of a one-dimensional topo-
logical superconducting wire through many-body inter-
actions without closing the spectral gap in the bulk.14,15

In the terminology of the tenfold way,5–7 it was demon-
strated in Refs. 14 and 15 that the Z topological classi-
fication for the noninteracting one-dimensional symme-
try class BDI, when interpreted as a superconductor, is
(i) unstable to quartic contact interactions that neither
break explicitly nor spontaneously the TRS, and (ii) this
instability reduces the noninteracting topological classi-
fication Z to Z8.
Subsequently, noninteracting two-dimensional topolog-

ical crystalline superconductors (TCSs) from the sym-
metry class DIII+R (where “+R ” indicates the pres-
ence of an additional reflection symmetry) and three-
dimensional topological superconductors from the sym-
metry class DIII were shown in Refs. 16 and 17 and
Refs. 18–22 to display the reduction patterns Z → Z8
and Z → Z16, respectively, when perturbed by quar-
tic contact interactions that neither break explicitly nor
spontaneously the defining symmetries.23 The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. 21.
We present in Sec. II a method that allows to de-

rive the reduction pattern of all noninteracting topologi-
cal insulators and superconductors without and with re-
flection symmetries for any dimensionality d of space in
the presence of quartic contact interactions that neither
break explicitly nor spontaneously the defining symme-
tries. This method relies on the topology of the classify-
ing spaces from K-theory. It extends the applicability of
K-theory for obtaining the tenfold way of noninteracting
fermions,6,24 to obtaining the breakdown of the tenfold
way induced by interactions.
This method is applied first to the breakdown of the

tenfold way in Sec. III.25 In doing so, we prove the fol-
lowing properties that we report in Table I.

1. All Z2 entries of the periodic table irrespectively
of the dimensionality of space are stable to quartic
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The conditions for both the stability and the breakdown of the topological classification of gapped
ground states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion
interactions are given for any dimension of space. This is achieved by encoding the effects of
interactions on the boundary gapless modes in terms of boundary dynamical masses. Breakdown
of the noninteracting topological classification occurs when the quantum nonlinear sigma models
for the boundary dynamical masses favor quantum disordered phases. For the tenfold way, we
find that (i) the noninteracting topological classification Z2 is always stable, (ii) the noninteracting
topological classification Z in even dimensions is always stable, (iii) the noninteracting topological
classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly for
any dimension and any defining symmetries. We also apply our method to the three-dimensional
topological crystalline insulator SnTe from the symmetry class AII+R, for which we establish the
reduction Z → Z8 of the noninteracting topological classification.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSs) of noninteracting fermions are character-
ized by topological numbers (Z or Z2) that encode the
non-trivial topology of the occupied single-particle wave
functions and are accompanied by gapless excitations
that are localized along any boundary.1,2 The integer
quantum Hall effect (IQHE) is characterized by the Hall
conductivity quantized by the integer ν = 1, 2, · · · in
units of e2/h. The topological integer ν counts the num-
ber of extended chiral edge modes propagating at the
boundary of the sample. The Z2 topological insulator is
characterized by the parity of the number of Kramers’
doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip supercon-
ductor,3,4 both instances are now understood to be non-
trivial entries in the periodic table (i.e., the tenfold way)
for noninteracting topological insulators and supercon-
ductors.5–7

The gapless modes appearing at the boundary in the
IQHE are robust to both elastic and inelastic scattering
resulting from one-body impurity potentials and many-
body electron-electron interactions.8,9 Similarly, the gap-
less modes in the Z2 TIs are immune to both backscat-
tering resulting from one-body impurity potentials and
many-body electron-electron interactions, provided time-
reversal symmetry (TRS) is neither explicitly nor spon-
taneously broken.10–13

Given the robustness to many-body fermion-fermion
interactions of the edge states in the IQHE, it was a re-
markable observation made by Fidkowski and Kitaev in
2010 that it is is possible to gap out eight Majorana zero
modes localized at the end of a one-dimensional topo-
logical superconducting wire through many-body inter-
actions without closing the spectral gap in the bulk.14,15

In the terminology of the tenfold way,5–7 it was demon-
strated in Refs. 14 and 15 that the Z topological classi-
fication for the noninteracting one-dimensional symme-
try class BDI, when interpreted as a superconductor, is
(i) unstable to quartic contact interactions that neither
break explicitly nor spontaneously the TRS, and (ii) this
instability reduces the noninteracting topological classi-
fication Z to Z8.
Subsequently, noninteracting two-dimensional topolog-

ical crystalline superconductors (TCSs) from the sym-
metry class DIII+R (where “+R ” indicates the pres-
ence of an additional reflection symmetry) and three-
dimensional topological superconductors from the sym-
metry class DIII were shown in Refs. 16 and 17 and
Refs. 18–22 to display the reduction patterns Z → Z8
and Z → Z16, respectively, when perturbed by quar-
tic contact interactions that neither break explicitly nor
spontaneously the defining symmetries.23 The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. 21.
We present in Sec. II a method that allows to de-

rive the reduction pattern of all noninteracting topologi-
cal insulators and superconductors without and with re-
flection symmetries for any dimensionality d of space in
the presence of quartic contact interactions that neither
break explicitly nor spontaneously the defining symme-
tries. This method relies on the topology of the classify-
ing spaces from K-theory. It extends the applicability of
K-theory for obtaining the tenfold way of noninteracting
fermions,6,24 to obtaining the breakdown of the tenfold
way induced by interactions.
This method is applied first to the breakdown of the

tenfold way in Sec. III.25 In doing so, we prove the fol-
lowing properties that we report in Table I.

1. All Z2 entries of the periodic table irrespectively
of the dimensionality of space are stable to quartic
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the
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the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
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d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
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BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0
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C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).
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This model with U(1)A ⇥ Spin(6)(SO(6)) symmetry has a close relation with the eight-

flavor 1D Majorana chain with SO(7)-invariant quartic interaction, which was examined

by Fidkowski and Kitaev[115, 116], when it is formulated in two-dimensional Euclidean

spacetime.
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ĉ↵
2l + v

n�1

X

l=1

ĉ↵
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The quartic interaction Ŵ is invariant under the SO(7) transformation which acts on the

operators ĉ↵ (↵ = 1, · · · , 8) so that they are in 8, the irreducible spinor representation of

SO(7).15 In fact, as shown by Y.-Z. You and C. Xu [112], the operator Ŵ can be written
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Ŵ = � 1

4!

⇣

7

X

a=1
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15The eight-component Majorana operator ĉ↵ can be regarded as a real vector or a real spinor of SO(8),

thanks to the triality of SO(8).
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(gapless) antiferromagnetic Heisenberg model. We will
have more to say about the field theory analysis in the
next section.

The analysis of 4 chains does however lead to a natural
way to gap out the 8 chain system. Indeed, we can split
the 8 chains up into 2 groups of 4, turn on a quartic inter-
action in each group of 4 to create low energy spin 1/2’s as
in the above paragraph, and then couple these spin 1/2’s
into a non-degenerate singlet via an anti-ferromagnetic
interaction. We will now flesh out this intuition and give
an explicit construction of W .

To facilitate the analysis, we make use of the so(8)
symmetry. Per the construction above, we have 8 Ma-
joranas forming a 16 dimensional representation so(8).
This representation is actually a direct sum of two spinor
representations, 8+ and 8−, of so(8), both of which are
equivalent to the 8 vector representation in the sense that
there is a group of so-called triality automorphisms of
so(8) [14] which interchange the 8+, 8−, and 8. Now,
while it turns out that a W that is fully so(8) symmetric
doesn’t work, we can find one that is symmetric under
the so(7) ⊂ so(8) that fixes a particular element of say
8+. This is the triality conjugate of one of the familiar
so(7) subalgebras.

The goal for the remainder of this sub-section is to
show that the following explicit expression for W

W = ĉ1ĉ2ĉ3ĉ4 + ĉ5ĉ6ĉ7ĉ8 + ĉ1ĉ2ĉ5ĉ6

+ ĉ3ĉ4ĉ7ĉ8 − ĉ2ĉ3ĉ6ĉ7 − ĉ1ĉ4ĉ5ĉ8

+ ĉ1ĉ3ĉ5ĉ7 + ĉ3ĉ4ĉ5ĉ6 + ĉ1ĉ2ĉ7ĉ8

− ĉ2ĉ3ĉ5ĉ8 − ĉ1ĉ4ĉ6ĉ7 + ĉ2ĉ4ĉ6ĉ8

− ĉ1ĉ3ĉ6ĉ8 − ĉ2ĉ4ĉ5ĉ7 (8)

is so(7) invariant. The proof that turning on W and
turning off the kinetic terms leaves H gapped will be left
for the next sub-section.

To show that W is so(7)-invariant, we first have to
specify the so(7) we are talking about. To do this, we first
combine the Majoranas into regular fermions as follows:

ĉ2j−1 = (aj + a†
j) (9)

ĉ2j = −i(aj − a†
j) (10)

We thus have 4 regular fermions. Let |0⟩ be the state
where all of them have occupation number 0, and let
|ψ⟩ = 1√

2
(|0⟩ − a†

1a
†
2a

†
3a

†
4|0⟩). |ψ⟩ is a spinor in 8+, and

we claim that it is the unique ground state of W , and
that W is invariant under the so(7) subgroup of so(8)
that leaves |ψ⟩ fixed.

Let us start by proving |ψ⟩ is the unique ground state
of W . To do this, we first consider

W1 = ĉ1ĉ2ĉ3ĉ4 + ĉ5ĉ6ĉ7ĉ8 + ĉ1ĉ2ĉ5ĉ6 + ĉ1ĉ3ĉ5ĉ7 (11)

Note that each of the 4 terms in W1 has eigenvalues ±1.
Re-writing the terms in W1 in terms of creation and an-
nihilation operators, it is easy to see that |ψ⟩ is an eigen-
state of eigenvalue −1 for all of them. It is also easy to

see explicitly that |ψ⟩ is the only state with this prop-
erty - assuming eigenvalue (−1) for the first three terms
immediately gives a state that is a linear combination of
|0⟩ and a†

1a
†
2a

†
3a

†
4|0⟩, and the correct linear combination

yielding |ψ⟩ is fixed by the last term.
The key point now is that each term in W can be

written as a product of terms in W1 - this immediately
shows that |ψ⟩ is an eigenstate of each term of W , with
eigenvalue ±1. In fact, it can be explicitly checked that
all the eigenvalues are −1, so that |ψ⟩ is a ground state
of W . Uniqueness follows from the fact that it is already
a unique ground state of W1.

Now that we have proved that |ψ⟩ is the unique ground
state of W , we can finally show that W is invariant un-
der the so(7) that leaves |ψ⟩ fixed. First, we identify the
generators of so(7). Note that there are 28 linearly in-
dependent bilinears ĉiĉj . Take any one of the 14 terms
in W , say ĉiĉj ĉk ĉl, transposing a pair of ĉ’s if necessary
to make the sign positive. We then claim that the set of
all bilinears i

2 (ĉiĉj − ĉk ĉl),
i
2 (ĉiĉl − ĉj ĉk), i

2 (ĉiĉk + ĉj ĉl),
as ĉiĉj ĉkĉl ranges over the 14 terms in W , spans so(7).
To see this, first notice that all these bilinears annihilate
|ψ⟩ - this follows from the fact that |ψ⟩ is an eigenvec-
tor of eigenvalue −1 for the corresponding terms in W .
Thus the bilinears span a subset of so(7). To see that
they actually span all of so(7) we use a dimension argu-
ment - by brute force we compute the rank of the relevant
28 by 28 matrix and find it equal to 21, the dimension
of so(7). With this description of so(7), checking the
invariance of W amounts to computing its commutator
with all the generators of so(7). This is actually rather
tractable, because for any given generator constructed in
this paragraph, its commutator with all but 4 terms of
W is trivially 0, and can be easily done via computer.

B. Adiabatic continuation using W

We now explicitly verify that we can connect the two
phases adiabatically. As explained, this amounts to
showing that we can turn on a quartic interaction and
turn off the kinetic terms completely while maintaining
a gap in the 256 dimensional Hilbert space H0. That is,
we have the 16 Majorana fermions ĉi, ĉ′i, i = 1, . . . , 8, and
consider the following interactions:

Wtot = W + W ′ (12)

T =
8
∑

i=1

iĉiĉ
′
i (13)

H = w Wtot + t T (14)

where W is as above, and W ′ is given by replacing all
the ĉi’s with ĉ′i’s. Thus T is the kinetic term and W the
quartic potential.

We have explicitly diagonalized this Hamiltonian nu-
merically. The eigenvalues are plotted in fig. 1, where
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ĉ↵
2l�1

ĉ↵
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⌘

, (8.8)

where {�a |a = 1, · · · , 7} is the set of the gamma matrices for SO(7) given explicitly as

�1 = I ⌦ I ⌦ �
2

, (8.9)

�2 = �
3

⌦ �
2

⌦ �
3

, (8.10)

�3 = I ⌦ �
2

⌦ �
1

, (8.11)

�4 = �
2

⌦ I ⌦ �
3

, (8.12)

�5 = �
2

⌦ �
3

⌦ �
1

, (8.13)

�6 = �
1

⌦ �
2

⌦ �
3

, (8.14)

�7 = �
2

⌦ �
1

⌦ �
1

, (8.15)
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operators ĉ↵ (↵ = 1, · · · , 8) so that they are in 8, the irreducible spinor representation of

SO(7).15 In fact, as shown by Y.-Z. You and C. Xu [112], the operator Ŵ can be written
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Ŵ = � 1

4!

⇣

7

X

a=1
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Ĥ↵ + V̂ , (8.3)

where
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The quartic interaction Ŵ is invariant under the SO(7) transformation which acts on the

operators ĉ↵ (↵ = 1, · · · , 8) so that they are in 8, the irreducible spinor representation of

SO(7).15 In fact, as shown by Y.-Z. You and C. Xu [112], the operator Ŵ can be written
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Ĥ =
8

X

↵=1
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↵
2l+1

!

, (8.4)

V̂ =
n
X

l=1

⇣

Ŵ
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which are pure imaginary and anti-symmetric, �aT = ��a. This Hamiltonian can be

rewritten further using the two-component Majorana field operator,  ̂↵
l = (ĉ↵

2l, ĉ
↵
2l�1

)T as
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where ↵ = ��
1

, � = �
2

, P̃± = (1⌥ i�↵)/2 = (1± �
3

)/2 and the matching condition of the

couplings are given by v = 2z and u/v = 1 + m
0

. We note that the Majorana condition

for the eight-flavor Majorana field  ↵(x) is formulated in general by  ̄(x) =  (x)†�0 =

 (x)T cDC. The choice of the representation in the above case is understood as follows:

�0 = � = �
2

, cD = i�
2

, and C = �i. The time-reversal transformation acts on  ̂↵
l as
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l T̂

�1 = �
3

 ̂↵
l = �

3

 ̂↵
l and Ĥ↵, V̂ are both invariant.

The 1D quantum lattice model of the eight-flavor Majorana chain defined with Ĥ

may be formulated as a 1+1D classical lattice model in the Euclidean metric within the

framework of the path-integral quantization[135, 136]. The action can be chosen as
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where D
w

is the two-dimensional massless Wilson-Dirac operator, D
w

=
P

µ

�

�µ(rµ �
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µ)/2+rµr†
µ/2

 

.  M (x) is the Grassmann-number field, obeying the constraint  ̄M (x) =

 M (x)cDC, if it is taken as complex. One nay assume generic representations for the Dirac-

and SO(7)- gamma matrices. (Our choice of the representation of the Dirac gamma matri-

ces in the Euclidean metric is specified as �
0

= �
1

, �
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= �
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, �
3

= �
3

.) The action is invari-

ant under the parity and charge conjugation transformations, P :  M (x) ! i�
0

 M (xP)

where xP = (x
0

,�x
1

) and C :  M (x) !  M (x). We note that the SO(7)-invariant quar-

tic interaction terms possess the Z
2

symmetry under the discrete chiral transformation,

Z
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:  M (x) ! �
3

 M (x), but it is broken by the mass and Wilson terms. We also note that

the quartic interaction terms do not respect the covariance w.r.t. 2 dim. (hyper-cubic) ro-

tation in the case of Euclidean metric nor Lorentz transformation in the case of Minkowski

metric by the terms with �
0

.

The eight-flavor Majorana field in 8 of SO(7),  M (x), can be composed into the four-

flavor Dirac pairs of left- and right-handed Weyl fields in the 4 of SO(6),  (x) =  
+

(x) +

 �(x). In the representation of the SO(7) gamma matrices specified in section 5, we have
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4

we take the path w = 1 − t, t ∈ [0, 1]. As we can see, the
system remains gapped throughout.

0.0 0.2 0.4 0.6 0.8 1.0
!30

!20

!10

0

10

FIG. 1: Eigenvalues of H = t T +(1− t) Wtot as a function of
t. The system remains gapped throughout the path.

However, it is nice to also have a clear analytical ar-
gument that the system remains gapped. To do this, let
us first analyze the symmetries. The 256 dimensional
Hilbert space H0 for these 16 Majorana fermions has an
action of the Lie algebra so(8)⊕so(8), with one so(8) act-
ing on the ĉi’s and the other on the ĉ′i’s. The potential
term Wtot is invariant under an so(7)⊕so(7) subalgebra,
whereas the kinetic term T is invariant under the diago-
nal so(8). In fact, to construct an easy to analyze Hamil-
tonian, it will be useful to add in a fully so(8) ⊕ so(8)
invariant quartic term Vtot = V +V ′. V and V ′ are quar-
tic in the fermions like W and W ′, and are proportional
to the quadratic Casimirs of the corresponding so(8)’s
(plus some constant term); we will set the constant of
proportionality below. The Hamiltonian H̃ thus is

H̃ = t T + w Wtot + v Vtot (15)

The plan for the remainder of this section is to use the
symmetries to reduce the problem of finding the spec-
trum of H̃ to something more manageable. We first
study the actions of T , Wtot, and Vtot separately, and
then block decompose H̃ , with the blocks corresponding
to different representations of the diagonal so(7), which
is a symmetry of all 3 terms, and hence H̃ . Then we
construct a path through (t, w, v) space which connects
(1, 0, 0) and (−1, 0, 0).

A convenient basis for understanding better the action
of T is as follows. We define bi, b

†
i through

ĉi = (bi + b†i ) (16)

ĉ′i = −i(bi − b†i ) (17)

We note that each term iĉiĉ′i = b†i bi + bib
†
i is equal

to ±1, depending on the occupation number of the b
fermion on site i. Thus the possible eigenvalues of T are
±8,±6,±4,±2 and 0. Under the diagonal so(8), the cor-
responding eigenspaces have dimension 8-choose-k where
k is the number of occupied sites, i.e.: 1, 8, 28, 56 and 70.
It will be convenient to consider superpositions of the m
and −m eigenvalues of T and deal with representations
1L, 8L, 28L, 56L and 1R, 8R, 28R, 56R, where L and R are
exchanged under the action of T . All of these are irre-
ducible, whereas 70 = 35s ⊕ 35v, where 35s and 35v are
distinct 35 dimensional representations.

Now that we understand the action of T , let us figure
out the actions of Wtot and Vtot. As a representation of
so(8) ⊕ so(8), we can think of H0 as a tensor product
of two 16 dimensional Hilbert spaces, one for the ĉi’s,
and one for the ĉ′i’s (in fact, it is a graded tensor prod-
uct, but this distinction will not make a difference in
our analysis). This decomposition is useful because it is
preserved by Wtot. As representations of so(8) we also
have 16 = 8− ⊕ 8+ where 8− and 8+ are the two dif-
ferent chirality spinors. These are distinguished by the
sign of the fermion parity operator, with 8+ having even
fermionic parity, and 8− having odd parity. Indeed, we
have two fermion parity operators, (−1)FL =

∏8
i=1 ĉi and

(−1)FR =
∏8

i=1 ĉ′i, as well as the total fermion parity op-
erator (−1)F = (−1)FL+FR . The potential terms Wtot

and Vtot respect both parities, whereas the kinetic term
respects only (−1)F , and flips (−1)FL and (−1)FR .

We can now expand the tensor product:

H0 = (8− ⊕ 8+) ⊗ (8− ⊕ 8+) = (18)

= (8− ⊗ 8−) ⊕ (8− ⊗ 8+) ⊕ (8+ ⊗ 8−) ⊕ (8+ ⊗ 8+)

With this description of the Hilbert space, it is easy to
figure out the actions of Wtot and Vtot. Indeed, Wtot

is a sum of two terms, W and W ′, that act indepen-
dently on the left and right hand factors in the tensor
product. Both W and W ′ are quadratic in the Lie al-
gebra generators and commute with so(7) (which means
they are proportional to the quadratic Casimir of so(7),
plus a possible constant). We note that under the so(7),
8− → 8 and 8+ → 1 ⊕ 7. Using these facts and doing
some computation, we find that W annihilates 8−, has
eigenvalue −14 on the state |ψ⟩ ∈ 8+ that is fixed by
the so(7), and has eigenvalue 2 on the remaining vector
multiplet 7 of so(7), and similarly for W ′. The actions
of V and V ′, which are so(8) invariant, are even simpler:
they assign a different energy to 8+ and 8−. We choose
the coefficients so that this energy is equal to 0 for 8+

and 1 for 8−.
We now want to relate the two descriptions (16) and

(18) of H0 to find the action of H̃ = t T + w Wtot +
v Vtot. As a first approximation to a connecting path, we
attempt to connect the phases in a purely so(8) invariant
way. That is, we connect the points (1, 0, 0) and (−1, 0, 0)
in the (t, w, v) space of Hamiltonians (15) by varying only

3

(gapless) antiferromagnetic Heisenberg model. We will
have more to say about the field theory analysis in the
next section.

The analysis of 4 chains does however lead to a natural
way to gap out the 8 chain system. Indeed, we can split
the 8 chains up into 2 groups of 4, turn on a quartic inter-
action in each group of 4 to create low energy spin 1/2’s as
in the above paragraph, and then couple these spin 1/2’s
into a non-degenerate singlet via an anti-ferromagnetic
interaction. We will now flesh out this intuition and give
an explicit construction of W .

To facilitate the analysis, we make use of the so(8)
symmetry. Per the construction above, we have 8 Ma-
joranas forming a 16 dimensional representation so(8).
This representation is actually a direct sum of two spinor
representations, 8+ and 8−, of so(8), both of which are
equivalent to the 8 vector representation in the sense that
there is a group of so-called triality automorphisms of
so(8) [14] which interchange the 8+, 8−, and 8. Now,
while it turns out that a W that is fully so(8) symmetric
doesn’t work, we can find one that is symmetric under
the so(7) ⊂ so(8) that fixes a particular element of say
8+. This is the triality conjugate of one of the familiar
so(7) subalgebras.

The goal for the remainder of this sub-section is to
show that the following explicit expression for W

W = ĉ1ĉ2ĉ3ĉ4 + ĉ5ĉ6ĉ7ĉ8 + ĉ1ĉ2ĉ5ĉ6

+ ĉ3ĉ4ĉ7ĉ8 − ĉ2ĉ3ĉ6ĉ7 − ĉ1ĉ4ĉ5ĉ8

+ ĉ1ĉ3ĉ5ĉ7 + ĉ3ĉ4ĉ5ĉ6 + ĉ1ĉ2ĉ7ĉ8

− ĉ2ĉ3ĉ5ĉ8 − ĉ1ĉ4ĉ6ĉ7 + ĉ2ĉ4ĉ6ĉ8

− ĉ1ĉ3ĉ6ĉ8 − ĉ2ĉ4ĉ5ĉ7 (8)

is so(7) invariant. The proof that turning on W and
turning off the kinetic terms leaves H gapped will be left
for the next sub-section.

To show that W is so(7)-invariant, we first have to
specify the so(7) we are talking about. To do this, we first
combine the Majoranas into regular fermions as follows:

ĉ2j−1 = (aj + a†
j) (9)

ĉ2j = −i(aj − a†
j) (10)

We thus have 4 regular fermions. Let |0⟩ be the state
where all of them have occupation number 0, and let
|ψ⟩ = 1√

2
(|0⟩ − a†

1a
†
2a

†
3a

†
4|0⟩). |ψ⟩ is a spinor in 8+, and

we claim that it is the unique ground state of W , and
that W is invariant under the so(7) subgroup of so(8)
that leaves |ψ⟩ fixed.

Let us start by proving |ψ⟩ is the unique ground state
of W . To do this, we first consider

W1 = ĉ1ĉ2ĉ3ĉ4 + ĉ5ĉ6ĉ7ĉ8 + ĉ1ĉ2ĉ5ĉ6 + ĉ1ĉ3ĉ5ĉ7 (11)

Note that each of the 4 terms in W1 has eigenvalues ±1.
Re-writing the terms in W1 in terms of creation and an-
nihilation operators, it is easy to see that |ψ⟩ is an eigen-
state of eigenvalue −1 for all of them. It is also easy to

see explicitly that |ψ⟩ is the only state with this prop-
erty - assuming eigenvalue (−1) for the first three terms
immediately gives a state that is a linear combination of
|0⟩ and a†

1a
†
2a

†
3a

†
4|0⟩, and the correct linear combination

yielding |ψ⟩ is fixed by the last term.
The key point now is that each term in W can be

written as a product of terms in W1 - this immediately
shows that |ψ⟩ is an eigenstate of each term of W , with
eigenvalue ±1. In fact, it can be explicitly checked that
all the eigenvalues are −1, so that |ψ⟩ is a ground state
of W . Uniqueness follows from the fact that it is already
a unique ground state of W1.

Now that we have proved that |ψ⟩ is the unique ground
state of W , we can finally show that W is invariant un-
der the so(7) that leaves |ψ⟩ fixed. First, we identify the
generators of so(7). Note that there are 28 linearly in-
dependent bilinears ĉiĉj . Take any one of the 14 terms
in W , say ĉiĉj ĉk ĉl, transposing a pair of ĉ’s if necessary
to make the sign positive. We then claim that the set of
all bilinears i

2 (ĉiĉj − ĉk ĉl),
i
2 (ĉiĉl − ĉj ĉk), i

2 (ĉiĉk + ĉj ĉl),
as ĉiĉj ĉkĉl ranges over the 14 terms in W , spans so(7).
To see this, first notice that all these bilinears annihilate
|ψ⟩ - this follows from the fact that |ψ⟩ is an eigenvec-
tor of eigenvalue −1 for the corresponding terms in W .
Thus the bilinears span a subset of so(7). To see that
they actually span all of so(7) we use a dimension argu-
ment - by brute force we compute the rank of the relevant
28 by 28 matrix and find it equal to 21, the dimension
of so(7). With this description of so(7), checking the
invariance of W amounts to computing its commutator
with all the generators of so(7). This is actually rather
tractable, because for any given generator constructed in
this paragraph, its commutator with all but 4 terms of
W is trivially 0, and can be easily done via computer.

B. Adiabatic continuation using W

We now explicitly verify that we can connect the two
phases adiabatically. As explained, this amounts to
showing that we can turn on a quartic interaction and
turn off the kinetic terms completely while maintaining
a gap in the 256 dimensional Hilbert space H0. That is,
we have the 16 Majorana fermions ĉi, ĉ′i, i = 1, . . . , 8, and
consider the following interactions:

Wtot = W + W ′ (12)

T =
8
∑

i=1

iĉiĉ
′
i (13)

H = w Wtot + t T (14)

where W is as above, and W ′ is given by replacing all
the ĉi’s with ĉ′i’s. Thus T is the kinetic term and W the
quartic potential.

We have explicitly diagonalized this Hamiltonian nu-
merically. The eigenvalues are plotted in fig. 1, where
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Ŵ = � 1

4!

⇣

7

X

a=1
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Ĥ↵ =
n
X

l=1

z

2
 ̂↵
l
T
n

↵
1

2i
(r�r†) + �

1

2
rr† + �m

0

o

 ̂↵
l , (8.16)

V̂ = � 1

4!

n
X

l=1

�

7

X

a=1

�

 ̂T
l P̃+

�a ̂l

�

2

+
7

X

a=1

�

 ̂T
l P̃��

a ̂l

�

2 � 32
 

, (8.17)

where ↵ = ��
1

, � = �
2

, P̃± = (1⌥ i�↵)/2 = (1± �
3

)/2 and the matching condition of the

couplings are given by v = 2z and u/v = 1 + m
0

. We note that the Majorana condition

for the eight-flavor Majorana field  ↵(x) is formulated in general by  ̄(x) =  (x)†�0 =

 (x)T cDC. The choice of the representation in the above case is understood as follows:

�0 = � = �
2

, cD = i�
2

, and C = �i. The time-reversal transformation acts on  ̂↵
l as

T̂  ̂↵
l T̂

�1 = �
3

 ̂↵
l = �

3

 ̂↵
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1

)

and
�
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↵
2l�1

)T as
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�†
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2l, ĉ
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l and Ĥ↵, V̂ are both invariant.

The 1D quantum lattice model of the eight-flavor Majorana chain defined with Ĥ
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D=0 Edge modes (ν)

Edge modes of D=1 Majorana Chain  (ν)

6

symmetry class BDI when both TRS and the SU(2) spin-
rotation symmetry are present, and the symmetry class
CII when TRS holds but not the SU(2) spin-rotation
symmetry if spin-orbit coupling is sizable. We show that
the reduction of the noninteracting topological classifica-
tion is Z → Z4 for the symmetry classes AIII and BDI,
while it is Z → Z2 for the symmetry class CII, provided
conservation of the fermion number holds.

1. The symmetry class BDI when d = 1

Consider the one-dimensional bulk single-particle
Dirac Hamiltonian (with Dirac matrices of dimension
r = 2 ≡ rmin),

H(0)(x) := −i∂x τ3 +m(x) τ2. (3.3a)
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the (boundary) dynamical Dirac masses from the zero-
dimensional symmetry class D without topological ob-
structions. We construct explicitly the spaces for the rel-
evant normalized boundary dynamical Dirac masses of
dimension ν = 2n with n = 0, 1, 2, 3 in the following.59

The relevant homotopy groups are given in Table II.60

Case ν = 1: No Dirac mass is allowed on the boundary,
because the boundary is the end of a one-dimensional
Z2 topological superconductor in the topologically non-
trivial phase of the symmetry class D.
Case ν = 2: We use the representation 11 = σ0. There

is one dynamical normalized Dirac mass on the boundary
that is proportional to the matrix σ2. A domain wall
in imaginary time such as m2∞ sign(τ)σ2 prevents the
dynamical generation of a spectral gap on the boundary.
Case ν = 4: We use the representation 11 = σ0 ⊗ ρ0.

A (maximum) set of pairwise anticommuting boundary
dynamical Dirac mass matrices follows from the set

{σ2 ⊗ ρ0,σ1 ⊗ ρ2,σ3 ⊗ ρ2}. (3.10)

This set spans the space of normalized boundary dynam-
ical Dirac masses that is homeomorphic to S2. Even
though π0+1(S

2) = 0, it is possible to add a topolog-
ical term that is nonlocal, yet only modifies the equa-
tions of motion of the (0+1)-dimensional QNLSM on the
boundary by local terms as a consequence of the fact that
π0+1+1(S

2) = Z. Such a term is a (0+1)-dimensional ex-
ample of a Wess-Zumino (WZ) term. In the presence
of this WZ term, the boundary theory remains gapless.
It is nothing but a bosonic representation of the gapless
S = 1/2 degrees of freedom at the end of a quantum spin-
1 antiferromagnetic spin chain in the Haldane phase.22

Case ν = 8: We use the representation 11 = σ0⊗ρ0⊗λ0.
One set of pairwise anticommuting boundary dynamical
Dirac mass matrices follows from the set

{σ2 ⊗ ρ0 ⊗ λ0,σ3 ⊗ ρ2 ⊗ λ0,σ3 ⊗ ρ3 ⊗ λ2,σ1 ⊗ ρ0 ⊗ λ2}
(3.11)

This set spans a manifold homeomorphic to S3 (we may
find a set of pairwise anticommuting masses spanning
S6). No topological term is admissible over this target
manifold that delivers local equations of motion. The
QNLSM over this target space endows dynamically the
boundary Hamiltonian with a spectral gap.
We conclude that the effects of interactions on the one-

dimensional SPT phases in the symmetry class BDI are
to reduce the topological classification Z in the nonin-
teracting limit down to Z8 under the assumption that a
Hamiltonian from the symmetry class BDI is interpreted
as a mean-field description of a superconductor. The
logic used to reach this conclusion is summarized by Ta-
ble II once the line corresponding to ν = 2 has been
identified. It is given by the smallest D that accommo-
dates a non-trivial entry for the corresponding homotopy
group. The line for ν = 4 is then identified with the next
smallest D with πD(R2) ̸= 0, and so on.

TABLE II. Reduction from Z to Z8 for the topologically
equivalent classes of the one-dimensional SPT phases in the
symmetry class BDI that arises from interactions. We de-
note by Vν the space of ν×ν normalized Dirac mass matrices
in zero-dimensional Hamiltonians belonging to the symmetry
class D. The limit ν → ∞ of these spaces is the classifying
space R2. The second column shows the stable D-th homo-
topy groups of the classifying space R2. The third column
gives the number ν of copies of boundary (Dirac) fermions
for which a topological obstruction is permissible. The fourth
column gives the type of topological obstruction that prevents
the gapping of the boundary (Dirac) fermions.

D πD(R2) ν Topological obstruction

0 Z2 2 Domain wall

1 0

2 Z 4 WZ term

3 0

4 0

5 0

6 Z 8 None

7 Z2

2. The symmetry class CII when d = 1

Consider the one-dimensional bulk single-particle
Dirac Hamiltonian (with Dirac matrices of dimension
r = 4 ≡ rmin),

H(0)(x) := −i∂xX30 +m(x)X20. (3.12a)

This single-particle Hamiltonian belongs to the symme-
try class CII, for

T H(0)(x) T −1 = +H(0)(x), (3.12b)

C H(0)(x) C−1 = −H(0)(x), (3.12c)

where

T := iX12 K, C := iX02 K. (3.12d)

The Dirac mass matrixX20 is here the only one allowed
for dimension four Dirac matrices in the symmetry class
CII. If translation symmetry is broken by the Dirac mass
term supporting the domain wall

m(x) = m∞ sgn(x), m∞ ∈ R, (3.13a)

at x = 0, then the zero mode

e
−iX30 X20

x
∫

0
dx′ m(x′)

χ = e−|m∞ x| χ, (3.13b)

where

X10 χ = sgn (m∞)χ, (3.13c)

is the only normalizable state bound to this domain wall.
This boundary state is a zero mode. It is an eigenstate
of the single-particle boundary Hamiltonian

H(0)
bd = 0. (3.13d)

ν=8 : No Topological obstruction in “dynamical mass matrix”

Disorderd and Gapped phase

Kitaev-Wen機構

(Haldane phase of spin-1 chain, Θ=π)

[Morimoto et al (2015)]
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0-2-4

λ=>∞,  Z=1,  gapped completely
    path-integralはfour-fermi (yukawa) operatorでsaturate

parity-flavor sym.の破れは起きない:  order parameter なし，Aoki phase は存在しない
edge modeは 0+1 MW fermion

SO(7) >  SO(6),   0+1d overlap D = Dw , path-integralはfour-fermi(yukawa) op. でsaturate
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d=0+1 Edge modes (ν=8,  SO(7) >  SO(6) ;  8 (MJ)= 4 + 4* (Dirac) )
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Gapped boundary phase (Kitaev-Wen機構) <=> Path Integral measure の saturation

Gapless boundary phase <=> Well-defined Path Integral by Dai-Free theorem



Topological Insulators/Superconductors
Symmetry Protected Topological (SPT) Phases of Matter

dimensional model SOv implies that the domain wall fermion path-integral measure is prop-
erly saturated at around the right-handed boundary with the fields,  (x, L5),  ̄(x, L5)P�,
even when the spin fields Ea(x), Ēa(x) have the disordered nature. Moreover, the CP
symmetry is restored in the limit L5 ! 1.

Thus the five-dimensional domain wall fermion model defined by the action eq. (6.67)
provides a very explicit and well-defined implementation of the proposal by Creutz, Tytgat,
Rebbi, Xue for the (more general) case of the SO(10) chiral gauge theory. And our four-
dimensional lattice model defined with the path-integration measure for the left-handed
Weyl field eq. (6.1) is nothing but the low energy effective theory of the five-dimensional
domain wall model in the limit L5 ! 1 (a05 ! 0).

In this repect, we note that one may define the action of such a SO(10) domain wall
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Note here that the bounary interaction terms are formulated solely with the boundary
field variables, q(x) =  �(x, 1) +  +(x, L5), q̄(x) =  ̄�(x, 1) +  ̄+(x, L5), which are first
introduced by Shamir and Furman[62, 63]. In this action, the global U(1) symmetry of the
five-dimensional Wilson fermion fields is broken to Z4 by the boundary Yukawa couplings.
The CR5 and P symmetries are also broken to the CPR5 symmetry in the same manner.
We note, however, that this model ends up with the overlap fermion model S0

Mi/Ov with
the Yukawa couplings eq. (6.28) in the limit L5 ! 1 in the same subtraction scheme.
Therefore, this type of the Majorana-Yukawa couplings at the boundary are singular in the
large limit.

6.5 cf. Topological Insulators/Superconductors with gapped boundary phases
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phases in order to formulate the 3+1D chiral gauge theories in the Hamiltonian formalism.
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where âi(p) and âi(p)† are fermionic annihilation-creation operators in momentum space,
satisfying the canonical anti-commutation relations, âi(p)âj(p0)† + âj(p0)†âi(p) = �p,p0�i,j .
The alpha and beta matrices are chosen here as ↵k = �3 ⌦ �k (k = 1, 2, 3), ↵4 = �2 ⌦ I,
and � = ��1 ⌦ I. The generator of the time-reversal symmetry transformation is given as
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T = K (iI⌦�2), where K stands for complex conjugation. This 4D quantum lattice fermion
model is nothing but the Hamiltonian formulation of Kaplan’s 5-dim. domain wall fermion
defined with the Wilson term.[60, 61] It was first examined by Creutz and Horvath[121]
to study the chiral property of the massless lattice fermions realized as Shockley surface
states, and later by X.-L. Qi, Hughes and S.H. Zhang[122] as a 4D extension of the 2D
Integer Quantum Hall Effect (IQHE).

The insulator is in topological phase for m > 0 and in trivial phase for m < 0. On
the 3D boundary of the domain wall due to the change of the mass parameter from m > 0

to m < 0, there appear ⌫(2 Z) copies of two-component (right-handed) Weyl fermions at
low energy |pl| ⌧ 0 (l = 1, 2, 3) assuming the thermodynamic limit of the 4D space. These
Weyl fermions are protected from acquiring mass by the topological index defined by the
second Chern character of the U(1) bundle associated with the connection
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†
k� k and

the time reversal symmetry. This gapless boundary phase can be described by the low
energy effective Hamiltonian,
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The generator of the time-reversal symmetry transformation acting the effective Hamilto-
nian is given as T = K (i�2).

For the case ⌫ = 16, the authors have proposed the boundary interaction terms to fully
gap the boundary phase with the sixteen massless Weyl fermions, or the bulk interaction
terms to be able to interpolate between the topological and trivial phases without closing
the mass gap nor breaking the symmetries. In fact, the boundary/bulk interaction terms
introduced in these works are the SO(10)-invariant quartic (or Yukawa) term
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assuming that the sixteen massless Weyl fermions are in the 16 of SO(10) and its descendants
with reduced symmetries, SO(7)⇥SO(3) and SO(6)⇥SO(4)(=SU(4)⇥SU(2)⇥SU(2)). It is
quite interesting to see that these are essentially identical to the SO(10)-invariant quartic
terms of the ’t Hooft vertices, T+(x), T̄+(x),

OT(x) = T+(x) + T̄+(x) (6.74)
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and their descendants.
Wen, in particular, have considered the SO(10) chiral gauge theory as a target theory[123].

The author have proposed to use the following SO(10)-invariant boundary interaction terms,
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).
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algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).
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Breakdown of the topological classification Z for gapped phases of noninteracting
fermions by quartic interactions
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The conditions for both the stability and the breakdown of the topological classification of gapped
ground states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion
interactions are given for any dimension of space. This is achieved by encoding the effects of
interactions on the boundary gapless modes in terms of boundary dynamical masses. Breakdown
of the noninteracting topological classification occurs when the quantum nonlinear sigma models
for the boundary dynamical masses favor quantum disordered phases. For the tenfold way, we
find that (i) the noninteracting topological classification Z2 is always stable, (ii) the noninteracting
topological classification Z in even dimensions is always stable, (iii) the noninteracting topological
classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly for
any dimension and any defining symmetries. We also apply our method to the three-dimensional
topological crystalline insulator SnTe from the symmetry class AII+R, for which we establish the
reduction Z → Z8 of the noninteracting topological classification.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSs) of noninteracting fermions are character-
ized by topological numbers (Z or Z2) that encode the
non-trivial topology of the occupied single-particle wave
functions and are accompanied by gapless excitations
that are localized along any boundary.1,2 The integer
quantum Hall effect (IQHE) is characterized by the Hall
conductivity quantized by the integer ν = 1, 2, · · · in
units of e2/h. The topological integer ν counts the num-
ber of extended chiral edge modes propagating at the
boundary of the sample. The Z2 topological insulator is
characterized by the parity of the number of Kramers’
doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip supercon-
ductor,3,4 both instances are now understood to be non-
trivial entries in the periodic table (i.e., the tenfold way)
for noninteracting topological insulators and supercon-
ductors.5–7

The gapless modes appearing at the boundary in the
IQHE are robust to both elastic and inelastic scattering
resulting from one-body impurity potentials and many-
body electron-electron interactions.8,9 Similarly, the gap-
less modes in the Z2 TIs are immune to both backscat-
tering resulting from one-body impurity potentials and
many-body electron-electron interactions, provided time-
reversal symmetry (TRS) is neither explicitly nor spon-
taneously broken.10–13

Given the robustness to many-body fermion-fermion
interactions of the edge states in the IQHE, it was a re-
markable observation made by Fidkowski and Kitaev in
2010 that it is is possible to gap out eight Majorana zero
modes localized at the end of a one-dimensional topo-
logical superconducting wire through many-body inter-
actions without closing the spectral gap in the bulk.14,15

In the terminology of the tenfold way,5–7 it was demon-
strated in Refs. 14 and 15 that the Z topological classi-
fication for the noninteracting one-dimensional symme-
try class BDI, when interpreted as a superconductor, is
(i) unstable to quartic contact interactions that neither
break explicitly nor spontaneously the TRS, and (ii) this
instability reduces the noninteracting topological classi-
fication Z to Z8.
Subsequently, noninteracting two-dimensional topolog-

ical crystalline superconductors (TCSs) from the sym-
metry class DIII+R (where “+R ” indicates the pres-
ence of an additional reflection symmetry) and three-
dimensional topological superconductors from the sym-
metry class DIII were shown in Refs. 16 and 17 and
Refs. 18–22 to display the reduction patterns Z → Z8
and Z → Z16, respectively, when perturbed by quar-
tic contact interactions that neither break explicitly nor
spontaneously the defining symmetries.23 The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. 21.
We present in Sec. II a method that allows to de-

rive the reduction pattern of all noninteracting topologi-
cal insulators and superconductors without and with re-
flection symmetries for any dimensionality d of space in
the presence of quartic contact interactions that neither
break explicitly nor spontaneously the defining symme-
tries. This method relies on the topology of the classify-
ing spaces from K-theory. It extends the applicability of
K-theory for obtaining the tenfold way of noninteracting
fermions,6,24 to obtaining the breakdown of the tenfold
way induced by interactions.
This method is applied first to the breakdown of the

tenfold way in Sec. III.25 In doing so, we prove the fol-
lowing properties that we report in Table I.

1. All Z2 entries of the periodic table irrespectively
of the dimensionality of space are stable to quartic
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The conditions for both the stability and the breakdown of the topological classification of gapped
ground states of noninteracting fermions, the tenfold way, in the presence of quartic fermion-fermion
interactions are given for any dimension of space. This is achieved by encoding the effects of
interactions on the boundary gapless modes in terms of boundary dynamical masses. Breakdown
of the noninteracting topological classification occurs when the quantum nonlinear sigma models
for the boundary dynamical masses favor quantum disordered phases. For the tenfold way, we
find that (i) the noninteracting topological classification Z2 is always stable, (ii) the noninteracting
topological classification Z in even dimensions is always stable, (iii) the noninteracting topological
classification Z in odd dimensions is unstable and reduces to ZN that can be identified explicitly for
any dimension and any defining symmetries. We also apply our method to the three-dimensional
topological crystalline insulator SnTe from the symmetry class AII+R, for which we establish the
reduction Z → Z8 of the noninteracting topological classification.

I. INTRODUCTION

Topological insulators (TIs) and topological supercon-
ductors (TSs) of noninteracting fermions are character-
ized by topological numbers (Z or Z2) that encode the
non-trivial topology of the occupied single-particle wave
functions and are accompanied by gapless excitations
that are localized along any boundary.1,2 The integer
quantum Hall effect (IQHE) is characterized by the Hall
conductivity quantized by the integer ν = 1, 2, · · · in
units of e2/h. The topological integer ν counts the num-
ber of extended chiral edge modes propagating at the
boundary of the sample. The Z2 topological insulator is
characterized by the parity of the number of Kramers’
doublets of extended boundary modes. Together with
polyacetylene and a two-dimensional p + ip supercon-
ductor,3,4 both instances are now understood to be non-
trivial entries in the periodic table (i.e., the tenfold way)
for noninteracting topological insulators and supercon-
ductors.5–7

The gapless modes appearing at the boundary in the
IQHE are robust to both elastic and inelastic scattering
resulting from one-body impurity potentials and many-
body electron-electron interactions.8,9 Similarly, the gap-
less modes in the Z2 TIs are immune to both backscat-
tering resulting from one-body impurity potentials and
many-body electron-electron interactions, provided time-
reversal symmetry (TRS) is neither explicitly nor spon-
taneously broken.10–13

Given the robustness to many-body fermion-fermion
interactions of the edge states in the IQHE, it was a re-
markable observation made by Fidkowski and Kitaev in
2010 that it is is possible to gap out eight Majorana zero
modes localized at the end of a one-dimensional topo-
logical superconducting wire through many-body inter-
actions without closing the spectral gap in the bulk.14,15

In the terminology of the tenfold way,5–7 it was demon-
strated in Refs. 14 and 15 that the Z topological classi-
fication for the noninteracting one-dimensional symme-
try class BDI, when interpreted as a superconductor, is
(i) unstable to quartic contact interactions that neither
break explicitly nor spontaneously the TRS, and (ii) this
instability reduces the noninteracting topological classi-
fication Z to Z8.
Subsequently, noninteracting two-dimensional topolog-

ical crystalline superconductors (TCSs) from the sym-
metry class DIII+R (where “+R ” indicates the pres-
ence of an additional reflection symmetry) and three-
dimensional topological superconductors from the sym-
metry class DIII were shown in Refs. 16 and 17 and
Refs. 18–22 to display the reduction patterns Z → Z8
and Z → Z16, respectively, when perturbed by quar-
tic contact interactions that neither break explicitly nor
spontaneously the defining symmetries.23 The reductions
Z → Z4 and Z → Z8 for the three-dimensional symmetry
classes CI and AIII were obtained in Ref. 21.
We present in Sec. II a method that allows to de-

rive the reduction pattern of all noninteracting topologi-
cal insulators and superconductors without and with re-
flection symmetries for any dimensionality d of space in
the presence of quartic contact interactions that neither
break explicitly nor spontaneously the defining symme-
tries. This method relies on the topology of the classify-
ing spaces from K-theory. It extends the applicability of
K-theory for obtaining the tenfold way of noninteracting
fermions,6,24 to obtaining the breakdown of the tenfold
way induced by interactions.
This method is applied first to the breakdown of the

tenfold way in Sec. III.25 In doing so, we prove the fol-
lowing properties that we report in Table I.

1. All Z2 entries of the periodic table irrespectively
of the dimensionality of space are stable to quartic
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification when (i) fermion-fermion
interactions neither break explicitly their defining symmetries nor spontaneously, (ii) and the many-body ground state is short-
ranged entangled. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (Γ5). Their presence is complemented by the sign multiplying
the identity in T 2 = ±1 or C2 = ±1, and by 1 for Γ5. Their absence is indicated by 0. For each symmetry class and for
any dimension d = 0, 1, 2, . . . of space, the classifying space Vd, the space of normalized Dirac masses allowed by symmetry, is
given in the fifth column. Explicit forms of the classifying spaces Cq and Rq and their stable homotopy groups are found in
Table XVI from Appendix B. The reduction, if any, that arises from the effects of interactions on the topological classification
of noninteracting fermions for d = 1, . . . , 8 is given in the last eight columns. Each entry with a non-trivial Abelian group
defines equivalence classes of interacting topological insulators (superconductors) with a short-ranged entangled many-body
ground state. We color in blue the entry corresponding to a given symmetry class and a given column of odd dimensionality
d to indicate that this entry is a quotient group Gint of G = Z. The reduction Z → Gint results from an instability of the
noninteracting topological classification to fermion-fermion interactions. The four entries corresponding to the symmetry classes
BDI and CII and the dimensions d = 1 and d = 5 occur in pairs depending on whether these two classes are interpreted as
describing superconductors (i.e., interacting Majorana fermions) or insulators (i.e., interacting complex fermions), respectively.

Class T C Γ5 Vd d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 C0+d 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 C1+d Z4 0 Z8 0 Z16 0 Z32 0

AI +1 0 0 R0−d 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 R1−d Z8,Z4 0 0 0 Z16,Z8 0 Z2 Z2

D 0 +1 0 R2−d Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 R3−d Z2 Z2 Z16 0 0 0 Z32 0

AII −1 0 0 R4−d 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 R5−d Z2,Z2 0 Z2 Z2 Z16,Z16 0 0 0

C 0 −1 0 R6−d 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 R7−d 0 0 Z4 0 Z2 Z2 Z32 0

III. REDUCTION OF THE PERIODIC TABLE
FOR STRONG TI AND TS

In this section, we apply the strategy explained above
to study the breakdown of the tenfold way in the presence
of quartic contact interactions in the ascending order of
the spatial dimension d, i.e., d = 1, 2, 3, and higher di-
mensions.
We will use the following conventions. The operation of

complex conjugation will be denoted by K. Linear maps
of two-dimensional vector space C2 shall be represented
by 2 × 2 matrices that we expand in terms of the unit
matrix τ0 and the three Pauli matrices τ1, τ2, and τ3.
Linear maps of the four-dimensional vector space C4 =
C2 ⊗ C2 will be represented by 4 × 4 matrices that we
expand in terms of the 16 Hermitian matrices

Xµµ′ ≡ τµ ⊗ σµ′ , µ, µ′ = 0, 1, 2, 3, (3.1)

where σν is a second set comprised of the unit matrix
and the three Pauli matrices. Linear maps of the 2n-
dimensional vector space C2n = C2 ⊗ · · · ⊗ C2 will be
represented by 2n× 2n matrices that we expand in terms
of the 4n Hermitian matrices

Xµ1···µn
≡ τµ1

⊗ τµ2
⊗ · · ·⊗ τµn

(3.2)

where µ1, · · · , µn = 0, 1, 2, 3.

A. The case of one-dimensional space

Fidkowski and Kitaev showed in Ref. 14 that, in one
spatial dimension, any pair of Hamiltonian in the sym-
metry class BDI whose noninteracting topological indices
differ by eight can be transformed into each other adia-
batically (i.e., without closing the spectral gap) in the
presence of a quartic contact interaction that preserves
TRS. This work was followed up in Refs. 15 and 58 with
the construction of a topological invariant for interact-
ing fermions from the matrix product representation of
ground states. This topological invariant establishes that
the reduction Z → Z8 is exhaustive. The same approach
with matrix product states was used to obtain an exhaus-
tive classification of one-dimensional gapped spin systems
in Ref. 30.

Here, we focus on the three chiral symmetry classes
that support the Z topological classification in the nonin-
teracting limit. We shall reproduce the reduction Z → Z8
and Z → Z2 when the symmetry classes BDI and CII are
interpreted as chains of Majorana fermions, respectively.

The one-dimensional chiral symmetry classes can be
also realized as chains of complex fermions with sub-
lattice symmetry and fermion-number conservation, e.g.,
polyacetylene. For example, polyacetylene-like chains re-
alize the symmetry class AIII when TRS is broken, the

TABLE 1. Classification of free-fermion phases with all possible combinations of the particle number conservation (Q) and
time-reversal symmetry (T ). The π0(Cq) and π0(Rq) columns indicate the range of topological invariant. Examples of topologically
nontrivial phases are shown in parentheses.

q π0(Cq) d = 1 d = 2 d = 3
0 Z (IQHE)
1 0

Above: insulators without time-reversal
symmetry (i.e., systems with Q symme-
try only) are classified using complex K-
theory.

Right: superconductors/superfluids (sys-
tems with no symmetry or T -symmetry
only) and time-reversal invariant insula-
tors (systems with both T and Q) are clas-
sified using real K-theory.

q π0(Rq) d = 1 d = 2 d = 3

0 Z
no symmetry

(px+ ipy, e.g., SrRu)
T only
(3He-B)

1 Z2
no symmetry

(Majorana chain)
T only(

(px+ipy)↑+(px−ipy)↓
) T and Q

(BiSb)

2 Z2
T only

((TMTSF)2X)
T and Q
(HgTe)

3 0 T and Q
4 Z

5 0
6 0
7 0 no symmetry

tonian around a given point may be represented (in some
non-canonical way) by a mass term that anticommutes
with a certain Dirac operator; the problem is thus reduced
to the classification of such mass terms.
Prior to this work, there have been several results to-

ward unified classification of free-fermion phases. Alt-
land and Zirnbauer [18] identified 10 symmetry classes
of matrices,2 which can be used to build a free-fermion
Hamiltonian as a second-order form in the annihilation
and creation operators, â j and â†j . The combinations of
T and Q make 4 out of 10 possibilities. However, the
symmetry alone is only sufficient to classify systems in
dimension 0. For d = 1, one may consider a zero mode
at the boundary and check whether the degeneracy is
stable to perturbations. For example, an unpaired Majo-
rana mode is stable. In higher dimensions, one may de-
scribe the boundary mode by a Dirac operator and like-
wise study its stability. This kind of analysis has been
performed on a case-by-case basis and brought to com-
pletion in a recent paper by Schnyder, Ryu, Furusaki, and
Ludwig [19]. Thus, all phases up to d= 3 have been char-
acterized, but the collection of results appears irregular.
A certain periodic pattern for Z2 topological insula-

tors has been discovered by Qi, Hughes, and Zhang [20].
They use a Chern-Simons action in an extended space,
which includes the space-time coordinates and some pa-
rameters. This approach suggests some operational inter-
pretation of topological invariants andmay even work for
interacting systems, though this possibility has not been
explored. In addition, the authors mention Clifford alge-
bras, which play a key role in the present paper.

2 These classes are often associated with random matrix ensembles, but
the symmetry pertains to concrete matrices rather than the probability
measure.

We report a general classification scheme for gapped
free-fermion phases in all dimensions, see Table 1. It ac-
tually consists of two tables. The small one means to
represent the aforementioned alternation in TR-broken
insulators (a unique trivial phase for odd d vs. an inte-
ger invariant for even d). The large table shows a pe-
riod 8 pattern for the other three combinations of T and
Q. Note that phases with the same symmetry line up di-
agonally, i.e., an increase in d corresponds to a step up
(mod8). (T -invariant 1D superconductors were studied
in Ref. [21]. The (px+ipy)↑+(px−ipy)↓ phase was pro-
posed in Refs. [22, 23, 19]; the last paper also describes
an integer invariant for 3He-B.) The 2 + 8 rows (in-
dexed by q) may be identified with the Altland-Zirnbauer
classes arranged in a certain order; they correspond to 2
types of complex Clifford algebras and 8 types of real
Clifford algebras. Each type has an associated classify-
ing space Cq or Rq, see Table 2. Connected components
of that space (i.e., elements of π0(Rq) or π0(Cq)) corre-
spond to different phases. But higher homotopy groups
also have physical meaning. For example, the theory pre-
dicts that 1D defects in a 3D TR-broken insulator are
classified by π1(C1) = Z.
The (mod2) and (mod8) patterns mentioned above

are known as Bott periodicity; they are part of the math-
ematical subject called K-theory. It has been applied
in string theory but not so much in condensed matter
physics. One exception is Hořava’s work [24] on the clas-
sification of stable gapless spectra, i.e., Fermi surfaces,
lines, and points. In this paper, we mostly use results
from chapters II–III of Karoubi’s book [25], in particular,
the relation between the homotopy-theoretic and Clifford
algebra versions of K-groups (a variant of the Atiyah-
Bott-Shapiro construction [26]).

[Kitaev (2009) ][Morimoto et al (2015)]“Periodic table’’ for TI, TSC / Effect of interaction



the Standard Model / SO(10) chiral gauge theory

SU(3)xSU(2)xU(1) xU(1)B-L

 (3 ,2) 1/6                              (1,2) -1/2  

 (3*,1) -2/3  (3*,1) 1/3      (1,1) 1       (1,1) 0  

SO(10)

 16

(16 x 16  => 10)

U(1) fermion symmetry broken by chiral anomaly 
        =>  zero modes  ( 4 x m  / SU(2) instanton) 
       =>  <0| ’t Hooft vertex |0>  

’t Hooft vertex for 16 :   16 x 16 x 16 x 16  =>  1 

Complex, but free from gauge anomalies, both local and global ones

It is known that a chiral gauge theory is a difficult case for numerical simulations
because the effective action induced by Weyl fermions has a non-zero imaginary part. But
in view of the recent studies of the simulation methods based on the complex Langevin
dynamics[161–196] and the complexified path-integration on Lefschetz thimbles[197–239],
it would be still interesting and even useful to develop a formulation of chiral lattice gauge
theories by which one can work out fermionic observables numerically as the functions of
link field with exact gauge invariance.

This article is organized as follows. In section 2, we introduce our lattice formulation of
SO(10) gauge theory with left-handed Weyl field in 16 at the classical level. In section 3, we
define the path-integral measures of the left-handed Weyl field and discuss its properties.
In section 4, we examine in detail the the saturation of the right-handed part of the fermion
measure by ’t Hooft vertices. In section 5, we discuss the cases of other anomalous and
anomaly-free chiral gauge theories. Section 6 is devoted to the discussions of the relations
to other approaches/proposals. In section 7, we conclude with a summary and discussions.

2 The SO(10) chiral lattice gauge theory with overlap Weyl fermions

In this section, we describe a construction of the SO(10) chiral gauge theory on the lattice
within the framework of chiral lattice gauge theories based on the lattice Dirac operator
satisfying the Ginsparg-Wilson relation [56, 57]. We assume a local, gauge-covariant lattice
Dirac operator D which satisfies the Ginsparg-Wilson relation. An explicit example of such
lattice Dirac operator is given by the overlap Dirac operator [23, 25], which was derived
from the overlap formalism [28–38]. In this case, our formulation is equivalent to the overlap
formalism for chiral lattice gauge theories5 or the domain wall fermion approach [64, 67].

In the followings, we consider the four-dimensional lattice ⇤ of the finite size L and
choose lattice units a = 1:

⇤ =
�

x = (x1, x2, x3, x4) 2 Z4 | 0  x
µ

< L (µ = 0, 1, 2, 3)
 

. (2.1)

The unit vector in the directions µ(= 0, 1, 2, 3) are denoted as µ̂.

2.1 Gauge field of SO(10)

The gauge field of SO(10) is defined as the link field on the lattice ⇤. The SO(10) link
variables are at first introduced in the (reducible) spinor representaion as the thirty-two
dimensional special unitary matrices, U(x, µ) 2 Spin(10). The generators of Spin(10) are
given by ⌃

ab

= � i

4

⇥

�a,�b

⇤

, where {�a | a = 1, 2, · · · , 10} form the Clifford algebra, �a�b +

at the mirror wall, but interpret them as physical degrees of freedom with very soft form factor caused by
the gradient flow, and that the authors do not try (do not need) to break explicitly the continuous global
symmetries with “would-be gauge anomalies” in the mirror-wall sector, which would be required if one would
try to decouple the mirror-modes as claimed by Eichten and Preskill and by the other authors[81, 83, 102].

5 The overlap formalism gives a well-defined partition function of Weyl fermions on the lattice, which
nicely reproduces the fermion zero mode and the fermion-number violating observables (’t Hooft vertices)
[39–41]. The gauge-invariant construction by Lüscher [56] provides a procedure to fix the ambiguity of
the complex phase of the overlap formula in a gauge-invariant manner for anomaly-free U(1) chiral gauge
theories.
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�b�a = 2�ab (a, b = 1, 2, · · · , 10). An explicit representation for {�a | a = 1, 2, · · · , 10} is
given in the appendix B. The link variables are then parametrized as

U(x, µ) = ei✓
ab(x,µ)⌃

ab

/2 2 Spin(10). (2.2)

We require the admissibility condition on the gauge field,

k1� P (x, µ, ⌫)k < ✏, (2.3)

for all x, µ, ⌫, where the plaquette variables are defined by

P (x, µ, ⌫) = U(x, µ)U(x+ µ̂, ⌫)U(x+ ⌫̂, µ)�1U(x, ⌫)�1. (2.4)

This condition ensures that the overlap Dirac operator[23, 25], which is assumed to act on
the fermion fields in the spinor representations of SO(10), is a smooth and local function
of the gauge field if ✏ < 1/30[27].

To impose the admissibility condition dynamically, we adopt the following action for
the gauge field:

SG =
1

g2

X

x2�

X

µ,⌫

tr{1� P̃ (x, µ, ⌫)}
h

1� tr{1� P̃ (x, µ, ⌫)}/10✏2
i�1

, (2.5)

where the SO(10) link variables are represented in the defining representation as the ten-
dimensional special orthogonal matrices, Ũ(x, µ) 2 SO(10). The generators of SO(10) in
the defining representation are given by {⌃̃

ab

}
cd

= i(�
ac

�
bd

� �
ad

�
bc

) and the link variables
are represented with the same parameters as

Ũ(x, µ) = ei✓
ab(x,µ)⌃̃

ab

/2 2 SO(10). (2.6)

2.2 Weyl field in 16-dimensional spinor representation of SO(10)

The left-handed Weyl field in the 16-dimensional (irreducible) spinor representation of
SO(10) is defined on the lattice ⇤ based on the Ginsparg-Wilson relation. First we in-
troduce a Dirac field on the lattice in the 16-dimensional spinor representation of SO(10),

 (x) = P+ (x),  ̄(x) =  ̄(x)P+, (2.7)

where
P+ =

1 + �11

2
, �11 = �i�1�2 · · ·�10. (2.8)

We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �
µ

1

2

�

r
µ

�r†
µ

�

+
1

2
r

µ

r†
µ

�m0, (2.9)

where r
µ

is the covariant difference operator which acts on  (x) as r
µ

 (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)
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3.7 Gauge field dependence of the Weyl field measure – Locality issue remain-
ing

The variation of the effective action �W [U ] w.r.t. the link field can be derived from the
path-integral definition eq. (3.10) as follows.

�⌘�W [U ] =
D

�
X

x2⇤
 ̄(x)P+�⌘D (x) +

X

x2⇤
 T(x)P̂ T

+ i�5CDT
aEa�⌘P̂+ (x)

E

F

�⌦

1
↵

F

= Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
� Tr

�

�⌘P̂+

⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F
.

(3.76)

The first term can be rewritten further using the result of the two-point correlation function
of the left-handed fields eq. (3.73) as

Tr
�

P+�⌘D
⌦

 � ̄�
↵

F

 �⌦

1
↵

F
= Tr{P+�⌘DD�1}. (3.77)

It is identified as the physical contribution of the left-handed Weyl fermions. The second
term, on the other hand, represents the gauge field dependence of the Weyl field measure
eq. (3.4) through the right-handed ’t Hooft vertices. It replaces the measure term �iL⌘ =
P

j(vj , �⌘vj)[76, 77]. So we denote this term with �iT⌘,

� iT⌘ ⌘ �Tr
�

�⌘P̂+

⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F
. (3.78)

Then the variation of the effective action is written as

�⌘�W [U ] = Tr{P+�⌘DD�1}� iT⌘. (3.79)

For the gauge transformation, �⌘U(x, µ) = i{!(x)U(x, µ) � U(x, µ)!(x + µ̂)} and
⌘µ(x) = !(x) � U(x, µ)!(x + µ̂)U(x, µ)�1 = �Dµ!(x), the first term gives the gauge
anomaly term,

Tr{P+�⌘DD�1}
�

�

⌘
µ

=�D
µ

!
= �iTr{!�5D}, (3.80)

where, in the weak gauge-coupling expansion, the leading non-trivial term is vanishing
because of the anomaly cancellation condition for the 16-dimensional (irreducible) spinor
representation of SO(10), Tr

�

P+⌃a1b1 [⌃a2b2⌃a3b3+⌃a3b3⌃a2b2 ]
 

= 0. The second term gives

�iT⌘

�

�

⌘
µ

=�D
µ

!
= �iTr

�

[!, P̂+]
⌦

 +

⇥

 T
+i�5CDT

aEa
⇤↵

F

 �⌦

1
↵

F

=
⇣

� i
1

2
Tr
�⌦

 +

⇥

 T
+i�5CDC[�

a,!]Ea
⇤↵

F

 

+iTr
�⌦

 +

⇥

 T
+i�5CDT

aEaP̂+

⇤↵

F
!
 

⌘

�⌦

1
↵

F

= +iTr{!�5D}, (3.81)

where the Schwinger-Dyson equations eqs. (3.72) and (3.74) are used at the last equality.
Thus we can check that the effective action is gauge-invariant.

The measure term �iT⌘ is required to be a smooth and local function of the link field
variables, since it appears as an operator of the link field in the Schwinger-Dyson equation
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Ωspin
5(BSpin(10)) = 0

Ω5(Spin(5)xSpin(10)/Z2) = Z2  [Garcia-Etxebarria-Montero,  Wang-Wen-Witten (2018)]

We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �µ
1

2

�

rµ �r†
µ

�

+
1

2
rµr†

µ �m0, (2.9)

where rµ is the covariant difference operator which acts on  (x) as rµ (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�↵ �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�↵ ̄�(x) = �i↵  ̄�(x)

⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is, as we will see below, broken due to the non-trivial trans-
formation property of the Weyl field path-integral measure and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a
�(x)V

a
�(x), V a

�(x) =  �(x)
Ti�5CDT

a �(x), (2.17)

T̄�(x) =
1

2
V̄ a
�(x)V̄

a
�(x), V̄ a

�(x) =  ̄�(x)i�5CDT
a† ̄�(x)

T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
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Ta = C�a ; TaT = Ta (B.16)

T1 = i(�i)(+i)(�i)(+i)(�i) ⌧3 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T2 = i(+1)(+i)(�i)(+i)(�i) I ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T3 = i(+i)(+i)(�i)(+i)(�i) ⌧1 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T4 = i(+1)(�i)(�i)(+i)(�i) ⌧2 ⇥ ⌧1 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T5 = i(+1)(+1)(�i)(+i)(�i) ⌧2 ⇥ I ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T6 = i(+1)(+1)(+1)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ I ⇥ ⌧2 ⇥ ⌧3,

T7 = i(+1)(+1)(+i)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧1 ⇥ ⌧2 ⇥ ⌧3,

T8 = i(+1)(+1)(+1)(�i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧1 ⇥ ⌧3,

T9 = i(+1)(+1)(+1)(+1)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ I ⇥ ⌧3,

T10 = i(+1)(+1)(+1)(+1)(+1) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3 ⇥ I

The reduced Clliford algebra of 2[9/2]

�a0 = �̌a0 ⇥ ⌧1 (a0 = 1, · · · , 9), (B.17)
C = Č⇥ ⌧2. (B.18)

The reduced T matrices

Ta0 = Ťa0 ⇥ ⌧3, (B.19)
T10 = Ť10 ⇥ I = Č⇥ I. (B.20)

T10†Ta0 = �10�a0 = �i �̌a0 ⇥ ⌧3. (B.21)

C Chiral basis in the weak coupling limit

H = �5(Dw �m0) =
1

L4

X

p

eip(x�y)

 

b(p)I c(p)

c†(p) �b(p)I

!

, (C.1)

where

b(p) =
�

X

µ

(1� cos pµ)�m0

 

, (C.2)

c(p) = I{i sin p0}�
X

k

�k sin pk. (C.3)

– 56 –

We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �µ
1

2

�

rµ �r†
µ

�

+
1

2
rµr†

µ �m0, (2.9)

where rµ is the covariant difference operator which acts on  (x) as rµ (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�↵ �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�↵ ̄�(x) = �i↵  ̄�(x)

⇥

or � ̄(x) = �i↵  ̄(x)P+
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. (2.16)

This global U(1) symmetry is, as we will see below, broken due to the non-trivial trans-
formation property of the Weyl field path-integral measure and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
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V a
�(x)V

a
�(x), V a

�(x) =  �(x)
Ti�5CDT

a �(x), (2.17)
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2
V̄ a
�(x)V̄

a
�(x), V̄ a

�(x) =  ̄�(x)i�5CDT
a† ̄�(x)

T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
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eiπ
∫
M5 w2(TM)w3(TM) = 1

ψαL(x)

ψα
′

R (x)

random Ea(x)

〈
XaXa

〉
= 1− 9

32

1

V

∑

k ̸=0

4

−D̃(k) + 2

Caba1b1···
µµ1··· (k, p1, · · · )

( δηUµ(x) = iηµ(x)Uµ(x) )

Ea(x)Ea(x) = 1

(Ea(x)Ea(x) = 1)

(Q = 2)

Q = odd integer

Q = 0

τa
′

iτ 2τa
′

T = det(1− P̂+ + P̂+Q1) = −1
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[Eichten-Preskill(1986)]

’t Hooft vertex terms 

The limit to the original action SOv is achieved by

y = ȳ,
z+p
yȳ

! 0, (6.7)

v = v̄ = 1, �0 = �̄0 ! 1, (6.8)
 = ̄! 0. (6.9)

In the lattice model defined with the action, SOv/Mi, the global U(1) symmetry of the right-
handed fields is broken to Z4 by the Yukawa couplings y and ȳ. But the proof of the CP
symmetry is not successful so far.13

6.1 cf. Eichten-Preskill model

The SO(10) invariant interaction terms of the ’t Hooft vertex were first used by Eichten
and Preskill[79] to decouple the species doublers in their formulation of chiral lattice gauge
theories based on the generalized Wilson term:

SEP =
X

x2⇤

�

 ̄(x)�µP�([rµ �r†
µ]/2) (x) + z+ ̄(x)�µP+([rµ �r†

µ]/2) (x)
 

�
X

x2⇤
{ �
24

⇥

 T
+(x)i�5CDT

a +(x)
⇤2

+
�

24

⇥

 ̄+(x)i�5CDT
a† ̄+(x)

T
⇤2}

�
X

x2⇤
{ r

48
�
⇥

 T(x)i�5CDT
aP+ (x)

⇤2
+

r

48
�
⇥

 ̄(x)P�i�5CDT
a† ̄(x)T

⇤2},

(6.13)

where

�{A(x)B(x)C(x)D(x)}

⌘ +
1

2

X

µ

n

�

rµr†
µA(x)

�

B(x)C(x)D(x) +A(x)
�

rµr†
µB(x)

�

C(x)D(x)

+A(x)B(x)
�

rµr†
µC(x)

�

D(x) +A(x)B(x)C(x)
�

rµr†
µD(x)

�

o

. (6.14)

In this action, the right(left)-handed Weyl fields are formulated by the naive chiral projec-
tors as P+ (x),  ̄(x)P� (P� (x),  ̄(x)P+). The global U(1) symmetry of the right-handed

13 In the other limit as

�

0 = �̄

0 ! 0, (6.10)

 = ̄! 0, (6.11)

it reduces to the model with quartic interaction of the ’t Hooft vertices,

SOv/EP[ ,  ̄] =
X

x2⇤

�
 ̄�(x)D �(x) + z+ ̄+(x)D +(x)

 

�
X

x2⇤

{y2 1
2

⇥
 

T
+(x)i�5CD

Ta

 +(x)
⇤2

+ ȳ

2 1
2

⇥
 ̄+(x)i�5CD

Ta

†
 ̄+(x)

T

⇤2}. (6.12)

This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e

!.
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generalized Wilson-term

resolve the degenerated physical and species-doubling modes
    { (16)-  + (16)+ } x 8  —>  light (16)-   +  heavy  { (16)- x 7  + (16)+ x 8}

fine-tune to the massless limit within a SO(10)-symmetric phase

Eichten-Preskill model

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

S ′
EP =

∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

S ′
EP/Mi =

∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

−y
[
ψ+(x)

T iγ5CDT
aψ+(x) + ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]
Ea(x)

}

S ′′
EP =

∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−w△̃
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

1

 [Golterman-Petcher-Rivas(1986)]
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x
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The saturation of lattice fermion measures due to ’t Hooft vertices

✲ µ

✻

ν

❄
✻

a✈

✡
✡

✡
✡

✡
✡✡✢

xµ = nµa

✲
✻

µ̂

ν̂

ψ(x) (xµ = nµa, nµ ∈ Z)

U!(x)

Uµ(x)

+

32-components at a site !

in 16

for the naive Weyl fermion with species doublers

the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)

gives a certain non-zero functional of the admissible link field U(x, µ).
The pfaffian of the second matrix eq. (3.26) turns out to be unity. This is because the

matrix is represented as

(ūi�5CD

Ta

†ĒaūT)
kl

= i ✏
��

0�
xx

0
�

Ta

†P+

�

tt

0Ē
a(x0) (3.27)

for k = {x,�, t} and l = {x0,�0, t0}, in the bases �5 = diag(1, 1,�1,�1), ū
k

(x)
↵s

=

�
xx

0�
↵�+2�st for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16}. Then the pfaffian of the matrix

is evaluated as

pf
�

ūi�5CD

TaĒaūT
�

=
Y

x

det
�

P� + P+iT
a

†Ēa(x)
�

=
Y

x

det
�

i Ťa†Ēa(x)
�

=
Y

x

det
�

iČ†[E10(x) + i�̌a

0
Ēa

0
(x)]

�

= 1. (3.28)

Note that det(iČ†) and det
�

[E10(x) + i�̌a

0
Ēa

0
(x)]

�

are both equal to +1 and the latter, in
particular, is independent of Ēa(x). Then the path-integration over Ēa(x) simply gives

Z

D[Ē] pf
�

ū i�5CD

Ta

†ĒaūT
�

= 1. (3.29)

Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads

1 =

Z

D
?

[ ̄+]F
�

T̄+(x)[ ̄+]
�

=

Z

Y

x2⇤

4
Y

↵=3

16
Y

s=1

d ̄
↵s

(x)
Y

x2⇤

4!

8!12!

⇢

1

2
 ̄(x)P�i�5CD

Ta ̄(x)T  ̄(x)P�i�5CD

Ta ̄(x)T
�8

(3.30)

and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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(ūi�5CD

Ta
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�

=
Y

x

det
�

P� + P+iT
a
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Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)
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0Ē
a(x0) (3.27)

for k = {x,�, t} and l = {x0,�0, t0}, in the bases �5 = diag(1, 1,�1,�1), ū
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ū i�5CD

Ta

†ĒaūT
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Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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ū i�5C
D

Ta

†ĒaūT
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Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the

– 11 –

for all topological sectors

T T
=  1

the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)
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ū i�5CD

Ta

†ĒaūT
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Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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ū i�5CD

Ta

†ĒaūT
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Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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Thus the measure of the right-handed anti-field, D
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[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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†ĒaūT
�

= 1. (3.29)

Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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Thus the measure of the right-handed anti-field, D
?
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inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads

1 =

Z

D
?

[ ̄+]F
�

T̄+(x)[ ̄+]
�

=

Z

Y

x2⇤

4
Y

↵=3

16
Y

s=1

d ̄
↵s

(x)
Y

x2⇤

4!

8!12!

⇢

1

2
 ̄(x)P�i�5C

D

Ta ̄(x)T  ̄(x)P�i�5C
D

Ta ̄(x)T
�8

(3.30)

and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
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can argue that it is indeed the case. This is because the complex phase of the pfaffian does
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dimensional model SOv implies that the domain wall fermion path-integral measure is prop-
erly saturated at around the right-handed boundary with the fields,  (x, L5),  ̄(x, L5)P�,
even when the spin fields Ea(x), Ēa(x) have the disordered nature. Moreover, the CP
symmetry is restored in the limit L5 ! 1.

Thus the five-dimensional domain wall fermion model defined by the action eq. (6.67)
provides a very explicit and well-defined implementation of the proposal by Creutz, Tytgat,
Rebbi, Xue for the (more general) case of the SO(10) chiral gauge theory. And our four-
dimensional lattice model defined with the path-integration measure for the left-handed
Weyl field eq. (6.1) is nothing but the low energy effective theory of the five-dimensional
domain wall model in the limit L5 ! 1 (a05 ! 0).

In this repect, we note that one may define the action of such a SO(10) domain wall
fermion model simply by

S0
DW/Mi =

L5
X

t=1

X

x2⇤
 ̄(x, t)

�

[1 + a05(D4w �m0)]�tt0 � P��t+1,t0 � P+�t,t0+1

 

 (x, t0)

�
X

x2⇤
{y Xa(x)qT+(x)i�5CDT

aP+q+(x) + ȳ X̄a(x)q̄+(x)P�i�5CDT
a†q̄+(x)

T }

+ SX [Xa]. (6.70)

Note here that the bounary interaction terms are formulated solely with the boundary
field variables, q(x) =  �(x, 1) +  +(x, L5), q̄(x) =  ̄�(x, 1) +  ̄+(x, L5), which are first
introduced by Shamir and Furman[62, 63]. In this action, the global U(1) symmetry of the
five-dimensional Wilson fermion fields is broken to Z4 by the boundary Yukawa couplings.
The CR5 and P symmetries are also broken to the CPR5 symmetry in the same manner.
We note, however, that this model ends up with the overlap fermion model S0

Mi/Ov with
the Yukawa couplings eq. (6.28) in the limit L5 ! 1 in the same subtraction scheme.
Therefore, this type of the Majorana-Yukawa couplings at the boundary are singular in the
large limit.

6.5 cf. Topological Insulators/Superconductors with gapped boundary phases

It has been proposed by Wen, by You, BenTov and Xu, and by You and Xu[123–126] to
use the 4D Topological Insulators(TIs)/Superconductors(TSCs) with the gapped boundary
phases in order to formulate the 3+1D chiral gauge theories in the Hamiltonian formalism.
These authors have considered the same 4D TI with the time-reversal symmetry defined by
the following quantum Hamiltonian,

Ĥ4DTI =
⌫
X

i=1

X

p

âi(p)
†
n

4
X

k=1

↵k sin(pk) + �
⇣

⇥

4
X

k=1

cos(pk)� 4
⇤

+m
⌘o

âi(p), (6.71)

where âi(p) and âi(p)† are fermionic annihilation-creation operators in momentum space,
satisfying the canonical anti-commutation relations, âi(p)âj(p0)† + âj(p0)†âi(p) = �p,p0�i,j .
The alpha and beta matrices are chosen here as ↵k = �3 ⌦ �k (k = 1, 2, 3), ↵4 = �2 ⌦ I,
and � = ��1 ⌦ I. The generator of the time-reversal symmetry transformation is given as
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âi(p)
†
n

4
X

k=1

↵k sin(pk) + �
⇣

⇥

4
X

k=1

cos(pk)� 4
⇤

+m
⌘o
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The alpha and beta matrices are chosen here as ↵k = �3 ⌦ �k (k = 1, 2, 3), ↵4 = �2 ⌦ I,
and � = ��1 ⌦ I. The generator of the time-reversal symmetry transformation is given as

– 51 –

dimensional model SOv implies that the domain wall fermion path-integral measure is prop-
erly saturated at around the right-handed boundary with the fields,  (x, L5),  ̄(x, L5)P�,
even when the spin fields Ea(x), Ēa(x) have the disordered nature. Moreover, the CP
symmetry is restored in the limit L5 ! 1.

Thus the five-dimensional domain wall fermion model defined by the action eq. (6.67)
provides a very explicit and well-defined implementation of the proposal by Creutz, Tytgat,
Rebbi, Xue for the (more general) case of the SO(10) chiral gauge theory. And our four-
dimensional lattice model defined with the path-integration measure for the left-handed
Weyl field eq. (6.1) is nothing but the low energy effective theory of the five-dimensional
domain wall model in the limit L5 ! 1 (a05 ! 0).

In this repect, we note that one may define the action of such a SO(10) domain wall
fermion model simply by

S0
DW/Mi =

L5
X

t=1

X

x2⇤
 ̄(x, t)

�

[1 + a05(D4w �m0)]�tt0 � P��t+1,t0 � P+�t,t0+1

 

 (x, t0)

�
X

x2⇤
{y Xa(x)qT+(x)i�5CDT
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the (global) SO(10) symmetry. This corresponds to taking the limits eqs. (6.8) and (6.9)
in SEP/WY as

SEP/WY

�

�

v=1,�0!1
=̄=0

=
X

x2⇤

�

 ̄(x)�µP�([rµ �r†
µ]/2) (x) + z+ ̄(x)�µP+([rµ �r†

µ]/2) (x)
 

�
X

x2⇤
{y Ea(x) T(x)i�5CDT

aP+ (x) + y Ēa(x) ̄(x)P�i�5CDT
a† ̄(x)T }

�
X

x2⇤
{wEa(x) T(x)i�5CDT

a(rµr†
µ/2)P+ (x)

+w Ēa(x) ̄(x)P�i�5CDT
a†(rµr†

µ/2) ̄(x)
T }. (6.27)

This region in the coupling-constant space of SEP/WY has not been explored by Golterman,
Petcher and Rivas[99]. And, in fact, we find no phase transition from the PMS phase to the
FM phase towards the weak-coupling limit y/z+, w/z+ ! 0 within the saddle point analysis
in the spirit of the large N expansion. We will come back to this point later in relation to the
discussion about the recent studies on the PMS phase/“Mass without symmetry breaking”.

6.2 cf. Ginsparg-Wilson Mirror-fermion model

The SO(10) invariant action SOv/Mi, eq. (6.5), defines a Mirror-fermion model for the SO(10)
chiral gauge theory in the framework of the Ginsparg-Wilson fermion. It is formulated in
the spirit of the series of works by Bhattacharya, Chen, Giedt, Poppitz and Shang[100–
107], although any SO(10) model has not been discussed in the literature. In the action
SOv/Mi, the global U(1) symmetry of the right-handed fields is broken to Z4 by the Yukawa
couplings y and ȳ. As mentioned above, however, the proof of the CP symmetry is not
successful so far.

In this respect, we note that one can prove the CP invariance of the effective action if
one modifies the Yukawa couplings by the insertion of the chiral projectors P± [241–243] as

�
X

x2⇤
{y Xa(x) T

+(x)i�5CDT
aP+ +(x) + ȳ X̄a(x) ̄+(x)i�5CDT

a†P� ̄+(x)
T }

= �
X

x2⇤
{y  T(1�D)T i�5CDT

aXaP+(1�D) (x) + ȳ  ̄i�5CDT
a†X̄aP� ̄

T (x)},

(6.28)

and to take the following action,

S0
Ov/Mi[ ,  ̄, X

a, X̄a] =
X

x2⇤

�

 ̄�(x)D �(x) + z+ ̄+(x)D +(x)
 

�
X

x2⇤
{y Xa(x) T

+(x)i�5CDT
aP+ +(x)

+ȳ X̄a(x) ̄+(x)P�i�5CDT
a† ̄+(x)

T }
+ SX [Xa]. (6.29)

But this type of Yukawa coupling is singular in the large limit z+p
yȳ

! 0: the saturation of
the right-handed part of the measure is incomplete, because

P+ +(x) = P+P̂+ (x) = P+(1�D) (x) (6.30)
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T = K (iI⌦�2), where K stands for complex conjugation. This 4D quantum lattice fermion
model is nothing but the Hamiltonian formulation of Kaplan’s 5-dim. domain wall fermion
defined with the Wilson term.[60, 61] It was first examined by Creutz and Horvath[121]
to study the chiral property of the massless lattice fermions realized as Shockley surface
states, and later by X.-L. Qi, Hughes and S.H. Zhang[122] as a 4D extension of the 2D
Integer Quantum Hall Effect (IQHE).

The insulator is in topological phase for m > 0 and in trivial phase for m < 0. On
the 3D boundary of the domain wall due to the change of the mass parameter from m > 0

to m < 0, there appear ⌫(2 Z) copies of two-component (right-handed) Weyl fermions at
low energy |pl| ⌧ 0 (l = 1, 2, 3) assuming the thermodynamic limit of the 4D space. These
Weyl fermions are protected from acquiring mass by the topological index defined by the
second Chern character of the U(1) bundle associated with the connection

P

k  
†
k� k and

the time reversal symmetry. This gapless boundary phase can be described by the low
energy effective Hamiltonian,

Ĥ(bd)
3D =

⌫
X

i=1

Z

d3x  ̂i(x)
†
n

3
X

l=1

(�i)�l@l
o

 ̂i(x). (6.72)

The generator of the time-reversal symmetry transformation acting the effective Hamilto-
nian is given as T = K (i�2).

For the case ⌫ = 16, the authors have proposed the boundary interaction terms to fully
gap the boundary phase with the sixteen massless Weyl fermions, or the bulk interaction
terms to be able to interpolate between the topological and trivial phases without closing
the mass gap nor breaking the symmetries. In fact, the boundary/bulk interaction terms
introduced in these works are the SO(10)-invariant quartic (or Yukawa) term

Ô(x) =
1

2

⇥

 ̂(x)TCDŤ
a ̂(x)�  ̂(x)†CDŤ

a† ̂(x)†T
⇤2 (6.73)

assuming that the sixteen massless Weyl fermions are in the 16 of SO(10) and its descendants
with reduced symmetries, SO(7)⇥SO(3) and SO(6)⇥SO(4)(=SU(4)⇥SU(2)⇥SU(2)). It is
quite interesting to see that these are essentially identical to the SO(10)-invariant quartic
terms of the ’t Hooft vertices, T+(x), T̄+(x),

OT(x) = T+(x) + T̄+(x) (6.74)

=
1

23
⇥

 T(x)CDT
a (x)

⇤2
+

1

23
⇥

 ̄(x)CDT
a† ̄(x)T

⇤2
, (6.75)

and their descendants.
Wen, in particular, have considered the SO(10) chiral gauge theory as a target theory[123].

The author have proposed to use the following SO(10)-invariant boundary interaction terms,

Ĥ3D,10 =

Z

d3x
n

 ̂(x)T i�2Ť
a�a(x) ̂(x)

� ̂(x)†i�2Ťa†�a(x) ̂(x)† +H[�a(x)]
o

, (6.76)
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a† ̂(x)†T
⇤2 (6.73)

assuming that the sixteen massless Weyl fermions are in the 16 of SO(10) and its descendants
with reduced symmetries, SO(7)⇥SO(3) and SO(6)⇥SO(4)(=SU(4)⇥SU(2)⇥SU(2)). It is
quite interesting to see that these are essentially identical to the SO(10)-invariant quartic
terms of the ’t Hooft vertices, T+(x), T̄+(x),

OT(x) = T+(x) + T̄+(x) (6.74)

=
1

23
⇥

 T(x)CDT
a (x)

⇤2
+

1

23
⇥

 ̄(x)CDT
a† ̄(x)T

⇤2
, (6.75)

and their descendants.
Wen, in particular, have considered the SO(10) chiral gauge theory as a target theory[123].

The author have proposed to use the following SO(10)-invariant boundary interaction terms,

Ĥ3D,10 =
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 ̂(x)T i�2Ť
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T = K (iI⌦�2), where K stands for complex conjugation. This 4D quantum lattice fermion
model is nothing but the Hamiltonian formulation of Kaplan’s 5-dim. domain wall fermion
defined with the Wilson term.[60, 61] It was first examined by Creutz and Horvath[121]
to study the chiral property of the massless lattice fermions realized as Shockley surface
states, and later by X.-L. Qi, Hughes and S.H. Zhang[122] as a 4D extension of the 2D
Integer Quantum Hall Effect (IQHE).

The insulator is in topological phase for m > 0 and in trivial phase for m < 0. On
the 3D boundary of the domain wall due to the change of the mass parameter from m > 0

to m < 0, there appear ⌫(2 Z) copies of two-component (right-handed) Weyl fermions at
low energy |pl| ⌧ 0 (l = 1, 2, 3) assuming the thermodynamic limit of the 4D space. These
Weyl fermions are protected from acquiring mass by the topological index defined by the
second Chern character of the U(1) bundle associated with the connection

P

k  
†
k� k and

the time reversal symmetry. This gapless boundary phase can be described by the low
energy effective Hamiltonian,

Ĥ(bd)
3D =

⌫
X

i=1

Z

d3x  ̂i(x)
†
n

3
X

l=1

(�i)�l@l
o

 ̂i(x). (6.72)

The generator of the time-reversal symmetry transformation acting the effective Hamilto-
nian is given as T = K (i�2).

For the case ⌫ = 16, the authors have proposed the boundary interaction terms to fully
gap the boundary phase with the sixteen massless Weyl fermions, or the bulk interaction
terms to be able to interpolate between the topological and trivial phases without closing
the mass gap nor breaking the symmetries. In fact, the boundary/bulk interaction terms
introduced in these works are the SO(10)-invariant quartic (or Yukawa) term
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⇥
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⇤2 (6.73)
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� ̂(x)†i�2Ťa†�a(x) ̂(x)† +H[�a(x)]
o

, (6.76)

– 52 –

D=4 IQHE w/ TRS  [Wen(2013),  You-BenTov-Xu(2014), 
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Ĥ(bd)
3D =

⌫
X

i=1

Z

d3x  ̂i(x)
†
n

3
X

l=1

(�i)�l@l
o

 ̂i(x). (6.72)

The generator of the time-reversal symmetry transformation acting the effective Hamilto-
nian is given as T = K (i�2).

For the case ⌫ = 16, the authors have proposed the boundary interaction terms to fully
gap the boundary phase with the sixteen massless Weyl fermions, or the bulk interaction
terms to be able to interpolate between the topological and trivial phases without closing
the mass gap nor breaking the symmetries. In fact, the boundary/bulk interaction terms
introduced in these works are the SO(10)-invariant quartic (or Yukawa) term
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A gauge invariant path-integral measure for 
the overlap Weyl  fermions in 16 of SO(10)

2.3 Topology of the SO(10) lattice gauge fields

The admissibility condition ensures that the overlap Dirac operator[23, 25] is a smooth and
local function of the gauge field [27]. Moreover, the Ginsparg-Wilson relation implies the
index theorem

IndexD = Tr�5(1�D). (2.21)

Then, through the lattice Dirac operator D, it is possible to define a topological charge of
the gauge fields [24, 29, 30, 32, 50]: for the admissible SO(10) gauge fields, one has

Q = �1

8
Tr�5(1�D) = �1

8

X

x2�
tr {�5(1�D)} (x, x), (2.22)

where D(x, y) is the kernel of the lattice Dirac operator D. (Our convention for the gamma
matrices is such that �0�1�2�3�5 = 1.) Then the admissible SO(10) gauge fields can be
classified by the topological numbers Q.6 We denote the space of the admissible SO(10)
gauge fields with a given topological charge Q by U[Q].

3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using the whole components of the original
Dirac field  

↵s

(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a

+(x)V
a

+(x), V a

+(x) =  +(x)
Ti�5CD

Ta +(x), (3.2)

T̄+(x) =
1

2
V̄ a

+(x)V̄
a

+(x), V̄ a

+(x) =  ̄+(x)i�5CD

Ta ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d 
↵s

(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄
↵s

(x), (3.5)

6 Strictly speaking, the complete topological classification of the space of admissible SO(10) gauge fields
is not known yet. We assume that it is classified with Q as in the continuum theory.
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and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CD

T aEa(x)P̂+, not P̂ T

+{i�5C
d

P+T aEa(x)}P̂+, appears for the field  +(x),
while P�i�5CD

T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S

W

[ �, ̄�]+
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.10)

In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:

D[E] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dEa(x)�(
q

Eb(x)Eb(x)� 1) (3.11)

D[Ē] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dĒa(x)�(
q

Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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2.3 Topology of the SO(10) lattice gauge fields

The admissibility condition ensures that the overlap Dirac operator[23, 25] is a smooth and
local function of the gauge field [27]. Moreover, the Ginsparg-Wilson relation implies the
index theorem

IndexD = Tr�5(1�D). (2.21)

Then, through the lattice Dirac operator D, it is possible to define a topological charge of
the gauge fields [24, 29, 30, 32, 50]: for the admissible SO(10) gauge fields, one has

Q = �1

8
Tr�5(1�D) = �1

8

X

x2�
tr {�5(1�D)} (x, x), (2.22)

where D(x, y) is the kernel of the lattice Dirac operator D. (Our convention for the gamma
matrices is such that �0�1�2�3�5 = 1.) Then the admissible SO(10) gauge fields can be
classified by the topological numbers Q.6 We denote the space of the admissible SO(10)
gauge fields with a given topological charge Q by U[Q].

3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using the whole components of the original
Dirac field  

↵s

(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a

+(x)V
a

+(x), V a

+(x) =  +(x)
Ti�5CD

Ta +(x), (3.2)

T̄+(x) =
1

2
V̄ a

+(x)V̄
a

+(x), V̄ a

+(x) =  ̄+(x)i�5CD

Ta ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d 
↵s

(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄
↵s

(x), (3.5)

6 Strictly speaking, the complete topological classification of the space of admissible SO(10) gauge fields
is not known yet. We assume that it is classified with Q as in the continuum theory.
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We also introduce the overlap Dirac operator D acting on  (x) as

D =
1

2

⇣

1 +X/
p
X†X

⌘

, X = �µ
1

2

�

rµ �r†
µ

�

+
1

2
rµr†

µ �m0, (2.9)

where rµ is the covariant difference operator which acts on  (x) as rµ (x) = U(x, µ) (x+

µ̂)� (x) and 0 < m0 < 2. Under the admissibility condition, D is a local, gauge-covariant
lattice Dirac operator. It also satisfies the Ginsparg-Wilson relation,

�5D +D�̂5 = 0, (2.10)

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�↵ �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�↵ ̄�(x) = �i↵  ̄�(x)

⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is, as we will see below, broken due to the non-trivial trans-
formation property of the Weyl field path-integral measure and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a
�(x)V

a
�(x), V a

�(x) =  �(x)
Ti�5CDT

a �(x), (2.17)

T̄�(x) =
1

2
V̄ a
�(x)V̄

a
�(x), V̄ a

�(x) =  ̄�(x)i�5CDT
a† ̄�(x)

T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
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Ta = C�a ; TaT = Ta (B.16)

T1 = i(�i)(+i)(�i)(+i)(�i) ⌧3 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T2 = i(+1)(+i)(�i)(+i)(�i) I ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T3 = i(+i)(+i)(�i)(+i)(�i) ⌧1 ⇥ ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T4 = i(+1)(�i)(�i)(+i)(�i) ⌧2 ⇥ ⌧1 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T5 = i(+1)(+1)(�i)(+i)(�i) ⌧2 ⇥ I ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3,

T6 = i(+1)(+1)(+1)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ I ⇥ ⌧2 ⇥ ⌧3,

T7 = i(+1)(+1)(+i)(+i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧1 ⇥ ⌧2 ⇥ ⌧3,

T8 = i(+1)(+1)(+1)(�i)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧1 ⇥ ⌧3,

T9 = i(+1)(+1)(+1)(+1)(�i) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ I ⇥ ⌧3,

T10 = i(+1)(+1)(+1)(+1)(+1) ⌧2 ⇥ ⌧3 ⇥ ⌧2 ⇥ ⌧3 ⇥ I

The reduced Clliford algebra of 2[9/2]

�a0 = �̌a0 ⇥ ⌧1 (a0 = 1, · · · , 9), (B.17)
C = Č⇥ ⌧2. (B.18)

The reduced T matrices

Ta0 = Ťa0 ⇥ ⌧3, (B.19)
T10 = Ť10 ⇥ I = Č⇥ I. (B.20)

T10†Ta0 = �10�a0 = �i �̌a0 ⇥ ⌧3. (B.21)

C Chiral basis in the weak coupling limit

H = �5(Dw �m0) =
1

L4

X

p

eip(x�y)

 

b(p)I c(p)

c†(p) �b(p)I

!

, (C.1)

where

b(p) =
�

X

µ

(1� cos pµ)�m0

 

, (C.2)

c(p) = I{i sin p0}�
X

k

�k sin pk. (C.3)
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3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using all the components of the original
Dirac field  ↵s(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a
+(x)V

a
+(x), V a

+(x) =
1

2
 +(x)

Ti�5CDT
a +(x), (3.2)

T̄+(x) =
1

2
V̄ a
+(x)V̄

a
+(x), V̄ a

+(x) =
1

2
 ̄+(x)i�5CDT

a ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ↵s(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄↵s(x), (3.5)

and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CDT
aEa(x)P̂+, not P̂ T

+{i�5CDP+T
aEa(x)}P̂+, appears for the field  +(x),

while P�i�5CDT
aĒa(x)P�

T = P�{i�5CDP�
TTaĒa(x)}P�

T for the anti-field  ̄+(x).8 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w
= 4!

1
X

k=0

wk

k!(k + 4)!
, (3.6)

8This point is crucial for our proposal. If one includes the factor P+ in the definition of the ’t Hooft
operator for the field  +(x), one has P̂

T

+ i�5CD

P+T
a

E

a(x)P̂+ = (1�D)T i�5CD

P+T
a

E

a(x)(1 � D). The
factor (1�D) projects out the modes with the momenta ⇡(A)

µ

(A = 1, · · · , 15), where ⇡(1) ⌘ (⇡, 0, 0, 0),⇡(2) ⌘
(0,⇡, 0, 0), · · · ,⇡(15) ⌘ (⇡,⇡,⇡,⇡). This type of the operator cannot saturate the right-handed part of the
measure completely. Therefore it is not acceptable for our purpose. This point will be discussed later in
relation to other formulations. See section 6.
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cf.

ψ+(x) = P̂+ψ(x) ψ̄(x)+ = ψ̄(x)P−

ū v̄ u v 8Q

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

Khop = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(z−P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

−λ
[
ψ+(x)

T iγ5CDT
aψ+(x) + ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]
Ea(x)

}

1



The saturation of the “right-handed” measures due to ’t Hooft vertices

Defined with all components of the Dirac field  (x),  ̄(x), the Weyl field measure is
manifestly invariant under the SO(10) gauge transformation. It also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. As to the global U(1) fermion symmetry of the left-handed field  �(x),
 ̄�(x), the fermionic measure transforms as

�
↵

D[ �]D[ ̄�] = �i
X

x2�
↵(x)tr{P̂� � P+}(x, x)⇥D[ �]D[ ̄�] (3.13)

with a local parameter ↵(x), and it gives rise to the non-trivial chiral anomaly in the U(1)
Ward-Takahashi relation. One may consider the similar global U(1) fermion symmetry of
the right-handed field  +(x),  ̄+(x), but it is broken explicitly by the ’t Hooft vertexes,
T+(x) and T̄+(x), down to Z4 ⇥ Z4, one Z4 for the field  +(x) and the other Z4 for the
anti-field  ̄+(x). The reason for the two independent Z4 is that the bilinear kinetic term of
the right-handed field,

P

x2⇤  ̄+(x)D +(x), is not introduced here. Conversely, this Z4 ⇥
Z4 symmetry prohibits such bilinear terms of the right-handed field to appear, as long as
it is not broken spontaneously.

3.2 The Weyl field measure in terms of chiral basis

In the definition of the Weyl field measure, eqs. (3.4) and (3.5), the part of the Dirac
field measure, D[ ]D[ ̄], may be formulated in chiral components by using the chiral bases
defined with the chiral projectors P̂± and P±. In the given topological sector U[Q], it reads

D
?

[ �]D?

[ ̄�]D?

[ +]D?

[ ̄+] =

n/2+8Q
Y

j=1

dc
j

n/2
Y

k=1

dc̄
k

n/2�8Q
Y

j=1

db
j

n/2
Y

k=1

db̄
k

, (3.14)

where n = dim⇤ ⇥ 4 ⇥ 16 and {c
j

, c̄
k

} and {b
j

, b̄
k

} are the Grassmann coefficients in the
expansion of the chiral component fields,

 �(x) =
X

j

v
j

(x)c
j

,  ̄�(x) =
X

k

c̄
k

v̄
k

(x), (3.15)

 +(x) =
X

j

u
j

(x)b
j

,  ̄+(x) =
X

k

b̄
k

ū
k

(x), (3.16)

in terms of the chiral orthonormal bases defined by

P+ ⌦ P̂�vi(x) = v
i

(x) (i = 1, · · · , n/2 + 8Q); (v
i

, v
j

) = �
ij

, (3.17)
v̄
k

(x)P+ ⌦ P+ = v̄
k

(x) (k = 1, · · · , n/2); (v̄
k

, v̄
l

) = �
kl

. (3.18)

P+ ⌦ P̂+ui(x) = u
i

(x) (i = 1, · · · , n/2� 8Q); (u
i

, u
j

) = �
ij

, (3.19)
ū
k

(x)P� ⌦ P+ = ū
k

(x) (k = 1, · · · , n/2); (ū
k

, ū
l

) = �
kl

. (3.20)

The basis vectors u
i

(x) and v
i

(x) depend on the gauge field through the chiral projectors
P̂±, while the basis vectors ū

k

(x) and v̄
k

(x) can be chosen so that they are independent
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eΓW [U ] ≡
∫

D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−]D⋆[ψ+]D⋆[ψ̄+]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−] e
−SW [ψ−,ψ̄−] ×

∫
D⋆[ψ+]

∏

x

F [T+(x)] ×
∫

D⋆[ψ̄+]
∏

x

F [T̄+(x)]

D⋆[ψ+] ≡
∏

j

dbj

D⋆[ψ̄+] ≡
∏

k

db̄k =
∏

x

4∏

α=3

16∏

s=1

dψ̄αs(x)

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

vj(x) → ṽj(x) = vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dc̃j =
∏

j

dcj × detQ[U ]

vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

Lη ≡ −i
∑

x

v†j(x)δηvj(x) ⇒ {vj(x)}

1

eΓW [U ] ≡
∫

D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−]D⋆[ψ+]D⋆[ψ̄+]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−] e
−SW [ψ−,ψ̄−] ×

∫
D⋆[ψ+]

∏

x

F [T+(x)] ×
∫

D⋆[ψ̄+]
∏

x

F [T̄+(x)]

D⋆[ψ+] ≡
∏

j

dbj

D⋆[ψ̄+] ≡
∏

k

db̄k =
∏

x

4∏

α=3

16∏

s=1

dψ̄αs(x)

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

vj(x) → ṽj(x) = vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dc̃j =
∏

j

dcj × detQ[U ]

vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

Lη ≡ −i
∑

x

v†j(x)δηvj(x) ⇒ {vj(x)}

1

∫
D⋆[ψ̄+]

∏

x

F [T̄+(x)] = 1

eΓW [U ] ≡
∫

D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−] e
−SW [ψ−,ψ̄−] ×

∫
D⋆[ψ+]

∏

x

F [T+(x)] ×
∫

D⋆[ψ̄+]
∏

x

F [T̄+(x)]

D⋆[ψ+] ≡
∏

j

dbj

D⋆[ψ̄+] ≡
∏

k

db̄k =
∏

x

4∏

α=3

16∏

s=1

dψ̄αs(x)

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

vj(x) → ṽj(x) = vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dc̃j =
∏

j

dcj × detQ[U ]

vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

Lη ≡ −i
∑

x

v†j(x)δηvj(x) ⇒ {vj(x)}

1

✲ µ

✻

ν

❄
✻

a✈

✡
✡

✡
✡

✡
✡✡✢

xµ = nµa

✲
✻

µ̂

ν̂

ψ(x) (xµ = nµa, nµ ∈ Z)

U!(x)

Uµ(x)
+

16  has 32-components at a site !

the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)

gives a certain non-zero functional of the admissible link field U(x, µ).
The pfaffian of the second matrix eq. (3.26) turns out to be unity. This is because the

matrix is represented as

(ūi�5CD

Ta

†ĒaūT)
kl

= i ✏
��

0�
xx

0
�

Ta

†P+

�

tt

0Ē
a(x0) (3.27)

for k = {x,�, t} and l = {x0,�0, t0}, in the bases �5 = diag(1, 1,�1,�1), ū
k

(x)
↵s

=

�
xx

0�
↵�+2�st for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16}. Then the pfaffian of the matrix

is evaluated as

pf
�

ūi�5CD

TaĒaūT
�

=
Y

x

det
�

P� + P+iT
a

†Ēa(x)
�

=
Y

x

det
�

i Ťa†Ēa(x)
�

=
Y

x

det
�

iČ†[E10(x) + i�̌a

0
Ēa

0
(x)]

�

= 1. (3.28)

Note that det(iČ†) and det
�

[E10(x) + i�̌a

0
Ēa

0
(x)]

�

are both equal to +1 and the latter, in
particular, is independent of Ēa(x). Then the path-integration over Ēa(x) simply gives

Z

D[Ē] pf
�

ū i�5CD

Ta

†ĒaūT
�

= 1. (3.29)

Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads

1 =

Z

D
?

[ ̄+]F
�

T̄+(x)[ ̄+]
�

=

Z

Y

x2⇤

4
Y

↵=3

16
Y

s=1

d ̄
↵s

(x)
Y

x2⇤

4!

8!12!

⇢

1

2
 ̄(x)P�i�5CD

Ta ̄(x)T  ̄(x)P�i�5CD

Ta ̄(x)T
�8

(3.30)

and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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the square matrix of the fixed size n/2. Therefore these pfaffians do not vanish identically
in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)
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xx

0
�

Ta

†P+

�

tt

0Ē
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�
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�
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�

iČ†[E10(x) + i�̌a

0
Ēa
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Note that det(iČ†) and det
�
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0
Ēa

0
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�

are both equal to +1 and the latter, in
particular, is independent of Ēa(x). Then the path-integration over Ēa(x) simply gives
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ū i�5CD
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†ĒaūT
�
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1 =

Z

D
?

[ ̄+]F
�

T̄+(x)[ ̄+]
�

=

Z

Y

x2⇤

4
Y

↵=3

16
Y

s=1

d ̄
↵s

(x)
Y

x2⇤

4!
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⇢
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have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
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in general and the path-integration of the pfaffians over the spin fields Ea(x) and Ēa(x)

gives a certain non-zero functional of the admissible link field U(x, µ).
The pfaffian of the second matrix eq. (3.26) turns out to be unity. This is because the

matrix is represented as

(ūi�5CD

Ta

†ĒaūT)
kl

= i ✏
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xx
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Ta
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for k = {x,�, t} and l = {x0,�0, t0}, in the bases �5 = diag(1, 1,�1,�1), ū
k

(x)
↵s

=

�
xx

0�
↵�+2�st for k = {x0 2 ⇤;� = 1, 2; t = 1, · · · , 16}. Then the pfaffian of the matrix
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�
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0
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0
(x)]

�

= 1. (3.28)

Note that det(iČ†) and det
�

[E10(x) + i�̌a

0
Ēa

0
(x)]

�

are both equal to +1 and the latter, in
particular, is independent of Ēa(x). Then the path-integration over Ēa(x) simply gives

Z

D[Ē] pf
�

ū i�5CD

Ta

†ĒaūT
�

= 1. (3.29)

Thus the measure of the right-handed anti-field, D
?

[ ̄+], is indeed saturated completely by
inserting the product of the ’t Hooft vertex T̄+(x)[ ̄+]. This is actually the known result
which was first shown in [81], where the effects of the generalized Wilson-terms were studied
in the strong coupling limit. In fact, our result reads
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⇢
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 ̄(x)P�i�5CD

Ta ̄(x)T  ̄(x)P�i�5CD

Ta ̄(x)T
�8

(3.30)

and it provides the explicit normalization for the constant in the result there[81].
The pfaffian of the first matrix eq. (3.25), on the other hand, is a complex number in

general, which depends on the spin field Ea(x) as well as the link field U(x, µ). We do not
have a rigorous proof that the path-integration of the pfaffian over Ea(x) is non-zero for any
admissible link fields. But there are typical examples of link field configurations where one
can argue that it is indeed the case. This is because the complex phase of the pfaffian does
not actually depend on the spin field Ea(x) for rather genneric spin-field configurations as
long as the link field U(x, µ) is within the Spin(9) subgroup. Those include the case in the
weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, and the
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†ĒaūT
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†ĒaūT)
kl

= i ✏
��

0�
xx

0
�

Ta

†P+

�

tt

0Ē
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for all topological sectors

= 1

∫
D⋆[ψ̄+]

∏

x

F [T̄+(x)] = 1

eΓW [U ] ≡
∫

D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−]D⋆[ψ+]D⋆[ψ̄+]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)] e
−SW [ψ−,ψ̄−]

≡
∫

D⋆[ψ−]D⋆[ψ̄−] e
−SW [ψ−,ψ̄−] ×

∫
D⋆[ψ+]

∏

x

F [T+(x)] ×
∫

D⋆[ψ̄+]
∏

x

F [T̄+(x)]

D⋆[ψ+] ≡
∏

j

dbj

D⋆[ψ̄+] ≡
∏

k

db̄k =
∏

x

4∏

α=3

16∏

s=1

dψ̄αs(x)

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

vj(x) → ṽj(x) = vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dc̃j =
∏

j

dcj × detQ[U ]

vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

1

∫
D⋆[ψ̄+]

∏

x

F [T̄+(x)] = 1

∫
D⋆[ψ+]

∏

x

F [T+(x)] = c[U ] ( ̸= 0)

∫
D⋆[ψ+]

∏

x

F [T+(x)] =

∫
D[Ea] pf(uT iγ5CDT

aEau) = c[U ] ( ̸= 0)

∫
D⋆[ψ+]

∏

x

F [T+(x)] =

∫
D[Ea] pf(uT iγ5CDT

aEau) ( ̸= 0)

∫
D⋆[ψ+]

∏

x

F [T+(x)] =

∫
D[Ea] pf(uT iγ5CDT

aEau) ̸= 0
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∏

x

F [T+(x)]
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j

dcj
∏
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dc̄k

1

Ea(x)Ea(x) = 1

(Ea(x)Ea(x) = 1)

Q = odd integer

Q = 0

τa
′

∫
D[E ′] pf(uT iγ5CDτ

a′Ea′u) = 0 for ∃U ∈ SU(2)

eΓW [U ] = det(v̄Dv)×
∫

D[E ′] pf(uT iγ5CDτ
a′Ea′u)

(uT iγ5CDτ
a′Ea′u)ij

(i, j = n/2, · · · , Q)

Lη = Re{Tη}

⟨1⟩E
(
=

∫
D⋆[ψ+]

∏

x

F [T+(x)] =

∫
D[E] pf(uT iγ5CDT

aEau)
)

∫
D⋆[ψ+]

∏

x

F [T+(x)] =

∫
D[E] pf(uT iγ5CDT

aEau)

⟨1⟩E

1

[Eichten-Preskill(1986)]



connected. Then any configuration of the spin field Ea(x) can be reached from the con-
stant configuration Ea

0 (x) = �a,10 through a continuous deformation. Since it is unity for
the constant configuration, the half product

Q

n/4�4Q
i=1 �

i

should be positive for a given con-
figuration Ea(x) as long as there exists a path to Ea(x) from Ea

0 (x)(= �a,10) such that
the half product never vanish along the path. On the other hand, for the spin configura-
tions with which the half product is zero, a certain subset in the eigenvalue spectrum of
(u† i�10�aEau) are zero. Along the path which goes though such a spin configuration, the
eigenvalue spectrum flow and the subset of would-be zeros pass the origin in the complex
plane. Then the half product can change discontinuously in its signature(phase). Since the
signature(phase) stays constant as far as the half product is nonzero, this could happen if
and only if the subspace of the configurations with the vanishing determinant, which we de-
note with V0

E

, can divide the entire space of the spin configurations V
E

into the subspaces
which are disconnected each other. And the divided disconnected subspaces of V

E

\ V0
E

should be classified by the values of the signature(phase) of the half product. In this re-
spect, however, one notes that ⇡

k

(S9) = 0 (k < 9) and any topological obstructions and the
associated topological terms are not known in the continuum limit for the SO(10)-vector
spin field Ea(x) on the four-dimensional spacetime S4 or T 4. In particular, any topolog-
ically non-trivial configurations/defects of the SO(10)-vector spin field and the associated
fermionic massless excitations are not known in the continuum limit. Then it seems rea-
sonable to assume that V0

E

consists of lattice artifacts and in particular it is given solely by
the subspace of the configurations Ea

⇤ (x), which we denote with V⇤
E

. If one assumes that
V0
E

= V⇤
E

, the multiplicity of the zero eigenvalues are 64 and the would-be zero eigenvalues
have the approximate structure {(�

i

,�
i

,�⇤
i

,�⇤
i

) | i = 1, · · · , 16}. Then the signature(phase)
of the half product

Q

n/4�4Q
i=1 �

i

does not change in passing V0
E

(= V⇤
E

). Therefore the pfaffian
pf(uT i�5CD

TaEau) is positive semi-definite.
It then follows that the path-integration of the pfaffian is real and positive in the weak

gauge-coupling limit:

⌦

1
↵

E

=

Z

D[Ea] det(uT i�5CD

ŤaEau) > 0 (Q = 0 ; g ! 0). (4.21)

4.3 The case of representative SU(2) link fields of topologically non-trivial
sectors

As for the case of the SU(2) link fields with non-zero topological charges Q 6= 0, we take
the following link field which gives the topological charge Q = 2m01m23 (m01,m23 2 Z):

U(x, µ) = ei✓12(x,µ)⌃
12
, (4.22)

where

✓12(x, 0) =

(

0 (x0 < L� 1)

�F01Lx1 (x0 = L� 1)
, ✓12(x, 1) = F01 x0, (4.23)

✓12(x, 3) =

(

0 (x2 < L� 1)

�F23Lx3 (x2 = L� 1)
, ✓12(x, 4) = F23 x2, (4.24)
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and

F01 =
4⇡m01

L2
, F23 =

4⇡m23

L2
. (4.25)

With this link field, the hermitian Wilson-Dirac operator is diagonalized numerically and
the normalized eigenvectors with the negative eigenvalues are computed to form the chiral
basis {u

j

(x)}. We checked that the number of the eigenvectors is n/2 � 8Q for L = 3, 4

with the periodic b.c. and is consistent with the index theorem.
For the constant configuration of the spin field, Ea

0 (x) = �a,10, (uT i�5CD

TaEa

0u)jk (=

C
jk

) is a unitary matrix and �̃
i

’s are pure complex phases, while
�

u†�10�aEa

0u
�

jk

remains
the unit matrix and �

i

= +1. Then pf(uT i�5CD

TaEa

0u) is a pure complex phase.
For randomly generated spin-field configurations with the lattice sizes up to L =

4, we again checked that the eigenvalue spectra of the matrices
�

uT i�5CD

TaEau
�

and
�

u†�10�aEau
�

have the structures of {(�̃
i

,��̃
i

) | i = 1, · · · , n/4 � 4Q} and {(�
i

,�
i

) | i =

1, · · · , n/4� 4Q}, respectively. All eigenvalues turn out to be non-zero. But there appear
again relatively small eigenvalues for Q < 0, the number of those counts to | � 8Q|. We
found that the complex phase of pf(uT i�5CD

TaEau) stays constant and equal to that of
pf(uT i�5CD

TaEa

0u), while the half product
Q

n/4�4Q
i=1 �

i

stays real-positive. The typical
examples of the eigenvalue spectra are shown in fig. 5 for Q = �2 and L = 4 with the
periodic boundary condition.
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Figure 5. The eigenvalue spectra of the matrices
�

uT i�5CDTaEau
�

and
�

u†�10�aEau
�

with a
randomly generated spin-field configuration for the case of the representative SU(2) link field of
the topological sector with Q = �2. The lattice size is L = 4 and the boundary condition for the
fermion field is periodic.

In this case, the relatively small eigenvalues can be attributed to the chiral zero modes
due to the topologically non-trivial link field. This is because the number of these small
eigenvalues always counts to |� 8Q| consistently with the index theorem.

Based on the analytical results in the previous subsection and the above numerical
observations, we again assume that the half product

Q

n/4�4Q
i=1 �

i

stays real independently of
the spin field Ea(x). In this case the multiplicity of the zero eigenvalues should be |�8Q| and
the would-be zero eigenvalues should have the approximate structure {(�

i

,�
i

,�⇤
i

,�⇤
i

) | i =
1, · · · , |�2Q|}, and then the signature(phase) of the half product does not change. Therefore
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2.3 Topology of the SO(10) lattice gauge fields

The admissibility condition ensures that the overlap Dirac operator[23, 25] is a smooth and
local function of the gauge field [27]. Moreover, the Ginsparg-Wilson relation implies the
index theorem

IndexD = Tr�5(1�D). (2.21)

Then, through the lattice Dirac operator D, it is possible to define a topological charge of
the gauge fields [24, 29, 30, 32, 50]: for the admissible SO(10) gauge fields, one has

Q = �1

8
Tr�5(1�D) = �1

8

X

x2�
tr {�5(1�D)} (x, x), (2.22)

where D(x, y) is the kernel of the lattice Dirac operator D. (Our convention for the gamma
matrices is such that �0�1�2�3�5 = 1.) Then the admissible SO(10) gauge fields can be
classified by the topological numbers Q.6 We denote the space of the admissible SO(10)
gauge fields with a given topological charge Q by U[Q].

3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using the whole components of the original
Dirac field  

↵s

(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a

+(x)V
a

+(x), V a

+(x) =  +(x)
Ti�5CD

Ta +(x), (3.2)

T̄+(x) =
1

2
V̄ a

+(x)V̄
a

+(x), V̄ a

+(x) =  ̄+(x)i�5CD

Ta ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d 
↵s

(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄
↵s

(x), (3.5)

6 Strictly speaking, the complete topological classification of the space of admissible SO(10) gauge fields
is not known yet. We assume that it is classified with Q as in the continuum theory.
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More on the saturation of the Right-handed measures 
due to ’t Hooft vertices (cont’d)

imlpies that one can choose the basis vectors {uj(x)} so that they satisfy the relation

uj(x)
T i�5CD C�10 = Cjk uk(x)†, (4.5)

C�1 = C† = CT = � C. (4.6)

C is then given by the expression Cjk = (uT i�5CD C�10u)jk and the matrix eq. (3.26) can
be represented as

(uT i�5CDT
aEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CDT
aEau) appear in pair with the opposite

signatures as {(�̃i,��̃i) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�i,�i) | i = 1, · · · , n/4� 4Q}.

Then the pfaffian of the matrix (uT i�5CDT
aEau) can be written as

pf(uT i�5CDT
aEau) = pf(uT i�5CD C�10u)⇥

n/4�4Q
Y

i=1

�i. (4.8)

Since the space of the spin field configurations, which we denote with VE , is the direct
product of multiple S9, VE = S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �i = 1 (i = 1, · · · , n/4 � 4Q). And this fixes the signature of the above formula
(as long as the pfaffian is not vanishing).

The half product of the eigenvalues of (u†�10�aEau),
Qn/4�4Q

i=1 �i in eq. (4.8), is inde-
pendent of the choice of the basis vectors. Its square or the full product can be expressed
in the basis-independent manner as folows,

n/4�4Q
Y

i=1

�2
i = det(u†�10�aEau)

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

. (4.9)

4.2 The case of trivial link field in the weak gauge-coupling limit

In the weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, one
can choose the basis vectors {uj(x)} as

uj(x) =
1p
L4

eipx u↵(p,�) �s,t (j = {p,�, t}), (4.10)

where {u↵(p,�)} are the four-spinor eigenvectors of the free hermitian Wilson-Dirac opera-
tor Hw = �5(Dw �m0) (0 < m0 < 2) with the negative eigenvalues in the plane-wave basis
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be represented as
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This implies that while the eigenvalues of (uT i�5C
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TaEau) appear in pair with the opposite
signatures as {(�̃

i

,��̃
i

) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�

i

,�
i

) | i = 1, · · · , n/4� 4Q}.
Then the pfaffian of the matrix (uT i�5C

D

TaEau) can be written as

pf(uT i�5C
D

TaEau) = pf(uT i�5C
D

C�10u)⇥
n/4�4Q
Y

i=1

�
i

. (4.8)

Since the space of the spin field configurations, which we denote with V
E

, is the direct
product of multiple S9, V

E

= S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �

i

= 1 (i = 1, · · · , n/4� 4Q). And this fixes the signature of the above formula.
Moreover the half product

Q

n/4�4Q
i=1 �

i

in eq. (4.8) is real and positive semi-definite for
generic spin field configurations such that the operator

�

�10�aEa+1
�

is not singular. This
follows from the fact that the full product can be expressed as follows,

n/4�4Q
Y

i=1

�2
i

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

= det
⇣

P� + P+

h

1 + �̂5
�10�bEb � 1

�10�bEb + 1

i⌘

⇥ det
⇣

P� + P+

h�10�bEb + 1

2

i⌘

,

(4.9)

where X
E

⌘ 1 + �̂5
�10�b

E

b�1
�10�b

E

b+1
satisfying �̂5X

†
E

�̂5 = X
E

and C0X
E

= X
E

TC0 with C0 =

�5C
D

C�10�̂5, while Y
E

⌘ �10�b

E

b+1
2 satisfying (C�10)Y

E

= Y
E

T (C�10). Since both X
E

and
Y
E

have the eigenvalue spectra of the structure {(�̌
i

, �̌
i

, �̌⇤
i

, �̌⇤
i

)| i = 1, · · · , n/8� 2Q}, their
determinants are real and positive semi-definite. The full product is then real and positive
semi-definite, and the half product is real with a definite signature independently of the
spin field configurations. That signature can be fixed to be positive from the case of the
constant configuration, Ea

0 (x).
Thus the complex phase of the pfaffian is independent of the spin field Ea(x),

�
E

Im
�

ln pf
�

uT i�5C
D

TaEau
� 

= 0, (4.10)

for such generic spin field configurations (as long as the pfaffian is not vanishing).
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as long as             the link field               is in SO(9) subgroup            

the chiral determinant det(v̄Dv) when the anomaly cancellation condition is fulfilled. The
variation of the integral of pfaffian is evaluated as

�
⌘

ln
�

Z

D[E] pf(uT i�5CD

T aEau)
 

=
X

j

(u
j

, �
⌘

u
j

) +
⌦

Tr{(uT i�5CD

T aEa�
⌘

P̂+u)(u
T i�5CD

T aEau)�1}
↵

E

�⌦

1
↵

E

=
X

j

(u
j

, �
⌘

u
j

)� iT
⌘

. (3.80)

The first term in the r.h.s. is followed from the property of the pfaffian as pf{QTAQ} =

pfA⇥ detQ where Q is unitary. It sums up with the term
P

j

(v
j

, �
⌘

v
j

)(= �iL
⌘

) from the
variation of chiral determinant det(v̄Dv) to zero, because of the condition eq. (3.21). Thus
the gauge-variation of the integral of pfaffian leads to the result eq. (3.75).9

4 More on the saturation of the fermion measure by ’t Hooft vertices

As discussed in the previous section, the pfaffian of the matrix eq. (3.25) is in general a
complex number which depends on the spin field Ea(x) as well as the link field U(x, µ). And
we do not have yet a rigorous proof that the path-integration of the pfaffian over Ea(x),

⌦

1
↵

E

=

Z

D[E] pf(uT i�5CD

T aEau) , (4.1)

is non-zero for any admissible link fields. But there are typical examples where one can
argue that it is indeed the case. Those include the case in the weak gauge-coupling limit
where the link variables are set to unity, U(x, µ) = 1, and the cases of the SU(2) link
fields with non-zero topological charges Q( 6= 0), which represent the non-trivial topological
sectors U[Q]. We will examine these cases in detail.

4.1 Property of the functional pfaffian for the link fields in Spin(9) subgroup

For this purpose, let us assume that the link field U(x, µ) is in the SO(9) subgroup and
commutes with �10,

⇥

�10, U(x, µ)
⇤

= 0 (4.2)

and, accordingly,

�10 P̂+[U ]�10 = P̂+[U ]. (4.3)

Then the charge-conjugation relation,

C�1(�5CD

)�1 P̂+[U ]T (�5CD

)C = P̂+[U ], (4.4)

9If one makes the other choice for F (w) as F (w) = ew =
P1

k=0
w

k

k!
, the inte-

gral of pfaffian
R
D[E] pf(uT

i�5CD

T

a

E

a

u) is replaced by the hyper-pfaffian, hpfA, of the
rank-four complete anti-symmetric tensor A

ijkl

⌘ T

ijkl

+ T

iklj

+ T

iljk

where T

ijkl

=P
x

(1/2)uT

i

(x)i�5CD

T

a

u

j

(x)uT

k

(x)i�5CD

T

a

u

l

(x). It can also reproduce the gauge anomaly term. We
wonder if it is possible to interpret these quantities from the point of view of topological field theory.

– 19 –

imlpies that one can choose the basis vectors {u
j

(x)} so that they satisfy the relation

u
j

(x)T i�5C
D

C�10 = C
jk

u
k

(x)†, (4.5)
C�1 = C† = CT = � C. (4.6)

C is then given by the expression C
jk

= (uT i�5CD

C�10u)
jk

and the matrix eq. (3.25) can
be represented as

(uT i�5CD

TaEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CD

TaEau) appear in pair with the opposite
signatures as {(�̃

i

,��̃
i

) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�

i

,�
i

) | i = 1, · · · , n/4� 4Q}.
Then the pfaffian of the matrix (uT i�5C

D

TaEau) can be written as

pf(uT i�5C
D

TaEau) = pf(uT i�5C
D

C�10u)⇥
n/4�4Q
Y

i=1

�
i

. (4.8)

Since the space of the spin field configurations, which we denote with V
E

, is the direct
product of multiple S9, V

E

= S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �

i

= 1 (i = 1, · · · , n/4� 4Q). And this fixes the signature of the above formula.
Moreover the half product

Q

n/4�4Q
i=1 �

i

in eq. (4.8) is real and positive semi-definite for
generic spin field configurations such that the operator

�

�10�aEa+1
�

is not singular. This
follows from the fact that the full product can be expressed as follows,

n/4�4Q
Y

i=1

�2
i

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

= det
⇣

P� + P+

h

1 + �̂5
�10�bEb � 1

�10�bEb + 1

i⌘

⇥ det
⇣

P� + P+

h�10�bEb + 1

2

i⌘

,

(4.9)

where X
E

⌘ 1 + �̂5
�10�b

E

b�1
�10�b

E

b+1
satisfying �̂5X

†
E

�̂5 = X
E

and C0X
E

= X
E

TC0 with C0 =

�5CD

C�10�̂5, while Y
E

⌘ �10�b

E

b+1
2 satisfying (C�10)Y

E

= Y
E

T (C�10). Since both X
E

and
Y
E

have the eigenvalue spectra of the structure {(�̌
i

, �̌
i

, �̌⇤
i

, �̌⇤
i

)| i = 1, · · · , n/8� 2Q}, their
determinants are real and positive semi-definite. The full product is then real and positive
semi-definite, and the half product is real with a definite signature independently of the
spin field configurations. That signature can be fixed to be positive from the case of the
constant configuration, Ea

0 (x).
Thus the complex phase of the pfaffian is independent of the spin field Ea(x),

�
E

Im
�

ln pf
�

uT i�5CD

TaEau
� 

= 0, (4.10)

for such generic spin field configurations (as long as the pfaffian is not vanishing).
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imlpies that one can choose the basis vectors {u
j

(x)} so that they satisfy the relation

u
j

(x)T i�5CD

C�10 = C
jk

u
k

(x)†, (4.5)
C�1 = C† = CT = � C. (4.6)

C is then given by the expression C
jk

= (uT i�5CD

C�10u)
jk

and the matrix eq. (3.25) can
be represented as

(uT i�5CD

TaEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CD

TaEau) appear in pair with the opposite
signatures as {(�̃

i

,��̃
i

) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�

i

,�
i

) | i = 1, · · · , n/4� 4Q}.
Then the pfaffian of the matrix (uT i�5CD

TaEau) can be written as

pf(uT i�5CD

TaEau) = pf(uT i�5CD

C�10u)⇥
n/4�4Q
Y

i=1

�
i

. (4.8)

Since the space of the spin field configurations, which we denote with V
E

, is the direct
product of multiple S9, V

E

= S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �

i

= 1 (i = 1, · · · , n/4� 4Q). And this fixes the signature of the above formula.
Moreover the half product

Q

n/4�4Q
i=1 �

i

in eq. (4.8) is real and positive semi-definite for
generic spin field configurations such that the operator

�

�10�aEa+1
�

is not singular. This
follows from the fact that the full product can be expressed as follows,

n/4�4Q
Y

i=1

�2
i

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

= det
⇣

P� + P+

h

1 + �̂5
�10�bEb � 1

�10�bEb + 1

i⌘

⇥ det
⇣

P� + P+

h�10�bEb + 1

2

i⌘

,

(4.9)

where X
E

⌘ 1 + �̂5
�10�b

E

b�1
�10�b

E

b+1
satisfying �̂5X

†
E

�̂5 = X
E

and C0X
E

= X
E

TC0 with C0 =

�5CD

C�10�̂5, while Y
E

⌘ �10�b

E

b+1
2 satisfying (C�10)Y

E

= Y
E

T (C�10). Since both X
E

and
Y
E

have the eigenvalue spectra of the structure {(�̌
i

, �̌
i

, �̌⇤
i

, �̌⇤
i

)| i = 1, · · · , n/8� 2Q}, their
determinants are real and positive semi-definite. The full product is then real and positive
semi-definite, and the half product is real with a definite signature independently of the
spin field configurations. That signature can be fixed to be positive from the case of the
constant configuration, Ea

0 (x).
Thus the complex phase of the pfaffian is independent of the spin field Ea(x),

�
E

Im
�

ln pf
�

uT i�5CD

TaEau
� 

= 0, (4.10)

for such generic spin field configurations (as long as the pfaffian is not vanishing).
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real  &
positive semi-definite            

imlpies that one can choose the basis vectors {uj(x)} so that they satisfy the relation

uj(x)
T i�5CD C�10 = Cjk uk(x)†, (4.5)

C�1 = C† = CT = � C. (4.6)

C is then given by the expression Cjk = (uT i�5CD C�10u)jk and the matrix eq. (3.23) can
be represented as

(uT i�5CDT
aEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CDT
aEau) appear in pair with the opposite

signatures as {(�̃i,��̃i) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�i,�i) | i = 1, · · · , n/4� 4Q}.

Then the pfaffian of the matrix (uT i�5CDT
aEau) can be written as

pf(uT i�5CDT
aEau) = pf(uT i�5CD C�10u)⇥

n/4�4Q
Y

i=1

�i. (4.8)

Since the space of the spin field configurations, which we denote with VE , is the direct
product of multiple S9, VE = S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �i = 1 (i = 1, · · · , n/4 � 4Q). And this fixes the signature of the above formula
(as long as the pfaffian is not vanishing).

The half product of the eigenvalues of (u†�10�aEau),
Qn/4�4Q

i=1 �i in eq. (4.8), is inde-
pendent of the choice of the basis vectors. Its square or the full product can be expressed
in the basis-independent manner as folows,

n/4�4Q
Y

i=1

�2
i = det(u†�10�aEau)

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

. (4.9)

4.2 The case of trivial link field in the weak gauge-coupling limit

In the weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, one
can choose the basis vectors {uj(x)} as

uj(x) =
1p
L4

eipx u↵(p,�) �s,t (j = {p,�, t}), (4.10)

where {u↵(p,�)} are the four-spinor eigenvectors of the free hermitian Wilson-Dirac opera-
tor Hw = �5(Dw �m0) (0 < m0 < 2) with the negative eigenvalues in the plane-wave basis
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imlpies that one can choose the basis vectors {uj(x)} so that they satisfy the relation

uj(x)
T i�5CD C�10 = Cjk uk(x)†, (4.5)

C�1 = C† = CT = � C. (4.6)

C is then given by the expression Cjk = (uT i�5CD C�10u)jk and the matrix eq. (3.23) can
be represented as

(uT i�5CDT
aEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CDT
aEau) appear in pair with the opposite

signatures as {(�̃i,��̃i) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�i,�i) | i = 1, · · · , n/4� 4Q}.

Then the pfaffian of the matrix (uT i�5CDT
aEau) can be written as

pf(uT i�5CDT
aEau) = pf(uT i�5CD C�10u)⇥

n/4�4Q
Y

i=1

�i. (4.8)

Since the space of the spin field configurations, which we denote with VE , is the direct
product of multiple S9, VE = S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �i = 1 (i = 1, · · · , n/4 � 4Q). And this fixes the signature of the above formula
(as long as the pfaffian is not vanishing).

The half product of the eigenvalues of (u†�10�aEau),
Qn/4�4Q

i=1 �i in eq. (4.8), is inde-
pendent of the choice of the basis vectors. Its square or the full product can be expressed
in the basis-independent manner as folows,

n/4�4Q
Y

i=1

�2
i = det(u†�10�aEau)

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

. (4.9)

4.2 The case of trivial link field in the weak gauge-coupling limit

In the weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, one
can choose the basis vectors {uj(x)} as

uj(x) =
1p
L4

eipx u↵(p,�) �s,t (j = {p,�, t}), (4.10)

where {u↵(p,�)} are the four-spinor eigenvectors of the free hermitian Wilson-Dirac opera-
tor Hw = �5(Dw �m0) (0 < m0 < 2) with the negative eigenvalues in the plane-wave basis
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More on the saturation of the Right-handed measures 
due to ’t Hooft vertices (cont’d)
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Figure 2. The eigenvalue spectra of the matrices
�

uT i�5CDTaEau
�

and
�

u†�10�aEau
�

with a
randomly generated spin-field configuration for the case of the trivial link field. The lattice size is
L = 4 and the boundary condition for the fermion field is periodic. For reference, the eigenvalue
spectrum of the matrix (v̄kDvi) is also shown with green x symbol for the same boundary condition.

As to the relatively small eigenvalues observed for the trivial link field and randomly
generated spin-field configurations with the periodic boundary condition, they are at-
tributed to the zero modes with p

µ

= 0 in eqs. (4.11) and (4.12) and their mixing-partners.
This is because the number of these small eigenvalues always counts to 64 (= 32⇥ 2) and
such small eigenvalues do not appear with the anti-periodic boundary condition (for up to
L = 4) as shown in fig. 3. The non-zero components of the zero modes’ vectors are right-

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Figure 3. The eigenvalue spectra of the matrices
�

uT i�5CDTaEau
�

and
�

u†�10�aEau
�

with a
randomly generated spin-field configuration for the case of the trivial link field. The lattice size is
L = 4 and the boundary condition for the fermion field is anti-periodic. For reference, the eigenvalue
spectrum of the matrix (v̄kDvi) is also shown with green x symbol for the same boundary condition.

handed as (�
�

, 0)T (� = 1, 2), while the never-vanishing components of the other modes’
vectors are left-handed. The relevant matrix elements of (u†�10�aEau) for the mixing then
read

� �T

�

c(p0)�
�

0�0,p0+k

�10�aẼa(k)/V
p

2!(p0)(!(p0) + b(p0)), (4.16)

where Ẽa(k) is the fourier-components of Ea(x) defined by Ẽa(k) ⌘
P

x

e�ikxEa(x)
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imlpies that one can choose the basis vectors {uj(x)} so that they satisfy the relation

uj(x)
T i�5CD C�10 = Cjk uk(x)†, (4.5)

C�1 = C† = CT = � C. (4.6)

C is then given by the expression Cjk = (uT i�5CD C�10u)jk and the matrix eq. (3.26) can
be represented as

(uT i�5CDT
aEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CDT
aEau) appear in pair with the opposite

signatures as {(�̃i,��̃i) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�i,�i) | i = 1, · · · , n/4� 4Q}.

Then the pfaffian of the matrix (uT i�5CDT
aEau) can be written as

pf(uT i�5CDT
aEau) = pf(uT i�5CD C�10u)⇥

n/4�4Q
Y

i=1

�i. (4.8)

Since the space of the spin field configurations, which we denote with VE , is the direct
product of multiple S9, VE = S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �i = 1 (i = 1, · · · , n/4 � 4Q). And this fixes the signature of the above formula
(as long as the pfaffian is not vanishing).

The half product of the eigenvalues of (u†�10�aEau),
Qn/4�4Q

i=1 �i in eq. (4.8), is inde-
pendent of the choice of the basis vectors. Its square or the full product can be expressed
in the basis-independent manner as folows,

n/4�4Q
Y

i=1

�2
i = det(u†�10�aEau)

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

. (4.9)

4.2 The case of trivial link field in the weak gauge-coupling limit

In the weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, one
can choose the basis vectors {uj(x)} as

uj(x) =
1p
L4

eipx u↵(p,�) �s,t (j = {p,�, t}), (4.10)

where {u↵(p,�)} are the four-spinor eigenvectors of the free hermitian Wilson-Dirac opera-
tor Hw = �5(Dw �m0) (0 < m0 < 2) with the negative eigenvalues in the plane-wave basis
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given by

u↵(p,�) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

 

�c(p)��

(!(p) + b(p))��

!

/
p

2!(p)(!(p) + b(p)) (p 6= 0)

 

��

0

!

(p = 0)

(4.11)

and

b(p) =
X

µ

(1� cos pµ)�m0, (4.12)

c(p) = I{i sin p0}�
X

k

�k sin pk, (4.13)

!(p) =

q

P
µ

sin2(pµ) +
�P

µ

(1� cos(pµ))�m0

 2
. (4.14)

The four-momentum pµ is given by pµ = 2⇡nµ/L (nµ 2 Z) for the periodic boundary
condition and pµ = 2⇡(nµ + 1/2)/L (nµ 2 Z) for the anti-periodic boundary condition.
The zero modes with pµ = 0 in eq. (4.11) exist only for the periodic boundary condition.
(See the appendix C for detail.)

For the constant configuration of the spin field, Ea
0 (x) = �a,10, (uT i�5CDT

aEa
0u)jk(=

Cjk) = �p+p0,0✏�,�0 iČtt0 (j = {p,�, t}, k = {p0,�0, t0}) and �̃i = ±i, while
�

u†�10�aEa
0u
�

jk
=

�jk and �i = +1. Then pf(uT i�5CDT
aEa

0u) is unity.
For randomly generated spin-field configurations with the lattice sizes up to L = 4, we

computed numerically the eigenvalues of the matrices
�

uT i�5CDT
aEau

�

and
�

u†�10�aEau
�

,
the pfaffian pf

�

uT i�5CDT
aEau

�

and the half product
Qn/4�4Q

i=1 �i. We checked that the
eigenvalue spectra of the these matrices have the structures of {(�̃i,��̃i) | i = 1, · · · , n/4�
4Q} and {(�i,�i) | i = 1, · · · , n/4 � 4Q}, respectively. All eigenvalues turn out to be non-
zero. But there appear relatively small eigenvalues for the periodic boundary condition.
We found that both the pfaffian and the half product stay real-positive. The typical ex-
amples of the eigenvalue spectra are shown in fig. 2 for L = 4 with the periodic boundary
condition. One can see how the half product remains real-positive: the eigenvalues of the
matrix appear closely but not exactly in degenerate complex-conjugate pairs {�,�,�⇤,�⇤}
and the complex phases of the “half set” of the eigenvalues sum up still exactly to zero mod
2⇡. Accordingly, the eigenvalues of

�

uT i�5CDT
aEau

�

appear closely but not exactly in the
quartet structure {�̃,��̃, �̃⇤,��̃⇤} and the pfaffian is still exactly real-positive.

As to the relatively small eigenvalues observed for the trivial link field and randomly
generated spin-field configurations with the periodic boundary condition, they are at-
tributed to the zero modes with pµ = 0 in eqs. (4.10) and (4.11) and their mixing-partners.
This is because the number of these small eigenvalues always counts to 64 (= 32⇥ 2) and
such small eigenvalues do not appear with the anti-periodic boundary condition (for up to
L = 4) as shown in fig. 3. The non-zero components of the zero modes’ vectors are right-
handed as (��, 0)T (� = 1, 2), while the never-vanishing components of the other modes’
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More on the saturation of the Right-handed measures 
due to ’t Hooft vertices (cont’d)

and

F01 =
4⇡m01

L2
, F23 =

4⇡m23

L2
. (4.25)

With this link field, the hermitian Wilson-Dirac operator is diagonalized numerically and
the normalized eigenvectors with the negative eigenvalues are computed to form the chiral
basis {u

j

(x)}. We checked that the number of the eigenvectors is n/2 � 8Q for L = 3, 4

with the periodic b.c. and is consistent with the index theorem.
For the constant configuration of the spin field, Ea

0 (x) = �a,10, (uT i�5CD

TaEa

0u)jk (=

C
jk

) is a unitary matrix and �̃
i

’s are pure complex phases, while
�

u†�10�aEa

0u
�

jk

remains
the unit matrix and �

i

= +1. Then pf(uT i�5CD

TaEa

0u) is a pure complex phase.
For randomly generated spin-field configurations with the lattice sizes up to L =

4, we again checked that the eigenvalue spectra of the matrices
�

uT i�5CD

TaEau
�

and
�

u†�10�aEau
�

have the structures of {(�̃
i

,��̃
i

) | i = 1, · · · , n/4 � 4Q} and {(�
i

,�
i

) | i =

1, · · · , n/4� 4Q}, respectively. All eigenvalues turn out to be non-zero. But there appear
again relatively small eigenvalues for Q < 0, the number of those counts to | � 8Q|. We
found that the complex phase of pf(uT i�5CD

TaEau) stays constant and equal to that of
pf(uT i�5CD

TaEa

0u), while the half product
Q

n/4�4Q
i=1 �

i

stays real-positive. The typical
examples of the eigenvalue spectra are shown in fig. 5 for Q = �2 and L = 4 with the
periodic boundary condition.
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Figure 5. The eigenvalue spectra of the matrices
�

uT i�5CDTaEau
�

and
�

u†�10�aEau
�

with a
randomly generated spin-field configuration for the case of the representative SU(2) link field of
the topological sector with Q = �2. The lattice size is L = 4 and the boundary condition for the
fermion field is periodic.

In this case, the relatively small eigenvalues can be attributed to the chiral zero modes
due to the topologically non-trivial link field. This is because the number of these small
eigenvalues always counts to |� 8Q| consistently with the index theorem.

Based on the analytical results in the previous subsection and the above numerical
observations, we again assume that the half product

Q

n/4�4Q
i=1 �

i

stays real independently of
the spin field Ea(x). In this case the multiplicity of the zero eigenvalues should be |�8Q| and
the would-be zero eigenvalues should have the approximate structure {(�

i

,�
i

,�⇤
i

,�⇤
i

) | i =
1, · · · , |�2Q|}, and then the signature(phase) of the half product does not change. Therefore

– 25 –

connected. Then any configuration of the spin field Ea(x) can be reached from the con-
stant configuration Ea

0 (x) = �a,10 through a continuous deformation. Since it is unity for
the constant configuration, the half product

Q

n/4�4Q
i=1 �

i

should be positive for a given con-
figuration Ea(x) as long as there exists a path to Ea(x) from Ea

0 (x)(= �a,10) such that
the half product never vanish along the path. On the other hand, for the spin configura-
tions with which the half product is zero, a certain subset in the eigenvalue spectrum of
(u† i�10�aEau) are zero. Along the path which goes though such a spin configuration, the
eigenvalue spectrum flow and the subset of would-be zeros pass the origin in the complex
plane. Then the half product can change discontinuously in its signature(phase). Since the
signature(phase) stays constant as far as the half product is nonzero, this could happen if
and only if the subspace of the configurations with the vanishing determinant, which we de-
note with V0

E

, can divide the entire space of the spin configurations V
E

into the subspaces
which are disconnected each other. And the divided disconnected subspaces of V

E

\ V0
E

should be classified by the values of the signature(phase) of the half product. In this re-
spect, however, one notes that ⇡

k

(S9) = 0 (k < 9) and any topological obstructions and the
associated topological terms are not known in the continuum limit for the SO(10)-vector
spin field Ea(x) on the four-dimensional spacetime S4 or T 4. In particular, any topolog-
ically non-trivial configurations/defects of the SO(10)-vector spin field and the associated
fermionic massless excitations are not known in the continuum limit. Then it seems rea-
sonable to assume that V0

E

consists of lattice artifacts and in particular it is given solely by
the subspace of the configurations Ea

⇤ (x), which we denote with V⇤
E

. If one assumes that
V0
E

= V⇤
E

, the multiplicity of the zero eigenvalues are 64 and the would-be zero eigenvalues
have the approximate structure {(�

i

,�
i

,�⇤
i

,�⇤
i

) | i = 1, · · · , 16}. Then the signature(phase)
of the half product

Q

n/4�4Q
i=1 �

i

does not change in passing V0
E

(= V⇤
E

). Therefore the pfaffian
pf(uT i�5CD

TaEau) is positive semi-definite.
It then follows that the path-integration of the pfaffian is real and positive in the weak

gauge-coupling limit:

⌦

1
↵

E

=

Z

D[Ea] det(uT i�5CD

ŤaEau) > 0 (Q = 0 ; g ! 0). (4.21)

4.3 The case of representative SU(2) link fields of topologically non-trivial
sectors

As for the case of the SU(2) link fields with non-zero topological charges Q 6= 0, we take
the following link field which gives the topological charge Q = 2m01m23 (m01,m23 2 Z):

U(x, µ) = ei✓12(x,µ)⌃
12
, (4.22)

where

✓12(x, 0) =

(

0 (x0 < L� 1)

�F01Lx1 (x0 = L� 1)
, ✓12(x, 1) = F01 x0, (4.23)

✓12(x, 3) =

(

0 (x2 < L� 1)

�F23Lx3 (x2 = L� 1)
, ✓12(x, 4) = F23 x2, (4.24)
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given by

u↵(p,�) =
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>
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>
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>

>
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>

>

>

:

 

�c(p)��

(!(p) + b(p))��

!

/
p

2!(p)(!(p) + b(p)) (p 6= 0)

 

��

0

!

(p = 0)

(4.11)

and

b(p) =
X

µ

(1� cos pµ)�m0, (4.12)

c(p) = I{i sin p0}�
X

k

�k sin pk, (4.13)

!(p) =

q

P
µ

sin2(pµ) +
�P

µ

(1� cos(pµ))�m0

 2
. (4.14)

The four-momentum pµ is given by pµ = 2⇡nµ/L (nµ 2 Z) for the periodic boundary
condition and pµ = 2⇡(nµ + 1/2)/L (nµ 2 Z) for the anti-periodic boundary condition.
The zero modes with pµ = 0 in eq. (4.11) exist only for the periodic boundary condition.
(See the appendix C for detail.)

For the constant configuration of the spin field, Ea
0 (x) = �a,10, (uT i�5CDT

aEa
0u)jk(=

Cjk) = �p+p0,0✏�,�0 iČtt0 (j = {p,�, t}, k = {p0,�0, t0}) and �̃i = ±i, while
�

u†�10�aEa
0u
�

jk
=

�jk and �i = +1. Then pf(uT i�5CDT
aEa

0u) is unity.
For randomly generated spin-field configurations with the lattice sizes up to L = 4, we

computed numerically the eigenvalues of the matrices
�

uT i�5CDT
aEau

�

and
�

u†�10�aEau
�

,
the pfaffian pf

�

uT i�5CDT
aEau

�

and the half product
Qn/4�4Q

i=1 �i. We checked that the
eigenvalue spectra of the these matrices have the structures of {(�̃i,��̃i) | i = 1, · · · , n/4�
4Q} and {(�i,�i) | i = 1, · · · , n/4 � 4Q}, respectively. All eigenvalues turn out to be non-
zero. But there appear relatively small eigenvalues for the periodic boundary condition.
We found that both the pfaffian and the half product stay real-positive. The typical ex-
amples of the eigenvalue spectra are shown in fig. 2 for L = 4 with the periodic boundary
condition. One can see how the half product remains real-positive: the eigenvalues of the
matrix appear closely but not exactly in degenerate complex-conjugate pairs {�,�,�⇤,�⇤}
and the complex phases of the “half set” of the eigenvalues sum up still exactly to zero mod
2⇡. Accordingly, the eigenvalues of

�

uT i�5CDT
aEau

�

appear closely but not exactly in the
quartet structure {�̃,��̃, �̃⇤,��̃⇤} and the pfaffian is still exactly real-positive.

As to the relatively small eigenvalues observed for the trivial link field and randomly
generated spin-field configurations with the periodic boundary condition, they are at-
tributed to the zero modes with pµ = 0 in eqs. (4.10) and (4.11) and their mixing-partners.
This is because the number of these small eigenvalues always counts to 64 (= 32⇥ 2) and
such small eigenvalues do not appear with the anti-periodic boundary condition (for up to
L = 4) as shown in fig. 3. The non-zero components of the zero modes’ vectors are right-
handed as (��, 0)T (� = 1, 2), while the never-vanishing components of the other modes’
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Figure 6. The eigenvalue spectra of
�

u†�10�aEau
�

in the limit m0 ! ⌥0 with a randomly
generated spin configuration for the trivial link field. The interpolation parameter ✓↵ is chosen as
✓↵ = 0, 3⇡/12, 4⇡/12, 5⇡/12,⇡/2 for the top-left, bottom-left, bottom-middle, bottom-right, top-
right figures, respectively. The lattice size is L = 4 and the boundary condition for the fermion
field is periodic.

4.5 Disorder nature of the auxiliary spin-field path integrations

The path-integrations over the SO(10)-vector real spin fields with unit length, Ea(x) and
Ēa(x), in eq. (3.24) define two kind of the four-dimensional spin models with the partition
functions,

⌦

1
↵

E

=

Z

D[E] pf
�

uT i�5CD

TaEau
�

, (4.29)

⌦

1
↵

Ē

=

Z

D[Ē] pf
�

ū i�5CD

Ta

†ĒaūT
�

. (4.30)

It is important and useful to understand the dynamical nature of the path-integrations in
these spin models.

The second model for Ēa(x) is trivial. This is because the pfaffian weight is unity,
pf
�

ū i�5CD

Ta

†ĒaūT
�

= 1. Then the two-point correlation function is given by

⌦

Ēa(x)Ēb(y)
↵

Ē

=
1

10
�
xy

�ab
⌦

1
↵

Ē

(
⌦

1
↵

Ē

= 1) (4.31)

and the spin field is completely disordered.
The first model for Ea(x) is quite non-trivial. The pfaffian weight is the rather com-

plicated (non-local) function of the spin field variables, which can be chosen to be real
and positive semi-definite for the background link fields in the SO(9) subgroup, as we have
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More on the saturation of the Right-handed measures 
due to ’t Hooft vertices (cont’d)

imlpies that one can choose the basis vectors {uj(x)} so that they satisfy the relation

uj(x)
T i�5CD C�10 = Cjk uk(x)†, (4.5)

C�1 = C† = CT = � C. (4.6)

C is then given by the expression Cjk = (uT i�5CD C�10u)jk and the matrix eq. (3.26) can
be represented as

(uT i�5CDT
aEau) = C ⇥ (u†�10�aEau)

= (u†�10�aEau)T ⇥ C. (4.7)

This implies that while the eigenvalues of (uT i�5CDT
aEau) appear in pair with the opposite

signatures as {(�̃i,��̃i) | i = 1, · · · , n/4� 4Q}, the eigenvalues of (u†�10�aEau) degenerate
with the multiplicity two at least as {(�i,�i) | i = 1, · · · , n/4� 4Q}.

Then the pfaffian of the matrix (uT i�5CDT
aEau) can be written as

pf(uT i�5CDT
aEau) = pf(uT i�5CD C�10u)⇥

n/4�4Q
Y

i=1

�i. (4.8)

Since the space of the spin field configurations, which we denote with VE , is the direct
product of multiple S9, VE = S9 ⇥ · · ·⇥ S9 (by dim⇤ times), it is pathwise connected and
any configuration of the spin field Ea(x) can be reached from the constant configuration
Ea

0 (x) = �a,10 = const. through a continuous deformation. For the constant configuration
we have �i = 1 (i = 1, · · · , n/4 � 4Q). And this fixes the signature of the above formula
(as long as the pfaffian is not vanishing).

The half product of the eigenvalues of (u†�10�aEau),
Qn/4�4Q

i=1 �i in eq. (4.8), is inde-
pendent of the choice of the basis vectors. Its square or the full product can be expressed
in the basis-independent manner as folows,

n/4�4Q
Y

i=1

�2
i = det(u†�10�aEau)

= det
⇣

P� + P+

⇥

P̂� + P̂+�
10�bEb

⇤

⌘

. (4.9)

4.2 The case of trivial link field in the weak gauge-coupling limit

In the weak gauge-coupling limit where the link variables are set to unity, U(x, µ) = 1, one
can choose the basis vectors {uj(x)} as

uj(x) =
1p
L4

eipx u↵(p,�) �s,t (j = {p,�, t}), (4.10)

where {u↵(p,�)} are the four-spinor eigenvectors of the free hermitian Wilson-Dirac opera-
tor Hw = �5(Dw �m0) (0 < m0 < 2) with the negative eigenvalues in the plane-wave basis
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topologically non-trivial sectors U[Q]:

⌦

1
↵

E
=

Z

D[Ea] det(uT i�5CDŤ
aEau)

= c[U ] ( 6= 0) (U(x, µ) = ei✓12(x,µ)⌃
12 2 U[Q] ; g ! 0). (4.25)

4.4 Continuity across the mass singularity: m0 ! +0;+0 ! �0;�0 ! �1

Another support for the above arguments is followed from the consideration on the conti-
nuity in the mass parameter m0 from the negative region, m0 < 0 to the positive region,
0 < m0 < 2. We note first that the chiral basis for the negative mass m0 < 0 can be
defined by the same formula as for the positive mass 0 < m0 < 2 given by eqs. (4.10) and
(4.11), except that the vectors of zero modes with pµ = 0 should be flipped in chirality to
the left-handed ones (0,��)

T (� = 1, 2) from the right-handed ones (��, 0)T (� = 1, 2). For
this case, one can take the limit m0 ! �1 to obtain the trivial basis vectors as

uj(x) =
1p
L4

eipx

 

0

��

!

�s,t (j = {p,�, t}), (4.26)

and one can show that the pfaffian is unity independent of the spin field Ea(x), just like the
case of the anti-field  ̄+(x). We note next that in the limits m0 ! ⌥0, the both formula
are well-defined as long as L is finite. But, actually at m0 = ⌥0, the zero modes of both
chiralities belong to the same zero-eigenvalue-sector of the massless hermitian Wilson-Dirac
operator Hw = �5Dw and degenerate. Then one can interpolate the two regions of m0 ! ⌥0

smoothly by the one-parameter family of the basis vectors of the zero modes,

u↵(0,�)
(✓) =

 

sin ✓ ��

cos ✓ ��

!

✓ 2 [0,⇡/2]. (4.27)

The examples of the eigenvalue spectra of
�

u†�10�aEau
�

in the limit m0 ! ⌥0 are shown
for randomly generated spin configurations in fig. 6 and for Ea

⇤ (x) in fig. 7, respectively
both with L = 4 and the periodic boundary condition. In both cases, the two spectra
of the limit m0 ! ⌥0 shown in the upper two panels are interpolated by varying the
parameter ✓ from 0 to ⇡/2, as shown in the lower three panels. We found that in the
course of the interpolation, the “half product”

Qn/4�4Q
i=1 �i remains real and positive-definite

and it vanishes only at ✓ = ⇡/2 if Ea(x) = Ea
⇤ (x). This result supports the picture that

the pfaffian for 0 < m0 < 2 can be zero, but is positive semi-definite, while the pfaffian
for m0 < 0 is positive definite all the way down to the limit m0 ! �1, where it is unity
independently of the spin field Ea(x). And the positive semi-definite pfaffian for 0 < m0 < 2

can be smoothly connected to the positive-definite one for m0 < 0 at m0 = ±0. without
any singularity. And it implies that the pfaffian integrals are both positive definite for
0  m0 < 2 and m0  0, and there is no massless singularity at the limit m0 = ±0.

4.5 Disorder nature of the auxiliary spin-field path integrations

The path-integrations over the SO(10)-vector real spin fields with unit length, Ea(x) and
Ēa(x), in eq. (3.34) define two kind of the four-dimensional spin models with the partition
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  Class AII [Z]  —> (BdG type) Class DIII2 [none] (MZ/ with only trivial vac. ?!)



Right-handed sector is in PMS phase / a gapped boundary phase !?

Fermion two-point correlation functions: short-range in the right-handed sector!

SO(10)-vector spin field dynamics:  disordered  (in a saddle point analysis)

3.5 Schwinger-Dyson equations and Correlation functions

The Schwinger-Dyson equations for the link field and the Weyl field can be derived from
the path-integral definition of the partition function, eqs. (3.9) and (3.10). With respect
to the local variation of the link field, �

⌘

U(x, µ) = i⌘
µ

(x)U(x, µ), the simplest non-trivial
example is given by

*

h

� �
⌘

S
G

[U ]�
X

x2⇤
 ̄(x)P+�⌘D (x) + 2

X

x2⇤
 TP̂ T

+ i�5CD

TaEa�
⌘

P̂+ (x)
i

+

= 0,

(3.63)

The operators in the bracket [· · · ] in the l.h.s. are all the local operators with respect to
the variation point x and therefore the equation of motion is local. We note that the third
term comes from the link field dependence of the Weyl field measure. With respect to the
local variations of the fermion fields � (x), � ̄(x) and of the spin field �Ea(x), one can
derive the following non-trivial examples.

D

 (y)
h

 ̄P+D(x)� 2 TP̂ T

+ i�5CD

TaEaP̂+(x)
i E

F

= �
xy

⌦

1
↵

F

, (3.64)
Dh

P+D (x)� 2P�i�5CD

Ta

†ĒaP�
T  ̄T(x)

i

 ̄(y)
E

F

= �
xy

⌦

1
↵

F

, (3.65)
D

 TP̂ T

+ i�5CD

C[⌃
bc

,�a]Ea(x)P̂+ 
E

F

= 0. (3.66)

The first two equations can be decomposed into the chiral components by noting P+D =

DP̂� and �
xy

= (P+ + P�)�xy = P̂+(x, y) + P̂�(x, y). We finally obtain

⌦

 �(x)  ̄�(y)
↵

F

= P̂�D
�1P+(x, y)

⌦

1
↵

F

, (3.67)
D

 +(y)
h

 T
+i�5CD

TaEaP̂+(x)
i E

F

= �1

2
P̂+(y, x)

⌦

1
↵

F

, (3.68)
Dh

P�i�5CD

Ta

†Ēa ̄T
+(x)

i

 ̄+(y)
E

F

= �1

2
P��xy

⌦

1
↵

F

, (3.69)

assuming that D is invertible.

As long as
⌦

1
↵

F

is finite and well-defined, these results imply the following facts
about the particle spectrum in the channel of the 16 representation of SO(10) symme-
try: the left-handed fields  �(x),  ̄�(x) support the massless Weyl fermions and have
long-range correlations, while the right-handed fields  +(x),  ̄+(x) are decoupled each
other and have short-range correlations of order the several lattice spacings with the com-
posite operators

⇥

 T
+i�5CD

TaEaP̂+(x)
⇤

and
⇥

P�i�5CD

Ta

†Ēa ̄T
+(x)

⇤

, respectively. As to
the right-handed field  +(x), however, the information of yet another correlation function
⌦

 +(y)
⇥

 T
+i�5CD

TaEaP̂�(x)
⇤ ↵

F

is also required before deducing a definite conclusion.
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Figure 6. The eigenvalue spectra of
�

u†�10�aEau
�

in the limit m0 ! ⌥0 with a randomly
generated spin configuration for the trivial link field. The interpolation parameter ✓↵ is chosen as
✓↵ = 0, 3⇡/12, 4⇡/12, 5⇡/12,⇡/2 for the top-left, bottom-left, bottom-middle, bottom-right, top-
right figures, respectively. The lattice size is L = 4 and the boundary condition for the fermion
field is periodic.

functions,
⌦

1
↵

E
=

Z

D[E] pf
�

uT i�5CDT
aEau

�

, (4.28)

⌦

1
↵

Ē
=

Z

D[Ē] pf
�

ū i�5CDT
a†ĒaūT

�

. (4.29)

It is important and useful to understand the dynamical nature of the path-integrations in
these spin models.

The second model for Ēa(x) is trivial. This is because the pfaffian weight is unity,
pf
�

ū i�5CDT
a†ĒaūT

�

= 1. Then the two-point correlation function is given by
⌦

Ēa(x)Ēb(y)
↵

Ē
=

1

10
�xy�

ab
⌦

1
↵

Ē
(
⌦

1
↵

Ē
= 1) (4.30)

and the spin field is completely disordered.
The first model for Ea(x) is quite non-trivial. The pfaffian weight is the rather com-

plicated (non-local) function of the spin field variables, which can be chosen to be real
and positive semi-definite for the background link fields in the SO(9) subgroup, as we have
argued, but is complex in general. The mass parameter m0 is the only parameter to con-
trol the strength of the coupling of the spin field.12 One may regard the number of the

12The kinetic term for the spin field E

a(x) such as �K

P
x,µ

E

a(x)Ea(x+µ̂) can be added for the analysis.
We omit this term for simplicity.
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Figure 7. The eigenvalue spectra of
�

u†�10�aEau
�

in the limit m0 ! ⌥0 with a spin field
configuration in the class Ea

⇤ (x) for the trivial link field. The interpolation parameter ✓↵ is chosen
as ✓↵ = 0, 3⇡/12, 4⇡/12, 5⇡/12,⇡/2 for the top-left, bottom-left, bottom-middle, bottom-right, top-
right figures, respectively. The lattice size is L = 4 and the boundary condition for the fermion
field is periodic.

spin components N(= 10) as another parameter and consider the large N method. In
order to get insights into the dynamical nature of this spin model, one needs to apply the
methods such as Monte Carlo simulations and the saddle point analysis in the large N

expansion.[247, 248]
In the following, we apply the saddle point analysis in the spirit of the large N expansion

to the model with the trivial link field background (in the weak gauge-coupling limit). For
this purpose, we introduce the unconstraint (linearized) field Xa(x) and the Lagrange-
multiplier field �(x) to impose the constraint Xa(x)Xa(x) = 1, and rewrite the original
path integration eq. (4.28) as follows,

⌦

1
↵

E
=

Z

D[X]D[�] pf
�

uT i�5CDT
aXau

�

ei
P

x

�(x)(Xa(x)Xa(x)�1). (4.31)

Then the field variables are decomposed into the modes with zero-momentum and other
modes of fluctuation as

Xa(x) = Xa
0 + X̃a(x),

X

x

X̃a(x) = 0, (4.32)

�(x) = �0 + �̃(x),
X

x

�̃(x) = 0, (4.33)
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Figure 8. f(m0) vs. m0 : The consistency condition for the SO(10) symmetry breaking in the
spin model of Ea(x) within the saddle point analysis in the spirit of the large N expansion.

where the leading results, �i�0 = 8/Xc
0X

c
0 and Xc

0X
c
0 = 1, are substituted in the terms

suppressed by the factor N/2
N

2 (' 9/32). The r.h.s. of the condition eq. (4.43) is required
to be positive for Xa

0 6= 0. It is plotted in fig. 8 as the function of m0,

f(m0) ⌘ 1� 9

32

1

V

X

k 6=0

4

�D̃(k) + 2
. (4.44)

One can see that f(m0)  0 for m0 < 2 and it is in contradiction with the assumption
Xa

0 6= 0. In this region of the mass prameter m0, the fluctuation of the spin field Ea(x) is
too large to maintain the non-zero expectation value of the spin field hEa(x)i. The region
includes the positive region 0  m0 < 2 and it also extends to the negative region m0  0

all the way down to m0 ! �1.
The above result supports the following picture on the dynamical nature of the spin

model. The spin model for Ea(x) is well-defined for all values of m0 in the region [�1, 2).
For m0 2 [�1, 2), the spin model is in the single disordered phase. In the limit m0 ! �1,
in particular, the pfaffian is unity and the spin field is completely disordered, having the
vanishing correlation length, ⇠E = 0. The correlation length ⇠E is a monotonically increasing
function of m0. And SO(10) global symmetry in the weak gauge-coupling limit as well as
Z4 ⇥ Z4 discrete symmetries are not broken spontaneously in the thermodynamic limit
L ! 1.

For our purpose to formulate the Weyl field measure, the spin model for Ea(x) should
be in the positive disordered region m0 2 (0, 2), while the spin model for Ēa(x) is equivalent
to the model in the limit m0 ! �1. Thus the both spin models have the disorder nature,
which are actually in the same disordered phase.

4.6 A summary

Based on the above analytical and numerical results, we argue that in these two cases of
the trivial link field and of the SU(2) link fields with Q( 6= 0), the path-integration of the
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Figure 8. f(m0) vs. m0 : The consistency condition for the SO(10) symmetry breaking in the
spin model of Ea(x) within the saddle point analysis in the spirit of the large N expansion.
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One can see that f(m0)  0 for m0 < 2 and it is in contradiction with the assumption
Xa

0 6= 0. In this region of the mass prameter m0, the fluctuation of the spin field Ea(x) is
too large to maintain the non-zero expectation value of the spin field hEa(x)i. The region
includes the positive region 0  m0 < 2 and it also extends to the negative region m0  0

all the way down to m0 ! �1.
The above result supports the following picture on the dynamical nature of the spin

model. The spin model for Ea(x) is well-defined for all values of m0 in the region [�1, 2).
For m0 2 [�1, 2), the spin model is in the single disordered phase. In the limit m0 ! �1,
in particular, the pfaffian is unity and the spin field is completely disordered, having the
vanishing correlation length, ⇠E = 0. The correlation length ⇠E is a monotonically increasing
function of m0. And SO(10) global symmetry in the weak gauge-coupling limit as well as
Z4 ⇥ Z4 discrete symmetries are not broken spontaneously in the thermodynamic limit
L ! 1.

For our purpose to formulate the Weyl field measure, the spin model for Ea(x) should
be in the positive disordered region m0 2 (0, 2), while the spin model for Ēa(x) is equivalent
to the model in the limit m0 ! �1. Thus the both spin models have the disorder nature,
which are actually in the same disordered phase.

4.6 A summary

Based on the above analytical and numerical results, we argue that in these two cases of
the trivial link field and of the SU(2) link fields with Q( 6= 0), the path-integration of the
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One can see that f(m0)  0 for m0 < 2 and it is in contradiction with the assumption
Xa

0 6= 0. In this region of the mass prameter m0, the fluctuation of the spin field Ea(x) is
too large to maintain the non-zero expectation value of the spin field hEa(x)i. The region
includes the positive region 0  m0 < 2 and it also extends to the negative region m0  0

all the way down to m0 ! �1.
The above result supports the following picture on the dynamical nature of the spin

model. The spin model for Ea(x) is well-defined for all values of m0 in the region [�1, 2).
For m0 2 [�1, 2), the spin model is in the single disordered phase. In the limit m0 ! �1,
in particular, the pfaffian is unity and the spin field is completely disordered, having the
vanishing correlation length, ⇠E = 0. The correlation length ⇠E is a monotonically increasing
function of m0. And SO(10) global symmetry in the weak gauge-coupling limit as well as
Z4 ⇥ Z4 discrete symmetries are not broken spontaneously in the thermodynamic limit
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For our purpose to formulate the Weyl field measure, the spin model for Ea(x) should
be in the positive disordered region m0 2 (0, 2), while the spin model for Ēa(x) is equivalent
to the model in the limit m0 ! �1. Thus the both spin models have the disorder nature,
which are actually in the same disordered phase.

4.6 A summary

Based on the above analytical and numerical results, we argue that in these two cases of
the trivial link field and of the SU(2) link fields with Q( 6= 0), the path-integration of the
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One can see that f(m0)  0 for m0 < 2 and it is in contradiction with the assumption
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0 6= 0. In this region of the mass prameter m0, the fluctuation of the spin field Ea(x) is
too large to maintain the non-zero expectation value of the spin field hEa(x)i. The region
includes the positive region 0  m0 < 2 and it also extends to the negative region m0  0
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to the model in the limit m0 ! �1. Thus the both spin models have the disorder nature,
which are actually in the same disordered phase.
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πd(S9) = 0  (d=0, …,9) 
   No topological obstructions/singularity 
   No massless excitations around topol. singularity

 [Wen(2013),  Furusaki et al (2015)]



In this formula eq. (6.1), the total action of the model, including the ’t Hooft vertex terms,
can be defined as

SOv[ ,  ̄, E
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(6.2)

Here the right-handed Weyl fields are introduced explicitly, trying to make the path-integral
measure of the left-handed Weyl fields in 16 simplified and manifestly gauge-invariant. The
SO(10) invariant ’t Hooft vertex operators of the right-handed fields are used to saturate
completely the right-handed part of the fermion measure. The short range correlations of
order the lattice spacing are required for the the right-handed Weyl fields and the aux-
iliary spin fields so that they are decoupled from physical degrees of freedom, preserving
the symmetries and leaving only the smooth and local terms of the link fields. These
features/requirements are actually shared with other various approaches and proposals to
decouple the species doubling or mirror modes of models.

An important technical difference lies on the fact that the path-integral measure of the
right-handed Weyl fields, i.e. the right-handed part of the chiral decomposition of Dirac
field measure, are formulated with the non-trivial chiral basis {u

i

(x) |P+ ⌦ P̂+ui = u
i

, i =

1, · · · , n/2� 8Q }, {ū
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k
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, k = 1, · · · , n/2 }, which depends on the gauge
field, as given by eq. (3.14),
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Y

k=1

db̄
k

. (6.4)

We need to make sure the locality of this right-handed-measure contribution to the induced
effective action.

Another important technical difference is that we choose the product function for the ’t
Hooft vertices F (!) as given by eq. (3.6) and therefore use the unit SO(10)-vector spin fields,
Ea(x) and Ēa(x) with the constraints Ea(x)Ea(x) = 1 and Ēa(x)Ēa(x) = 1, omitting their
kinetic(hopping) terms. This choice allows us to prove the CP symmetry. It is also relevant
for preserving the (global) SO(10) symmetry in the thermodynamic limit.

In the following, we discuss the relations to Eichten-Preskill model, Ginsparg-Wilson
Mirror-fermion model, Domain wall fermion model with the boundary Eichten-Preskill
term, 4D Topological Insurators/Superconductors with gapped boundary phases, and the
recent studies on the Paramagnetic Strong-coupling (PMS) phase/Mass without symmetry
breaking, trying to clarify the similarity and the difference in technical detail and to show
that our proposal is a well-defined testing ground for that basic question.
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The above action SOv can be regarded as a certain limit of the following action of the
SO(10)-invariant chiral Yukawa model in the framework of the Ginsparg-Wilson fermion,

SOv/Mi[ ,  ̄, X
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(6.6)

The limit to the original action SOv is achieved by

y = ȳ,
z+p
yȳ

! 0, (6.7)

v = v̄ = 1, �0 = �̄0 ! 1, (6.8)
 = ̄! 0. (6.9)

In the lattice model defined with the action, SOv/Mi, the global U(1) symmetry of the right-
handed fields is broken to Z4 by the Yukawa couplings y and ȳ. But the proof of the CP
symmetry is not successful so far.11

6.1 cf. Eichten-Preskill model

The SO(10) invariant interaction terms of the ’t Hooft vertex were first used by Eichten
and Preskill[81] to decouple the species doublers in their formulation of chiral lattice gauge

11 In the other limit as

�
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 = ̄! 0, (6.11)

it reduces to the model with quartic interaction of the ’t Hooft vertices,
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This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e

!.
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2 1
2

⇥
 ̄+(x)i�5CD

Ta

†
 ̄+(x)

T

⇤2}. (6.12)

This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e
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S̃Ov, the FM phase does not appear for the SO(6) symmetry and the PMS phase extends all
the way to the limit of the weak Majorana-Yukawa coupling up to y/z+ = 0.1. In the model
S̃EP/WY, the FM phase appears between the PMS and PMW phases. It is because the effect
of the fluctuation modes X̃a0(x)(a0 = 1, · · · , 6) is reduced by the factor (6 � 1)/(10 � 1)

in the consistency condition eq. (6.57). But the effect still remains rather large. Then the
full quantum fluctuations can reduce the region of the coupling-constant z+ where the FM
phase appears, restoring the broken SO(6) symmetry. Thus our results here seems quite
consistent with the observations and arguments made by these authors about the reduced
staggered fermion model with the quartic interaction term which respects the SU(4)/SO(4)
and Z4 symmetries, and about ”Mass without Symmetry Breaking”.

6.4 cf. Domain wall fermions with the boundary Eichten-Preskill term

In the proposal by Creutz, Tytgat, Rebbi, Xue[89] to formulate the standard model plus the
right-handed neutrinos by the domain wall fermion, the authors have considered the quartic
term with the symmetry SU(4) ⇥ SU(2)L ⇥ SU(2)R as boundary interaction terms. In fact,
this type of the boundary interaction term can be obtained from the SO(10) interaction
term by reducing the symmetry to SO(6) ⇥ SO(4) (= SU(4) ⇥ SU(2)L ⇥ SU(2)R). Then,
it is straightforward to lift their proposal to the SO(10) chiral gauge theory.

In fact, we can show that the following action defines such a domain wall fermion model
for the SO(10) chiral gauge theory:

SDW/Mi =

L5
X

t=1

X

x2⇤
 ̄(x, t)

�

[1 + a05(D4w �m0)]�tt0 � P��t+1,t0 � P+�t,t0+1
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+
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x2⇤
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a (x, L5)

+ȳ X̄a(x) ̄(x, L5)P�i�5CDT
a† ̄(x, L5)

T }
+ SX [Xa], (6.62)

where the Dirichlet b.c. is assumed,

P+ (x, 0) = 0,  ̄(x, 0)P� = 0 ; P� (x, L5 + 1) = 0,  ̄(x, L5 + 1)P+ = 0,

(6.63)

and a05(= a5/a) is the lattice spacing of extra dimension in the lattice unit. In this action,
the second term in the r.h.s. is introduced so that all the terms which involve the field
 ̄(x, L5)P�(= q̄+(x)) in the original action of the domain wall fermion (the five-dimensional

simply in terms of overlap Majorana fields as

S̃Ov/Mj[ , E
a

0
] =

X

x2⇤

�
z  (x)T ČC

D

D (x)� y E

a

0
(x) (x)T i�5CD

Ťa

0
 (x)}. (6.61)

In both cases, one can show rigorously that the path-integral measures of the fermion fields  +(x),  ̄+(x)

and  (x) are saturated completely in the limits z/y ! 0.
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where (D5w � m0)
0
tt0 = (D5w � m0)tt0 � �tL5P�(D5w � m0)tt0�t0L5 and the limit L5 ! 1

(a05 ! 0) is understood. Then, what we have argued in the previous sections about the four-
dimensional model SOv implies that the domain wall fermion path-integral measure is prop-
erly saturated at around the right-handed boundary with the fields,  (x, L5),  ̄(x, L5)P�,
even when the spin fields Ea(x), Ēa(x) have the disordered nature. Moreover, the CP
symmetry is restored in the limit L5 ! 1.

Thus the five-dimensional domain wall fermion model defined by the action eq. (6.64)
provides a very explicit and well-defined implementation of the proposal by Creutz, Tytgat,
Rebbi, Xue for the (more general) case of the SO(10) chiral gauge theory. And our four-
dimensional lattice model defined with the path-integration measure for the left-handed
Weyl field eq. (6.1) is nothing but the low energy effective theory of the five-dimensional
domain wall model in the limit L5 ! 1 (a05 ! 0).

In this repect, we note that one may define the action of such a SO(10) domain wall
fermion model simply by

S0
DW/Mi =

L5
X
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X
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 ̄(x, t)

�
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�
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{y Xa(x)qT+(x)i�5CDT

aP+q+(x) + ȳ X̄a(x)q̄+(x)P�i�5CDT
a†q̄+(x)

T }

+ SX [Xa]. (6.67)

Note here that the bounary interaction terms are formulated solely with the boundary
field variables, q(x) =  �(x, 1) +  +(x, L5), q̄(x) =  ̄�(x, 1) +  ̄+(x, L5), which are first
introduced by Shamir and Furman[43, 44]. In this action, the global U(1) symmetry of the
five-dimensional Wilson fermion fields is broken to Z4 by the boundary Yukawa couplings.
The CR5 and P symmetries are also broken to the CPR5 symmetry in the same manner.
We note, however, that this model ends up with the overlap fermion model S0

Mi/Ov with
the Yukawa couplings eq. (6.26) in the limit L5 ! 1 in the same subtraction scheme.
Therefore, this type of the Majorana-Yukawa couplings at the boundary are singular in the
large limit.

6.5 cf. Topological Insulators/Superconductors with gapped boundary phases

It has been proposed by Wen, by You, BenTov and Xu, and by You and Xu[103–106] to
use the 4D Topological Insulators(TIs)/Superconductors(TSCs) with the gapped boundary
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↵

F
=

Z

D[ ]D[ ̄]D[E]D[Ē] e�SOv[ , ̄,E
a,Ēa] (6.65)
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R

Q

x,t d ̄(x, t)d (x, t) D[E]D[Ē] e�SDW/Ov[ , ̄,E
a,Ēa]

�

�

Dir
R

Q

x,t d ̄(x, t)d (x, t) e�SDW[ , ̄]
�

�

AP

=

*

pf

 

�i�5CDT
aEa�tL5�t0L5 �a05(D5w �m0)

0T /2

a05(D5w �m0)
0/2 �i�5CDP�T

a†Ēa�tL5�t0L5

!

�

�

�

�

Dir

+0

E

det a05(D5w �m0)
�

�

AP

, (6.66)

where (D5w � m0)
0
tt0 = (D5w � m0)tt0 � �tL5P�(D5w � m0)tt0�t0L5 and the limit L5 ! 1

(a05 ! 0) is understood. Then, what we have argued in the previous sections about the four-
dimensional model SOv implies that the domain wall fermion path-integral measure is prop-
erly saturated at around the right-handed boundary with the fields,  (x, L5),  ̄(x, L5)P�,
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symmetry is restored in the limit L5 ! 1.

Thus the five-dimensional domain wall fermion model defined by the action eq. (6.64)
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dimensional lattice model defined with the path-integration measure for the left-handed
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DW/Mi =
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X
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X

x2⇤
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�

[1 + a05(D4w �m0)]�tt0 � P��t+1,t0 � P+�t,t0+1
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�
X
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{y Xa(x)qT+(x)i�5CDT

aP+q+(x) + ȳ X̄a(x)q̄+(x)P�i�5CDT
a†q̄+(x)

T }

+ SX [Xa]. (6.67)
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The above action SOv can be regarded as a certain limit of the following action of the
SO(10)-invariant chiral Yukawa model in the framework of the Ginsparg-Wilson fermion,

SOv/Mi[ ,  ̄, X
a, X̄a] =

X

x2⇤

�

 ̄�(x)D �(x) + z+ ̄+(x)D +(x)
 

�
X

x2⇤
{y Xa(x) T

+(x)i�5CD

Ta +(x) + ȳ X̄a(x) ̄+(x)i�5CD

Ta

† ̄+(x)
T }

+ S
X

[Xa], (6.5)

where

S
X

[Xa] =
X

x2⇤

(

�
X

µ

Xa(x)Xa(x+ µ̂) +
1

2
Xa(x)Xa(x) +

�0

2
(Xa(x)Xa(x)� v2)2

�̄
X

µ

X̄a(x)X̄a(x+ µ̂) +
1

2
X̄a(x)X̄a(x) +

�̄0

2
(X̄a(x)X̄a(x)� v̄2)2

)

.

(6.6)

The limit to the original action SOv is achieved by

y = ȳ,
z+p
yȳ

! 0, (6.7)

v = v̄ = 1, �0 = �̄0 ! 1, (6.8)
 = ̄! 0. (6.9)

In the lattice model defined with the action, SOv/Mi, the global U(1) symmetry of the right-
handed fields is broken to Z4 by the Yukawa couplings y and ȳ. But the proof of the CP
symmetry is not successful so far.11

6.1 cf. Eichten-Preskill model

The SO(10) invariant interaction terms of the ’t Hooft vertex were first used by Eichten
and Preskill[81] to decouple the species doublers in their formulation of chiral lattice gauge

11 In the other limit as

�

0 = �̄

0 ! 0, (6.10)

 = ̄! 0, (6.11)

it reduces to the model with quartic interaction of the ’t Hooft vertices,

SOv/EP[ ,  ̄] =
X

x2⇤

�
 ̄�(x)D �(x) + z+ ̄+(x)D +(x)

 

�
X

x2⇤

{y2 1
2

⇥
 

T
+(x)i�5CD

Ta

 +(x)
⇤2

+ ȳ

2 1
2

⇥
 ̄+(x)i�5CD

Ta

†
 ̄+(x)

T

⇤2}. (6.12)

This action (in the limit z+ ! 0) corresponds to the other choice of the product function F (!) as F (!) = e

!.
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3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using all the components of the original
Dirac field  ↵s(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a
+(x)V

a
+(x), V a

+(x) =
1

2
 +(x)

Ti�5CDT
a +(x), (3.2)

T̄+(x) =
1

2
V̄ a
+(x)V̄

a
+(x), V̄ a

+(x) =
1

2
 ̄+(x)i�5CDT

a ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ↵s(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄↵s(x), (3.5)

and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CDT
aEa(x)P̂+, not P̂ T

+{i�5CDP+T
aEa(x)}P̂+, appears for the field  +(x),

while P�i�5CDT
aĒa(x)P�

T = P�{i�5CDP�
TTaĒa(x)}P�

T for the anti-field  ̄+(x).8 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w
= 4!

1
X

k=0

wk

k!(k + 4)!
, (3.6)

8This point is crucial for our proposal. If one includes the factor P+ in the definition of the ’t Hooft
operator for the field  +(x), one has P̂

T

+ i�5CD

P+T
a

E

a(x)P̂+ = (1�D)T i�5CD

P+T
a

E

a(x)(1 � D). The
factor (1�D) projects out the modes with the momenta ⇡(A)

µ

(A = 1, · · · , 15), where ⇡(1) ⌘ (⇡, 0, 0, 0),⇡(2) ⌘
(0,⇡, 0, 0), · · · ,⇡(15) ⌘ (⇡,⇡,⇡,⇡). This type of the operator cannot saturate the right-handed part of the
measure completely. Therefore it is not acceptable for our purpose. This point will be discussed later in
relation to other formulations. See section 6.
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and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CD

T aEa(x)P̂+, not P̂ T

+{i�5C
d

P+T aEa(x)}P̂+, appears for the field  +(x),
while P�i�5CD

T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S

W

[ �, ̄�]+
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.10)

In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:

D[E] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dEa(x)�(
q

Eb(x)Eb(x)� 1) (3.11)

D[Ē] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dĒa(x)�(
q

Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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γ5D + Dγ5 = 2aDγ5D

where
�̂5 ⌘ �5(1� 2D), (�̂5)

2 = I. (2.11)

Then we define the left-handed Weyl fermions in the 16-dimensional spinor representation
of SO(10) by the eigenstates of the chiral operators, �̂5 for the field and �5 for the anti-fields:

 �(x) = P̂� (x),  ̄�(x) =  ̄(x)P+, (2.12)

where P̂± and P± are the chiral projection operators given by

P̂± =

✓

1± �̂5
2

◆

, P± =

✓

1± �5
2

◆

. (2.13)

We note that
⇥

P̂±,P±
⇤

= 0 and
⇥

P±,P±
⇤

= 0.
The action of the left-handed Weyl field in the 16-dimensional spinor representation of

SO(10) is given by

SW[ �,  ̄�] =
X

x2⇤
 ̄�(x)D �(x) =

X

x2⇤
 ̄(x)P+D (x). (2.14)

This action is manifestly invariant under the SO(10) lattice gauge transformations. It is
also invariant under the global U(1) transformation of the left-handed fields,

�
↵

 �(x) = i↵ �(x)
⇥

or � (x) = i↵ P̂� (x)
⇤

, (2.15)
�
↵

 ̄�(x) = �i↵  ̄�(x)
⇥

or � ̄(x) = �i↵  ̄(x)P+

⇤

. (2.16)

This global U(1) symmetry is broken due to the non-trivial transformation property of
the Weyl field path-integral measure, as we will see below, and the non-vanishing vacuum
expectation values of ’t Hooft vertices,

T�(x) =
1

2
V a

�(x)V
a

�(x), V a

�(x) =  �(x)
Ti�5CD

Ta �(x), (2.17)

T̄�(x) =
1

2
V̄ a

�(x)V̄
a

�(x), V̄ a

�(x) =  ̄�(x)i�5CD

Ta

† ̄�(x)
T, (2.18)

in the topologically nontrivial sectors of the gauge field. Here Ta (a = 1, 2, · · · , 10) are the
operators acting on the SO(10) spinor space, Ta = C�a. The explicit representations of C
and {Ta|a = 1, · · · , 10} are given in the appendix B. The action also possesses all required
transformation properties under lattice symmetries: translations, rotations, reflections and
charge conjugation. In particular, under P (space reflections) and C (charge conjugation)
the action is not invariant, while under CP the action is transformed into the same form,
but the definitions of the chiral projection for the fields and anti-fields are interchanged:

 �(x) = P̂� (x) )  �(x) = P� (x), (2.19)
 ̄�(x) =  ̄P+(x) )  ̄�(x) =  ̄{�5P̂+�5}(x). (2.20)

But the effective action of the gauge field turns out to be CP invariant. This CP transfor-
mation property of the model will be discussed below.

– 6 –

sample

June 25, 2018

1 Introduction

a

4
X

x

 ̄(x)D (x) = a

4
X

x

�
 ̄(x)P+DP̂� (x) +  ̄(x)P�DP̂+ (x)

 
(1)

�̂5 = �5(1� 2aD) (2)

1

sample

June 25, 2018

1 Introduction
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4
X

x

 ̄(x)D (x) = a

4
X

x

�
 ̄(x)P+DP̂� (x) +  ̄(x)P�DP̂+ (x)

 
(1)

�̂5 = �5(1� 2aD) �̂5
2 = I (2)

1

ψ+(x) = P̂+ψ(x) ψ̄(x)+ = ψ̄(x)P−

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

Khop = 0

SEP/Mi =
∑

x

{
ψ̄(x)

[
γµ(P− + z+P+)

1

2
(∇µ −∇†

µ)ψ(x) +
w

2
∇µ∇†

µ

]
ψ(x)

− λ

24

[
ψ+(x)

T iγ5CDT
aψ+(x)

]2 − λ

24

[
ψ̄+(x)iγ5CDT

aψ̄+(x)
T
]2 }

1

 Exact gauge inv. is manifest and 
 CP violations comes from KM, PMNS  
matrixes and theta terms. 

JHEP05(2008)095

Now we consider quarks and leptons in the Glashow-Weinberg-Salam model. For

simplicity, we consider the first family. We adopt the convention for the normalization

of the hyper-charges such that the Nishijima-Gell-Mann relation reads Q = T3 + 1
6Y . To

describe the left-handed quarks and leptons, which are SU(2) doublets, we introduce a

left-handed fermion ψ−(x) with the index α(= 1, . . . , 4), each component of which couples

to the SU(2) × U(1) gauge field, U (2)(x, µ) ⊗ {U (1)(x, µ)}Yα , with the hyper-charge Yα (

Y1,2,3 = 1 and Y4 = −3). Namely,

ψ−(x) = t
(

q1
−(x), q2

−(x), q3
−(x), l−(x)

)

. (2.16)

Similarly, to describe the right-handed quarks and leptons, which are SU(2) singlets, we

introduce a right-handed fermion ψ+(x) with the index β(= 1, . . . , 8), each component of

which couples to the U(1) gauge field, {U (1)(x, µ)}Yβ , with the hyper-charge Yβ (Y1,3,5 = 4,

Y2,4,6 = −2, Y7 = 0 and Y8 = −6). Namely,

ψ+(x) = t
(

u1
+(x), d1

+(x), u2
+(x), d2

+(x), u3
+(x), d3

+(x), ν+(x), e+(x)
)

. (2.17)

Then the action of quarks and leptons is given by

SF =
∑

x∈Γ

ψ̄−(x)DLψ−(x) +
∑

x∈Γ

ψ̄+(x)DLψ+(x). (2.18)

2.3 Higgs field and its Yukawa-couplings to quarks and leptons

Higgs field is a SU(2) doublet with the hyper-charge Yh = +6. The action of the Higgs

field may be given by

SH =
∑

x

[

∑

ν

(∇νφ(x))†∇νφ(x) +
λ

2

(

φ(x)†φ(x) − v2
)2

]

, (2.19)

where φ(x) couples to the gauge field U (2)(x, µ)⊗{U (1)(x, µ)}Yh and ∇ν is the SU(2)×U(1)

gauge-covariant difference operator. Yukawa couplings of the Higgs field to the quarks and

leptons may also be introduced as follows:8

SY =
∑

x

[

yu q̄i
−(x)φ̃(x)ui

+(x) + y∗u ūi
+(x)φ̃(x)†qi

−(x)

+yd q̄i
−(x)φ(x)di

+(x) + y∗d d̄i
+(x)φ(x)†qi

−(x)

+yl l̄−(x)φ(x)e+(x) + y∗l ē+(x)φ(x)†l−(x)
]

, (2.20)

where φ̃(x) is the SU(2) conjugate of φ(x).

Thus the total lattice action,

S = SG + SF + SH + SY , (2.21)

defines a classical theory of the Glashow-Weinberg-Salam model [30 – 32] on the lattice with

the first-family quarks and leptons. In this action, locality, gauge-invariance and lattice

8One may add the Dirac-type mass term for the neutrino,
P

x{yν l̄−(x)φ̃(x)ν+(x) +y∗
ν ν̄+(x)φ̃(x)†l−(x)}.
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16 x 3  (three families) 
SO(10) —> SU(3)xSU(2)xU(1)
Higgs scalar (1,2)1/2  & Yukawa int.

D =
1

2a

(

1 + X
1

√

X†X

)

, X = aDw − m0, X†
= γ5Xγ5

D⋆[ψ−]D⋆[ψ̄−] ≡
∏

j

dcj
∏

k

dc̄k

D[ψ−]D[ψ̄−] ≡ D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)]

ψ−(x) = P̂−ψ(x) ψ̄−(x) = ψ̄(x)P+

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x
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ψ̄(x)γµP−
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2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

Ea(x)Ea(x) = 1

Khop = 0

1

2.3 Topology of the SO(10) lattice gauge fields

The admissibility condition ensures that the overlap Dirac operator[23, 25] is a smooth and
local function of the gauge field [27]. Moreover, the Ginsparg-Wilson relation implies the
index theorem

IndexD = Tr�5(1�D). (2.21)

Then, through the lattice Dirac operator D, it is possible to define a topological charge of
the gauge fields [24, 29, 30, 32, 50]: for the admissible SO(10) gauge fields, one has

Q = �1

8
Tr�5(1�D) = �1

8

X

x2�
tr {�5(1�D)} (x, x), (2.22)

where D(x, y) is the kernel of the lattice Dirac operator D. (Our convention for the gamma
matrices is such that �0�1�2�3�5 = 1.) Then the admissible SO(10) gauge fields can be
classified by the topological numbers Q.6 We denote the space of the admissible SO(10)
gauge fields with a given topological charge Q by U[Q].

3 Path Integration – a proposal for the gauge-invariant measure

3.1 Definition of the path integration measures

The path-integral measures for the link field and the Weyl field are formulated as follows.
For the link field U(x, µ), it is defined with the group-invariant Haar measure as usual:

D[U ] ⌘
Y

x2⇤

3
Y

µ=0

dU(x, µ). (3.1)

For the Weyl field  �(x),  ̄�(x), it is defined by using the whole components of the original
Dirac field  

↵s

(x)(↵ = 1, · · · , 4; s = 1, · · · , 16) not as usual, but the right-handed part of
the measure is just saturated completely by inserting a suitable product of the ’t Hooft
vertexes in terms of the right-handed fields,

T+(x) =
1

2
V a

+(x)V
a

+(x), V a

+(x) =  +(x)
Ti�5CD

Ta +(x), (3.2)

T̄+(x) =
1

2
V̄ a

+(x)V̄
a

+(x), V̄ a

+(x) =  ̄+(x)i�5CD

Ta ̄+(x)
T. (3.3)

Namely, the Weyl field measure is defined as

D[ �]D[ ̄�] ⌘ D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)), (3.4)

where

D[ ]D[ ̄] ⌘
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d 
↵s

(x)
Y

x2⇤

4
Y

↵=1

16
Y

s=1

d ̄
↵s

(x), (3.5)

6 Strictly speaking, the complete topological classification of the space of admissible SO(10) gauge fields
is not known yet. We assume that it is classified with Q as in the continuum theory.
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and F (w) is the certain function to represent the product of the ’t Hooft vertexes, T+(x)

and T̄+(x). The Weyl field measure so defined depends on the link field U(x, µ) through the
chiral projection P̂+ to define T+(x) in terms of the right-handed field  +(x) = P̂+ (x).
Note that we use the four-spinor notation in the definition of the ’t Hooft vertexes and the
factor P̂ T

+ i�5CD

T aEa(x)P̂+, not P̂ T

+{i�5C
d

P+T aEa(x)}P̂+, appears for the field  +(x),
while P�i�5CD

T aĒa(x)P�
T = P�{i�5CD

P�
TT aĒa(x)}P�

T for the anti-field  ̄+(x).7 Our
choice for F (w) is

F (w) ⌘ 4! (z/2)�4I4(z)
�

�

�

(z/2)2=w

= 4!
1
X

k=0

wk

k!(k + 4)!
, (3.6)

where I
⌫

(w) is the modified Bessel function of the first kind. It has the integral represen-
tation as

F (w)
�

�

�

w=(1/2)ua

u

a

= (⇡5/12)�1

Z 10
Y

a=1

dea�(
p
ebeb � 1) ee

c

u

c

(3.7)

and allows us to prove the CP invariance of the effective action of the lattice model, as
discussed bellow.8

The partition function of our lattice model for the SO(10) chiral Gauge theory is then
given as follows,

Z ⌘
Z

D[U ] e�S

G

[U ]+�
W

[U ], (3.9)

where �
W

[U ] is the effective action induced by the path-integration of the Weyl field,

e�W

[U ] ⌘
Z

D[ �]D[ ̄�] e
�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]
Y

x2⇤
F (T+(x))

Y

x2⇤
F (T̄+(x)) e

�S

W

[ �, ̄�]

=

Z

D[ ]D[ ̄]D[E]D[Ē] e�S

W

[ �, ̄�]+
P

x2⇤{Ea(x)V a

+(x)+Ē

a(x)V̄ a

+(x)}[ +, ̄+].

(3.10)

In the last equation, the integral representation of F (w) is used and the path-integrations
over the SO(10)-vector real spin fields with unit length, Ea(x) and Ēa(x), are introduced:

D[E] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dEa(x)�(
q

Eb(x)Eb(x)� 1) (3.11)

D[Ē] =
Y

x2⇤
(⇡5/12)�1

10
Y

a=1

dĒa(x)�(
q

Ēb(x)Ēb(x)� 1). (3.12)

7This point is crucial for our proposal and will be discussed later in relation to other formulations.
8One possible choice for F (w) is simply F (w) = ew =

P1
k=0

w

k

k!
. It also has the integral representation,

F (w)
���
w=(1/2)ua

u

a
= (2⇡)�5

Z 10Y

a=1

dx

a e�(1/2)xc
x

c+x

c
u

c

(3.8)

In this case, however, we do not succeed yet in proving the CP invariance of the effective action of the
lattice model.
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vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

Lη ≡ −i
∑

x

v†j(x)δηvj(x) ⇒ {vj(x)}

{vj(x)}

D[ψ−]D[ψ̄−] ≡ D[ψ]D[ψ̄]
∏

x

F [T+(x)]
∏

x

F [T̄+(x)]

ψ−(x) = P̂−ψ(x) ψ̄−(x) = ψ̄(x)P+

ψ+(x) = P̂+ψ(x) ψ̄+(x) = ψ̄(x)P−

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

4

vj(x) → vl(x)Q
−1
lj [U ]

∏

j

dcj →
∏

j

dcj × detQ[U ]

Lη ≡ −i
∑

x

v†j(x)δηvj(x) ⇒ {vj(x)}

{vj(x)}

D[ψ−]D[ψ̄−] ≡ D[ψ]D[ψ̄]
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x
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x
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ψ−(x) = P̂−ψ(x) ψ̄−(x) = ψ̄(x)P+

ū v̄ u v 8Q

Sw = a4
∑

x

ψ̄−(x)Dψ−(x)

SEP =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

− λ

24

[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

24

[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2

− λ

48
△
[
ψ−(x)

T iγ5CDT
aψ−(x)

]2 − λ

48
△
[
ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]2 }

SEP/WY =
∑

x

{
ψ̄(x)γµP−

1

2
(∇µ −∇†

µ)ψ(x)

−y
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

−w

2
△
[
ψ−(x)

T iγ5CDT
aψ−(x) + ψ̄−(x)iγ5CDT

aψ̄−(x)
T
]
Ea(x)

}

4

cf. [Ishibashi-Fujikawa-Suzuki(2002) ]



• manifestly gauge-invariant by using full Dirac-field measure,                           
but saturating the right-handed part with ’t Hooft vertices completely !

• all possible topological sectors 

• zero modes, ’t Hooft vertex VEV,  fermion number non-conservation 

• CP invariance 

• locality/smoothness Issues

Testable:  To see if it works, examine  

MC studies in weak gauge-coupling limit feasible without sign problem

Analytic studies desirable

• >>> SU(5),  SU(4) x SU(2)L x SU(2)R,  SU(3)c x SU(2)L x U(1)Y  (+ νR)

• Making the ’t Hooft vertex terms well-defined in large coupling limit, 
Established  the relations with GW Mirror-fermion model

                                                  DW fermion with boundary EP terms

                                                  4D TI/TSC with Gapped boundary phase  explicitly  

3.5 Schwinger-Dyson equations and Correlation functions

The Schwinger-Dyson equations for the link field and the Weyl field can be derived from
the path-integral definition of the partition function, eqs. (3.9) and (3.10). With respect
to the local variation of the link field, �

⌘

U(x, µ) = i⌘
µ

(x)U(x, µ), the simplest non-trivial
example is given by

*

h

� �
⌘

S
G

[U ]�
X

x2⇤
 ̄(x)P+�⌘D (x) + 2

X

x2⇤
 TP̂ T

+ i�5CD

TaEa�
⌘

P̂+ (x)
i

+

= 0,

(3.63)

The operators in the bracket [· · · ] in the l.h.s. are all the local operators with respect to
the variation point x and therefore the equation of motion is local. We note that the third
term comes from the link field dependence of the Weyl field measure. With respect to the
local variations of the fermion fields � (x), � ̄(x) and of the spin field �Ea(x), one can
derive the following non-trivial examples.

D

 (y)
h

 ̄P+D(x)� 2 TP̂ T

+ i�5CD

TaEaP̂+(x)
i E

F

= �
xy

⌦

1
↵

F

, (3.64)
Dh

P+D (x)� 2P�i�5CD

Ta

†ĒaP�
T  ̄T(x)

i

 ̄(y)
E

F

= �
xy

⌦

1
↵

F

, (3.65)
D

 TP̂ T

+ i�5CD

C[⌃
bc

,�a]Ea(x)P̂+ 
E

F

= 0. (3.66)

The first two equations can be decomposed into the chiral components by noting P+D =

DP̂� and �
xy

= (P+ + P�)�xy = P̂+(x, y) + P̂�(x, y). We finally obtain

⌦

 �(x)  ̄�(y)
↵

F

= P̂�D
�1P+(x, y)

⌦

1
↵

F

, (3.67)
D

 +(y)
h

 T
+i�5CD

TaEaP̂+(x)
i E

F

= �1

2
P̂+(y, x)

⌦

1
↵

F

, (3.68)
Dh

P�i�5CD

Ta

†Ēa ̄T
+(x)

i

 ̄+(y)
E

F

= �1

2
P��xy

⌦

1
↵

F

, (3.69)

assuming that D is invertible.

As long as
⌦

1
↵

F

is finite and well-defined, these results imply the following facts
about the particle spectrum in the channel of the 16 representation of SO(10) symme-
try: the left-handed fields  �(x),  ̄�(x) support the massless Weyl fermions and have
long-range correlations, while the right-handed fields  +(x),  ̄+(x) are decoupled each
other and have short-range correlations of order the several lattice spacings with the com-
posite operators

⇥

 T
+i�5CD

TaEaP̂+(x)
⇤

and
⇥

P�i�5CD

Ta

†Ēa ̄T
+(x)

⇤

, respectively. As to
the right-handed field  +(x), however, the information of yet another correlation function
⌦

 +(y)
⇥

 T
+i�5CD

TaEaP̂�(x)
⇤ ↵

F

is also required before deducing a definite conclusion.
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The SM / SO(10)  chiral lattice  gauge theory with 16s
in the framework of overlap fermion/the Ginsparg-Wilson rel.

sample

June 26, 2018

1 Introduction

a

4
X

x

 ̄(x)D (x) = a

4
X

x

�
 ̄(x)P+DP̂� (x) +  ̄(x)P�DP̂+ (x)

 
(1)

�̂5 = �5(1� 2aD) �̂5
2 = I (2)

n = 4⇥ 16⇥ L

4 (3)

�
W

[UCP] = �
W

[U ] (4)

1



✲ x5 = ta5
✑

✑
✑

✑
✑

✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

✑
✑

t = −N + 1 t = N

ΨL(x) ΨR(x)−m0 (+m0)(+m0)

1

gradient flow approach について [Kaplan-Graboska ]

[Ago,  Y.K.  (2019)]



1)Phase transitions, Phase structures                in EW theory & GUT theories 

2)Realizations of gauge and flavors symmetries in EW theory & GUT theories

3)Baryon & Lepton numbers generations 

a. B symmetry violation/chiral anomaly, CP violation, non-equilibrium 
process

b.Chern# diffusion process, Sphaleron process

4)Phase transitions in the early Universe, Dynamics of Inflation

       and so on

Applications of lattice Standard Model/ SO(10) CGTs

Schwinger-Keldysh formalism for lattice gauge theories

       real-time, non-equilibrium dynamics / finite-temperature・density

Lefschetz-Thimble methods   
       sign problem

       generalized method(GLTM),  tempered method(tLTM)

[cf.  16 x 3  (three families)]



符号問題へのアプローチ
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)
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critical points zσ :

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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Morse theory, it follows that

CR =
∑

σ∈Σ
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7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2
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while the imaginary part of the action stays constant,

d
dt

ImS[z] =
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· d
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Morse theory, it follows that

CR =
∑

σ∈Σ
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{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2
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while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)

– 2 –

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
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while the imaginary part of the action stays constant,
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dt
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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Morse function:

h ≡ −ReS[z]. (1.5)

the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ R. (1.6)

h is monotonically decreasing along the flow:

d

dt
h = −1

2

{
∂S[z]

∂z
· d

dt
z(t) +

∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= −

∣∣∣∣
∂S[z]

∂z

∣∣∣∣
2

≤ 0. (1.7)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.8)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.9)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that
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the contour of path-integration is selected based on 
the result of Morse theory  [ F. Pham (1983) ] 

are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −
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∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
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{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄
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1 Equi-phase contour of the Path-Integration

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (1.1)

Let us consider a system with a complex action,

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.2)

The partition function is defined by the path-integration as

Z =

∫

CR
D[x] exp{−S[x]}, (1.3)

where the measure and the contour of the path-integration are specified as D[x] = dnx and

CR = Rn.

We then introduce a complexified model by the analytic continuation of the variable

xi ∈ R to the complex number zi = xi + iyi ∈ C, z ∈ Cn. Accordingly, the action of

the complexified model, S[z], is defined as the holomorphic extension of S[x]. Then, the

path-integration for the partition function may be defined along a certain complex contour

C in Cn by the analytic continuation of CR,

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}. (1.4)

We choose the contour C so that the imaginary part of the action, ImS[z], is constant

along the contour. Since the variation of ImS[z] is given by

δImS[z] =
1

2i

{
∂S[z]

∂z
· δz − ∂S̄[z̄]

∂z̄
· δ̄z

}
(1.5)

for z → z + δz, such a contour can be defined by the differential equations,

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]

∂z
, t ∈ [−∞,+∞]. (1.6)
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]
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(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)
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This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)
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Morse function:
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the flow equation:

d

dt
z(t) =

∂S̄[z̄]

∂z̄
,

d

dt
z̄(t) =

∂S[z]
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h is monotonically decreasing along the flow:
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dt
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2
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At the same time, the imaginary part of the action stay constant.

d

dt
ImS[z] =

1

2i

{
∂S[z]

∂z
· d

dt
z(t)− ∂S̄[z̄]

∂z̄
· d

dt
z̄(t)

}
= 0 (1.8)

a critical point σ:

∂S[z]

∂z

∣∣∣∣
z=zσ

= 0. (1.9)

A Lefschetz Thimble Jσ: the union of all downward flows which trace back to zσ at t = −∞.

Since the Gaussian fixed point z = 0 is usually a critical point,

∂S[z]

∂z

∣∣∣∣
z=0

= 0, (1.10)

there is the Lefschetz Thimble associated with z = 0, which we denote J0. The set Σ which

includes J0 would be a very natural possible choice for the integration cycle.

2 Tangent vectors at the critical point

Eigenvectors of Hesse matrix: Very close to the critical point z = 0, the flow equation

may be linearized as
d

dt
z(t) = K̄ z̄(t), (2.1)

where K is the Hesse matrix at the critical point,

Kij =
∂2S[z]

∂zi∂zj

∣∣∣∣
z=0

. (2.2)

Without loss of generality, one may assume that K is normal, KK† = K†K. Then K is

diagonalized by a Unitary matrix

KU = UD, D = diag(κ1,κ2, · · · ,κα, · · · ). (2.3)

This implies that

Uα
i KijU

β
j = Uα

i κ
βUβ

i = Uα
i κ

αUβ
i . (2.4)
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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are safely included by reweighting, and that the results of the number density agree with

those obtained by the complex Langevin simulations within statistical errors, except for a

few values of µ, and overall, they are consistent with each other.

This paper is organized as follows. In section 2, we review the basics of the complexifi-

cation of lattice models on Lefschetz thimbles. Section 3 is devoted to the description of the

hybrid Monte Carlo algorithm which is applicable to lattice models defined on Lefschetz

thimbles. In section 4, the algorithm is applied to the λφ4 model with chemical potential.

In the final section 5, we conclude with a few discussions.

2 Complexified models on Lefschetz thimbles

First we review the basics of the complexification of lattice models on Lefschetz thimbles[10,

11]. Let us consider a lattice theory with n real degrees of freedom and denote the real

field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and

the associate gradient (downward) flow equation is given by7

d

dt
zi(t) =

∂S̄[z̄]

∂z̄i
(t ∈ R). (2.2)

The set of critical points Σ consists of the points {zσ} which satisfy ∂S[z]/∂z̄i|z=zσ = 0.

Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)

In this result, for the critical points {zσ} satisfying −ReS[zσ] > max {−ReS[x]} (x ∈ CR),
it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-

integration. On the other hand, for the critical points {zσ} in the original cycle CR (i.e.

classical solutions in the original theory), it holds that ⟨CR,Kσ⟩ = 1 and the associated

thimbles contribute with the relative weights proportional to exp(−S[zσ]). In particu-

lar, for the classical vacuum in the original theory zvac ∈ CR, it holds that −ReS[zvac] =

max {−ReS[x]} (x ∈ CR) and therefore the associated thimble Jvac contributes most among

all the thimbles. And, in the above formula eq. (2.5), the measure on the thimbles

D[z] = dnz|Jσ
should be specified based on the knowledge of the geometry of {Jσ}, in

particular, their tangent spaces.

As to the expectation value of an observable O[z], it is defined by the formula,

⟨O[z]⟩ = 1

Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified

as follows:

⟨O[z]⟩ = ⟨O[z]⟩Jvac . (2.8)

We then summarize a few geometric properties of Lefschetz thimbles. First we recall

that for a given critical point zσ ∈ Σ, the associated thimble Jσ is the union of all downward

flows which trace back to zσ at t = −∞. In the vicinity of the cirtical point zσ, the flow

equation eq. (2.2) can be linearized as9

d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)

The complex symmetric matrix Kij , according to the Takagi factorization theorem[39], can

be cast into a positive diagonal matrix as vαi Kijv
β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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field variables as x = (x1, · · · , xn). It is assumed that x takes the value in a subset CR of

Rn and the action of the model S[x] has a non-zero imaginary part. The partition function

of the model is defined by the path-integration over CR (⊆ Rn),

Z =

∫

CR
D[x] exp{−S[x]}, (2.1)

where the measure is given by D[x] = dnx.

In complexification, the field variables are extended to complex variables z ∈ Cn,

and the action is extended to a holomorphic function of z, S[z]. As for the cycle of the

path-integration, Morse theory tells us how to select the set of Lefschetz thimbles which is

homologically equivalent to CR. Morse function in our case is defined by h ≡ −ReS[z] and
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dt
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Associated with a critical point zσ, a Lefschetz thimble Jσ is defined by the union of all

downward flows which trace back to zσ at t = −∞. The thimble is a n-dimensional real

submanifold in Cn. One can introduce another n-dimensional real submanifold Kσ of Cn

by the union of all downward flows which converge to zσ at t = +∞ so that its intersection

number is unity with Jσ and vanishing otherwise, ⟨Jσ,Kτ ⟩ = δστ . Then, according to

Morse theory, it follows that

CR =
∑

σ∈Σ
nσJσ, nσ = ⟨CR,Kσ⟩ . (2.3)

7Along the flow, h is monotonically decreasing,

d
dt

h = −1
2

{
∂S[z]
∂z

· d
dt

z(t) +
∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= −

∣∣∣∣
∂S[z]
∂z

∣∣∣∣
2

≤ 0,

while the imaginary part of the action stays constant,

d
dt

ImS[z] =
1
2i

{
∂S[z]
∂z

· d
dt

z(t)− ∂S̄[z̄]
∂z̄

· d
dt

z̄(t)

}
= 0.
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√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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And the partition function of the model is given by the formula,

Z =
∑

σ∈Σ
nσ exp{−S[zσ]}Zσ, (2.4)

Zσ =

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}. (2.5)
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it holds that ⟨CR,Kσ⟩ = 0 and the associated thimbles do not contribute to the path-
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should be specified based on the knowledge of the geometry of {Jσ}, in
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Z

∑

σ∈Σ
nσ exp{−S[zσ]}Zσ ⟨O[z]⟩Jσ , (2.6)

where

⟨O[z]⟩Jσ =
1

Zσ

∫

Jσ

D[z] exp{−Re
(
S[z]− S[zσ]

)
}O[z]. (2.7)

As a possible and practical approximation to the formula eq. (2.6), one may take the single

contribution of the thimble associated with the classical vacuum, Jvac, as considered by

AuroraScience collaboration[11].8 In this approximation, the above formula is simplified
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d

dt

(
zi(t)− zσi

)
= K̄ij

(
z̄j(t)− z̄σj

)
, Kij ≡ ∂i∂jS[z]|z=zσ

. (2.9)
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β
j = καδαβ, where κα ≥ 0 (α = 1, · · · , n)

8 While ⟨O[z]⟩Jσ may be evaluated through Monte Carlo simulations as discussed in [11, 36] and will

be discussed in the following sections, it is not straightforward to compute {Zσ}(σ ∈ Σ) in general. At

one-loop, i.e. in the saddle point approximation, Zσ = 1/
√
detK where K is defined in eq. (2.9) below.

9In the following, we will use the abbreviation ∂/∂zi = ∂i, ∂̄/∂z̄i = ∂̄i.
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Observables

Monte Carlo on Lefschetz Thimbles:  
no `local’ sign-problem, but huge numerical cost
multiple Thimbles may contribute,

    then `global’ sign-problem may remains

one-site Hubbard, 0,1,2+1 massive Thirring,  1+1 massive Schwinger model 
0,1,3+1 λφ4 μ model,  1+1 massless Schwinger model

generalized LTM: 
GLTM(contraction algo.) 
tLTM  (parallel tempering)

[Alexandru et al.(2016)]
[Fukuma & Umeda(2017)]



Algorithm of HMC on Lefschetz thimbles

b) To formulate / solve the molecular dynamics 
   introduce a dynamical system constrained to the thimble
   use 2nd-order constraint-preserving symmetric integrator

c) To measure observables 
   try to reweight the residual sign factors

phase factor reweighed. Let us denote the simple statistical average of an operator o[z] on

the thimble Jσ by ⟨o[z]⟩′Jσ
:

⟨o[z]⟩′Jσ
=

1

Nconf

Nconf∑

k=1

o[z(k)], (3.28)

where Nconf is the number of field configurations obtained by the hybrid Monte Carlo

updates. The expectation value of a given observable O[z] on the thimble Jσ should then

be evaluated by the following formula,

⟨O[z]⟩Jσ
=

⟨eiφzO[z]⟩′Jσ

⟨eiφz⟩′Jσ

. (3.29)

For this formula eq. (3.29) to work, it is crucial that the averages of the residual sign factors,

{⟨eiφz⟩′Jσ
}(σ ∈ Σ), are not vanishingly small, in particular, for the thimble associated with

the classical vacuum, Jvac. This is the possible sign problem in our hybrid Monte Carlo

method, which should be studied carefully and systematically.

4 HMC simulations of the complexified λφ4 model at finite density

Now we test the hybrid Monte Carlo algorithm described in the previous section by applying

it to the complex λφ4 model with chemical potential µ[17, 30, 34]. The action of the model

is defined in the lattice unit by

S =
∑

x∈L4

{(
ϕ†(x+ 0̂)e+µ − ϕ†(x)

)(
e−µϕ(x+ 0̂)− ϕ(x)

)

+
3∑

k=1

|ϕ(x+ k̂)− ϕ(x)|2 + κ

2
ϕ†(x)ϕ(x) +

λ

4

(
ϕ†(x)ϕ(x)

)2}
(4.1)

=
∑

x∈L4

{
− φa(x)φb(x+ 0̂)

[
δab cosh(µ)− iϵab sinh(µ)

]

−
3∑

k=1

φa(x)φa(x+ k̂) +
(8 + κ)

2
φa(x)φa(x) +

λ

4

(
φa(x)φa(x)

)2}
, (4.2)

where ϕ(x) =
(
φ1(x) + iφ2(x)

)
/
√
2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and

rescaled for later convenience as za(x) →
√
K0 za(x) so that K0(8 + κ) = 1 and K2

0λ = λ0.

The complexified action then reads

S[z] =
∑

x∈L4

{
+

1

2
za(x)za(x) +

λ0

4

(
za(x)za(x)

)2 −K0

3∑

k=1

za(x)za(x+ k̂)

−K0 za(x)zb(x+ 0̂)
[
δab cosh(µ)− iϵab sinh(µ)

]}
. (4.3)

– 11 –

should not be vanishingly small 

A possible sign problem ! Need a careful and systematic study !

a) To generate a thimble
   use the parameterization
   solve the flow eqs. for both z[e,t’] & Vzα[e,t’]  by 4th-order RK

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t ≪ 0 can be expressed without loss of generality by

z(t) ≃ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) ≃ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ∥e∥2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 ≪ 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ∥ϵ∥2 ≪ n where ϵα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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/
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2 and the real field variables φa(x) ∈ R (a = 1, 2) are

used in the second expression. We assume that the lattice L4 is finite with a linear extent L

and a volume V = L4, and the field variables satisfy the periodic boundary conditions. In

complexification, the field variables are complexified as φa(x) → za(x) ∈ C (a = 1, 2) and
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where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t ≪ 0 can be expressed without loss of generality by

z(t) ≃ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) ≃ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ∥e∥2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 ≪ 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ∥ϵ∥2 ≪ n where ϵα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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where

numerically very demanding !

the saddle-point structures !



zσ

x ∈ CR (⊆ Rn) −→ x+ iy = z ∈ Cn (0.1)
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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z(t)

t’= t - t0

eα z(t0)

Parametrization of points z 
on Lefschetz thimbles 

Constrained dynamical system

parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1
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{
(+iV̄ α
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α)
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λαwβ
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V̄ α
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zi − V̄ β
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= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.
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α and
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′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
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{G−1}αβ [x] pαpβ +

1
2
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S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ∥z(t0) − zσ∥ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.
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β
zi{V −1
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′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange
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[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that
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18We use the abbreviation, d
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α and

the metric Gαβ [x] ≡ V α
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One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
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{G−1}αβ [x] pαpβ +
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}
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TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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A conserved Hamiltonian:

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t ≪ 0 can be expressed without loss of generality by

z(t) ≃ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) ≃ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ∥e∥2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 ≪ 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the
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δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ∥ϵ∥2 ≪ n where ϵα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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parameters of the Runge-Kutta method, nlefs and h ≡ t′/nlefs, and the size of the system,

n.

Once the matrix Vz = (V α
zi) is obtained, its inverse V −1

z = ({V −1
z }αi ) such that∑

β V
β
zi{V −1

z }βj = δij and its determinant detVz are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,18

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[38]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

18We use the abbreviation, d
dτ y(τ) = ẏ, where τ denotes the time coordinate of the dynamical system.

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[40]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing the constraints,

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method20: to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequences (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

until a stopping condition,
∥∥∥V α

z [e(n), t′(n)]
(
∆eα(k) + eα(n)κα∆t′(k)

)∥∥∥
2
≤ n ϵ′2, (3.23)

is satisfied for a sufficiently small ϵ′ to achieve a given precision.21 (See fig. 1.) Once

(eα(n+1), t′(n+1)) and z[e(n+1), t′(n+1)] are obtained, we compute the set of tangent vectors

{V α
z [e(n+1), t′(n+1)]} and the inverse matrix V −1

z [e(n+1), t′(n+1)]. The second constraint in

eq. (3.17) is then solved by

1

2
∆τ λα

[v] = Im

[{
V −1
z [e(n+1), t′(n+1)]

}α
i

(
wn+1/2
i − 1

2
∆τ ∂̄iS̄[z̄

n+1]
)]

. (3.24)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) can also be used in Langevin-type updates.

21The squared norm of eα(k+1) has the second order correction, ∥eα(k+1)∥2 = ∥e(k)+∆e(k)∥2 = n+(∆e(k))
2,

and it is renormalized as eα(k+1) → eα(k+1)/
√

1 + (∆e(k))2/n.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),

we employ the second order constraint-preserving symmetric integrator[36]: it is assumed

first that zn and wn satisfy the constraints

zn = z[e(n), t′(n)], (3.11)

wn = V α
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and zn+1 and wn+1 are then determined for a given step size ∆τ by
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This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-
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(k)) (k = 0, 1, · · · ) with (eα(0), t
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wn = V α
z [e(n), t′(n)]wα(n), wα(n) ∈ R, (3.12)

and zn+1 and wn+1 are then determined for a given step size ∆τ by

wn+1/2 = wn − 1

2
∆τ ∂̄S̄[z̄n] − 1

2
∆τ iV α

z [e(n), t′(n)]λα
[r], (3.13)

zn+1 = zn +∆τ wn+1/2, (3.14)

wn+1 = wn+1/2 − 1

2
∆τ ∂̄S̄[z̄n+1]− 1

2
∆τ iV α

z [e(n+1), t′(n+1)]λα
[v], (3.15)

where λα
[r] and λα

[v] are fixed by imposing

zn+1 = z[e(n+1), t′(n+1)], (3.16)

wn+1 = V α
z [e(n+1), t′(n+1)]wα(n+1), wα(n+1) ∈ R, (3.17)

respectively. The first constraint eq. (3.16) reads

z[e(n+1), t′(n+1)]− z[e(n), t′(n)] = ∆τ wn − 1

2
∆τ2 ∂̄S̄[z̄n]

−1

2
∆τ2 iV α

z [e(n), t′(n)]λα
[r]. (3.18)

This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,

∆eα(k) = eα(k+1) − eα(k),
n∑

α=1

∆eα(k)e
α(n) = 0, (3.19)

∆t′(k) = t′(k+1) − t′(k), (3.20)

are infinitesimal and (∆eα(k),∆t′(k)) and λα
[r](k)

are determined by

∆eα(k) + eα(n)κα∆t′(k) = Re

[
{V −1

z [e(n), t′(n)]}αi ×

(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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To verify the solutions, one may check if the following relation is satisfied:

∂̄iS̄
[
z̄[e, t′]

]
− V α

zi [e, t
′]καeα = 0. (3.3)

With what precision this relation holds should depend on ∥z(t0) − zσ∥ and Re
(
S[z(t0)] −

S[zσ]
)
, the parameters which indicate how close to the critical point zσ the reference point

z(t0) is, nlefs and h ≡ t′/nlefs, the parameters of the fourth-order Runge-Kutta method,

and n, the size of the system.

Once the matrix Vz = (V α
zi) is obtained, its determinant detVz and its inverse V −1

z =

({V −1
z }αi ) such that

∑
β V

β
zi{V −1

z }βj = δij are computed through LU decomposition.

3.2 Constrained molecular dynamics

To formulate the molecular dynamics on the thimble Jσ, we introduce a dynamical system

defined by the equations of motion,

żi = wi, (3.4)

ẇi = −∂̄iS̄[z̄]− iV α
zi λ

α, (3.5)

and the constraints,

zi = zi[e, t
′], (3.6)

where wi are the momenta conjugate to zi and λα ∈ R (α = 1, · · · , n) are the Lagrange

multipliers.19 It follows from the equations of motion eqs. (3.4), (3.5) and the constraint

eq. (3.6) that

wi = V α
zi [e, t

′]wα, wα ∈ R or Im
[
{V −1

z }αj wj
]
= 0. (3.8)

In this system, a conserved Hamiltonian is given by

H =
1

2
w̄iwi +

1

2

{
S[z] + S̄[z̄]

}
. (3.9)

It follows indeed that

Ḣ =
1

2
{ ˙̄wiwi + w̄iẇi}+

1

2

{
∂iS[z]żi + ∂̄iS̄[z̄] ˙̄zi

}

=
1

2

{
(+iV̄ α

ziλ
α)wi + w̄i(−iV α

ziλ
α)
}

=
i

2
λαwβ

{
V̄ α
ziV

β
zi − V̄ β

ziV
α
zi

}
= 0. (3.10)

19 The molecular dynamics on Lefschetz thimbles may be formulated by a Hamilton system on Riemann

manifolds[38]. For example, one may introduce auxiliary dynamical variables xα ≡ exp(κα(t′ + t0)) e
α and

the metric Gαβ [x] ≡ V α
zi [e, t

′]V̄ β
zi[e, t

′] exp(−κα(t′ + t0)) exp(−κβ(t′ + t0)) so that ||δz||2 = Gαβ [x]δxαδxβ .

One may then consider the Hamilton system with a non-separable Hamiltonian,

H =
1
2
{G−1}αβ [x] pαpβ +

1
2

{
S + S̄

}
[x] +

1
2
TrLn(G[x]). (3.7)

The equations of motion of this system may be solved by an implicit second order symplectic integrator.
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To integrate the equations of motion with the Lagrange multipliers eqs. (3.4) and (3.5),
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This is solved by a fixed-point iteration method:20 to find (eα(n+1), t′(n+1)) and λα
[r], we gen-

erate the sequence (eα(k), t
′
(k)) (k = 0, 1, · · · ) with (eα(0), t

′
(0)) = (eα(n), t′(n)) and λα

[r](k)
(k =

0, 1, · · · ) so that the increments,
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(
zi[e

(n), t′(n)] +∆τ wn
i − 1

2
∆τ2 ∂̄iS̄[z̄

n]− zi[e(k), t
′
(k)]
)]

,

(3.21)
1

2
∆τ2 λα

[r](k)
= Im

[
{V −1

z [e(n), t′(n)]}αi
(
zi[e

(n), t′(n)]− zi[e(k), t
′
(k)]
)]

, (3.22)

20This method to find (eα(n+1), t′(n+1)) and λα
[r] in eq. (3.18) may also be used in Langevin-type updates.
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Lefschetz thimble上の(H)MCの数値的な負荷

{ Vα } / Det[Vαi] の計算がMetropolis update(MolecularDynamics step)毎に必要 

Solving Gradient flow eq. for Tanget vectors 

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)

Even if K is degenerate, one can show by further unitary transformations of the basis

vectors {Uα
i } that

Uα
i KijU

β
j = sign(α)καδαβ , sign(α) = ±1. (2.6)

(This is indeed the case for the complex λφ4 with a finite µ. Must have a general proof.)

Tangent vectors: One can introduce the basis vectors {V α
i } defined by

V α
i (0) ≡ Uα

i exp(i θα), θα = −arg(sign(α)κα)/2, (2.7)

which satisfy

V α
i (0)KijV

β
j (0) = |κα|δαβ . (2.8)

These vectors {V α
i (0)} span the tangent space of the Lefschetz Thimble at the critical

point. Very close to the critical point, the Thimble may be parametrized as

zi ≃ ξαV α
i (0), (2.9)

where ξα is a real vector, and S[z] reads

S[z] ≃ 1

2
ziKijzj =

1

2
|κα|ξαξα. (2.10)

3 Tangent vector flows

Tangent vectors at the given point z(t) of the Thimble should be determined by the Lie

dragging of {V α
i (0)}.

Flow equations for the tangent vectors:

V̇ α
i (t) = V̄ α

j (t)∂̄j ∂̄iS̄[z̄(t)]. (3.1)

This follows from the condition that tangent vectors should commute with the direction

vector of the Lefschetz flow, w ≡ ∂̄S̄[z̄] (and with each other):

{w∂ + w̄∂̄}V α − {V α∂ + V̄ α∂̄}w = 0. (3.2)

Note that w = ∂̄S̄[z̄] itself satisfy the same equation:

ẇi =
d

dt
{∂̄iS̄[z̄]} = ˙̄zj ∂̄j ∂̄iS̄[z̄] (3.3)

= w̄j ∂̄j ∂̄iS̄[z̄] (3.4)
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α = 1,2, ... , f x L4 並列に実行可能 

Computing V-1, detV 

Therefore, a residual sign factor comes from the Jacobian,

J =

∣∣∣∣
∂(zi)

∂(ξα)

∣∣∣∣ = det [exp(−|κα|τ)V α
i (τ)] . (5.3)

zi ≃ zi(t) + ξαV α
i (t) (5.4)

δzi = δξα V α
i (t) (5.5)

∏

i

dzi[t] =
∏

α

dξα det [V α
i (t)] . (5.6)

J =

∣∣∣∣
∂(zi)

∂(ξα)

∣∣∣∣ = det [V α
i (τ)] . (5.7)

6 A Hybrid Monte Carlo Algorithm

Auxiliary variable:

(ϵα, τ) ←→ ξα ≡ ϵα exp(|κα|τ) (6.1)

δz[ϵα, τ ] = (δϵα + δτ |κα|ϵα)V α(t) (6.2)

= δξα exp(−|κα|τ)V α(t) (6.3)

Hamilton system for MD: let pα conjugate to ξα,

ξ̇α = pα (6.4)

ṗα = − ∂S

∂ξα
= −1

2

{
∂iS[z]V

α
i (τ) + ∂̄iS̄[z̄]V̄

α
i (τ)

}
exp(−|κα|τ) (6.5)

where the Hamiltonian is defined by

H =
pαpα

2
+ S[z[ϵα, τ ]]. (6.6)

Algorithm:

1. Initialize (ϵα, τ).

Generate N of unit gaussian random numbers ηα and set ϵα = ηα exp(−|κα|τ) with
τ ≃ 20.0. Then, normalize the norm of the vector ϵα to ϵ

√
N with ϵ ≃ 0.01.

2. Compute z[ϵα, τ ] and V α(τ).

Solve the flow equations by the fourth-order Runge-Kutta
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1 Complexified model on Lefschets Thimbles

The original system with a complex action:

S[x] = ReS[x] + iImS[x], x ∈ Rn. (1.1)

The partition function of the system is defined by the path-integration:

Z =

∫

CR
D[x] exp{−S[x]}, (1.2)

where the measure is given by D[x] = dnx and the contour of the path-integration is

specified as CR = Rn.

The complexified model defined by the analytic continuation:

xi ∈ R→ zi = xi + iyi ∈ C (z ∈ Cn)

S[x]→ S[z] (holomorphic extension)

partition function:

Z =

∫

CR
D[x] exp{−S[x]} =

∫

C
D[z] exp{−S[z]}, (1.3)

where the path-integration may be defined with a certain complex contour C in Cn by the

analytic continuation of CR.

Lefschetz Thimbles as the integration cycle: Morse theory tells us how to express

the original contour CR by the sum of the Lefschetz Thimbles associated with a certain set

of the critical points, Σ,

CR =
∑

σ∈Σ
Jσ (1.4)
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z(t)

t’= t - t0

eα z(t0)

where {Uα
z } is a orthonormal basis and E is a real upper triangle matrix.13 In the vicinity

of z, therefore, the thimble can be parametrized by real orthogonal coordinates {δξα}(α =

1, · · · , n) such that δz = Uα
z δξ

α, |δz|2 = δξ2, and dnz |Jσ
= dnδξ detUz. Thus the measure

on the thimbles, D[z] = dnz|Jσ
, gives rise to an extra complex phase defined by

eiφz = detUz =
detVz

| detVz|
. (2.14)

Given the tangent space Tz and the basis of tangent vectors {V α
z }(α = 1, · · · , n),

directions normal to the thimble at z ∈ Jσ are determined by the set of normal vectors

{iUα
z } or {iV α

z }(α = 1, · · · , n). This is because the reality condition eq. (2.12) implies that

Re
{
(−i)V̄ α

zi V
β
zi

}
= 0 (α,β = 1, · · · , n), (2.15)

and {iV α
z } are orthogonal to {V β

z } with respect to the inner product in R2n.

Finally, any point z on the thimble Jσ is identified uniquely by the direction of the

flow on which z lies and the time of the flow to get to z, both defined referring to a certain

asymptotic region close to the critical point. In fact, the asymptotic solutions to the flow

equations eqs. (2.2) and (2.11) for t ≪ 0 can be expressed without loss of generality by

z(t) ≃ zσ + vα exp(καt) eα ; eαeα = n, (2.16)

V α
z (t) ≃ vα exp(κα t), (2.17)

and one can define the direction of the flow by eα (α = 1, · · · , n; ∥e∥2 = n) and the time of

the flow by t′ = t− t0 with a certain reference time t0 ≪ 0.14 One can then define a map

z[e, t′] : (eα, t′) → z ∈ Jσ by

z[e, t′] = z(t)|t=t′+t0 , (2.18)

provided the asymptotic form of the flow z(t) is given by eq. (2.16).15 Moreover, under

infinitesimal variations of the parameters (eα, t′), the variation of z[e, t′] is given by the

following formula,

δz[e, t′] = V α
z [e, t′] (δeα + καeαδt′). (2.19)

This is because an infinitesimal variation of the flow δz(t) itself satisfies the flow equation

for a tangent vector,

δżi(t) = ∂̄i∂̄jS̄[z̄] δzj(t), (2.20)

13 By the Iwasawa decomposition, Vz can be expressed in the form Vz = UzDN , where Uz is unitary,

D is positive diagonal, and N is upper triangle with the unit diagonal elements. But, from the property

V̄ α
ziV

β
zi = V̄ β

ziV
α
zi , one can show further that N is real. Therefore, there exists a real upper triangle matrix

E = DN , and the tangent vectors {V α
z } are related to the orthonormal tangent vectors {Uα

z } by V α
z =

Uβ
z Eβα.
14t0 should be chosen so that ∥ϵ∥2 ≪ n where ϵα ≡ exp(καt0)e

α and the linear approximation of the flow

equation is valid.
15In [37], a similar map between a thimble and its asymptotic “Gaussian” region has been introduced.
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Asymptotic solutions of Flow equations

Therefore, if K is non-degenerate, one has

Uα
i KijU

β
j = καδαβ . (2.5)

Even if K is degenerate, one can show by further unitary transformations of the basis

vectors {Uα
i } that

Uα
i KijU

β
j = sign(α)καδαβ , sign(α) = ±1. (2.6)

(This is indeed the case for the complex λφ4 with a finite µ. Must have a general proof.)

Tangent vectors: One can introduce the basis vectors {V α
i } defined by

V α
i (0) ≡ Uα

i exp(i θα), θα = −arg(sign(α)κα)/2, (2.7)

which satisfy

V α
i (0)KijV

β
j (0) = |κα|δαβ . (2.8)

These vectors {V α
i (0)} span the tangent space of the Lefschetz Thimble at the critical

point. Very close to the critical point, the Thimble may be parametrized as

zi ≃ ξαV α
i (0), (2.9)

where ξα is a real vector, and S[z] reads

S[z] ≃ 1

2
ziKijzj =

1

2
|κα|ξαξα. (2.10)

3 Tangent vector flows

Tangent vectors at the given point z(t) of the Thimble should be determined by the Lie

dragging of {V α
i (0)}.

Flow equations for the tangent vectors:

V̇ α
i (t) = V̄ α

j (t)∂̄j ∂̄iS̄[z̄(t)]. (3.1)

This follows from the condition that tangent vectors should commute with the direction

vector of the Lefschetz flow, w ≡ ∂̄S̄[z̄] (and with each other):

{w∂ + w̄∂̄}V α − {V α∂ + V̄ α∂̄}w = 0. (3.2)

Note that w = ∂̄S̄[z̄] itself satisfy the same equation:

ẇi =
d

dt
{∂̄iS̄[z̄]} = ˙̄zj ∂̄j ∂̄iS̄[z̄] (3.3)

= w̄j ∂̄j ∂̄iS̄[z̄] (3.4)

– 3 –
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Re Φ
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0.4
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Im Φ

Figure 1: φ(t) = (1/N)
∑

n φn(t) at flow times t = 0, 0.1, 0.2, . . . , 1.9, 2.0 from

bottom to top. The parameters are set to N = 8, m = 1, µ = 1.3, g2 = 1/2.

The full circles are the critical points of S, and the empty circles are the log

singularities of S.

We follow the steps given in subsec. 2.2 with the complexification of the variables φn ∈
(−π, π]. We first set the largest flow time to T = 2, and prepare flow times {tα} (α =

0, 1, 2, . . . , 20) with equal separations as t0 = 0, t1 = 0.1, t2 = 0.2, . . . , t20 = 2.0. Fig. 1

shows φ(t) ≡ (1/N)
∑

n φn(t) at flow times t = tα with φn(0)’s set to the same value. As

Step 1 of our algorithm, we make a cold start (φn = 0) for every replica α, and numerically

solve the differential equations (2.7) and (2.8) with the adaptive 4th-order Runge-Kutta

method to obtain the triplet (xα, ztα , Jtα). We repeat the Metropolis process twenty times

in Step 2,7 which is followed by a single sequence of swapping of Step 3. We then repeat Steps

2 and 3 ten times (as Step 4). With the first 5 data discarded as initial sweeps, we estimate

correlation functions with 1,000 data. Fig. 2 shows the absolute value of the denominator

in (2.14) (divided by the sample size) as a function of µ with the other parameters set to

N = 8, m = 1, g2 = 1/2. The blue points are the result for the flow time T = 0. They

correspond to the usual reweighting calculus, and show that the sign problem actually exists

for µ ! 1.0. The green (red) points are the result for the flow time T = 2 without (with)

the parallel tempering implemented. The results show that the sign problem disappears at

T = 2.

Fig. 3 shows the chiral condensate ⟨χ̄χ⟩ as a function of µ. The other parameters are

again set to N = 8, m = 1, g2 = 1/2. The dotted line represents the analytic result

(3.7). The blue points are the result for the flow time T = 0 and exhibit large statistical

7 As a proposal distribution we use the uniform distribution within the interval [−ϵ, ϵ], where ϵ is chosen

randomly from {1, 10−1, 10−2, . . . , 10−[2tα+1]} ([k] is the floor of k).
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Note that under the flow the real part SR
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∣
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(
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2 ≥ 0. In the original

Lefschetz thimble algorithm, one takes the limit t → ∞, in which Σt approaches a union of

connected components (Lefschetz thimbles), and the action has a constant imaginary part

on each thimble.3 In a generic situation the phase change coming from Jt(x) is sufficiently

mild, so that the Monte Carlo calculation for the expression (2.5) is free from sign problems.

However, two different thimbles are also disconnected in the sense of Monte Carlo sampling

because SR gets increased indefinitely near the boundary of each thimble. This multi-

modality of distribution makes the Monte Carlo calculation impractical, especially when

contributions from more than one thimble are relevant to estimating expectation values.

A very interesting proposal made in [11] is to use a finite amount t which is chosen to

be large enough to avoid the sign problem but also not too large in order to enable the

exploration in the configuration space. However, one does not know a priori whether the

adopted value of t is actually free from the two obstacles (the sign and multi-modal problems)

simultaneously. We will show that one can solve both simultaneously if we implement the

parallel tempering method in their algorithm with the flow time as a tempering parameter.

2.2. Implementation of the parallel tempering

The basic idea of the parallel tempering algorithm [13, 14, 15] is the following. Suppose that

we want to estimate expectation values with action S(x;λ), where x ∈ RN is a dynamical

variable and λ is the parameter (such as the temperature) we want to use for a Monte Carlo

calculation. The point is that even when configurations are multi-modal for the original λ

(e.g., when λ represents a very low temperature), the multi-modality can be made mild if

one takes another value λ̃ (e.g., λ̃ corresponding to a very high temperature). So, if the

configuration space is enlarged such that the parameter can change gradually between λ

and λ̃, two separated configurations for the original λ will be connected by passing through

configurations at parameters near λ̃. The parallel tempering algorithm enables the move of

configurations among different λ by enlarging the configuration space from RN = {x} to

the set of A + 1 replicas, (RN)A+1 = {(x0, x1, . . . , xA)}. We there assign λα to replica α

(α = 0, 1, . . . , A), such that λ0 = λ̃ and λA = λ and that λα and λα+1 are sufficiently close to

each other. We set up an irreducible, aperiodic Markov chain for the enlarged configuration

space such that the probability distribution for (x0, x1, . . . , xA) eventually approach the

3Generically there is a single critical point zσ on each connected component Jσ, and Jσ is obtained as the

set of orbits flowing out of zσ. The complementary submanifold to Jσ in CN consists of orbits which flow

into zσ, and will be denoted by Kσ. The integrations in (2.5) are dominated by points near the intersection

of Kσ and RN ,
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equilibrium distribution proportional to
∏

α

e−S(xα;λα). (2.9)

We finally take sample averages only with respect to a sample taken from α = A. The

simplest algorithm to realize this idea4 is to swap two configurations of two adjacent replicas

α and α + 1, [i.e. to update the configuration (xα = x, xα+1 = x′) to (xα = x′, xα+1 = x)]

with the probability

wα(x, x
′) = min

(

1,
e−S(x′;λα)−S(x;λα+1)

e−S(x;λα)−S(x′,λα+1)

)

, (2.10)

which obviously satisfies the detailed balance condition

wα(x, x
′) e−S(x;λα)−S(x′,λα+1) = wα(x

′, x) e−S(x′;λα)−S(x,λα+1). (2.11)

Our proposal is to take the flow time t as such tempering parameter. The basic algorithm

is thus as follows.5

• Step 0. Fix the maximum flow time T which should be sufficiently large such that

the sign problem disappears there, and pick up flow times {tα} from the interval [0, T ]

with t0 = 0 < t1 < · · · < tA = T . The values of A and tα are determined manually or

adaptively to optimize the acceptance ratio in Step 3 below.

• Step 1. Choose an initial value xα ∈ RN for each replica α, and numerically solve the

differential equations (2.7) and (2.8) to obtain the triplet (xα, ztα , Jtα).

• Step 2. For each α, construct a Metropolis process to update the value of x. Explicitly,

we take a value x′
α from xα using a symmetric proposal distribution, and recalculate

the triplet (x′
α, z

′
tα , J

′
tα) using the x′

α as the initial value. We then update xα to x′
α

with the probability min(1, e−∆Seff,α), where

∆Seff ,α ≡ Seff(x
′
α, tα)− Seff(xα, tα)

= SR(z
′
tα)− ln

∣

∣detJ ′
tα

∣

∣− SR(ztα) + ln
∣

∣detJtα

∣

∣ (2.12)

[recall that Seff(x; t) = SR

(

zt(x)
)

− ln
∣

∣detJt(x)
∣

∣, eq. (2.6)]. We repeat the process

sufficiently many times such that local equilibrium is realized for each α.

• Step 3. Starting from α = 0 through α = A − 1, swap the values of x between two

adjacent replicas α and α + 1 with the probability

wα(xα, xα+1) ≡ min
(

1,
e−Seff (xα+1; tα)−Seff (xα; tα+1)

e−Seff (xα; tα)−Seff (xα+1; tα+1)

)

. (2.13)

4 Of course, there can be many variations for this algorithm.
5To make discussions simple, we only take the flow time as a tempering parameter. The algorithm can

be readily extended such that other parameters are included as extra tempering parameters.
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equilibrium distribution proportional to
∏

α

e−S(xα;λα). (2.9)

We finally take sample averages only with respect to a sample taken from α = A. The

simplest algorithm to realize this idea4 is to swap two configurations of two adjacent replicas

α and α + 1, [i.e. to update the configuration (xα = x, xα+1 = x′) to (xα = x′, xα+1 = x)]

with the probability

wα(x, x
′) = min

(

1,
e−S(x′;λα)−S(x;λα+1)

e−S(x;λα)−S(x′,λα+1)

)

, (2.10)

which obviously satisfies the detailed balance condition

wα(x, x
′) e−S(x;λα)−S(x′,λα+1) = wα(x

′, x) e−S(x′;λα)−S(x,λα+1). (2.11)

Our proposal is to take the flow time t as such tempering parameter. The basic algorithm

is thus as follows.5

• Step 0. Fix the maximum flow time T which should be sufficiently large such that

the sign problem disappears there, and pick up flow times {tα} from the interval [0, T ]

with t0 = 0 < t1 < · · · < tA = T . The values of A and tα are determined manually or

adaptively to optimize the acceptance ratio in Step 3 below.

• Step 1. Choose an initial value xα ∈ RN for each replica α, and numerically solve the

differential equations (2.7) and (2.8) to obtain the triplet (xα, ztα , Jtα).

• Step 2. For each α, construct a Metropolis process to update the value of x. Explicitly,

we take a value x′
α from xα using a symmetric proposal distribution, and recalculate

the triplet (x′
α, z

′
tα , J

′
tα) using the x′

α as the initial value. We then update xα to x′
α

with the probability min(1, e−∆Seff,α), where

∆Seff ,α ≡ Seff(x
′
α, tα)− Seff(xα, tα)

= SR(z
′
tα)− ln

∣

∣detJ ′
tα

∣

∣− SR(ztα) + ln
∣

∣detJtα

∣

∣ (2.12)

[recall that Seff(x; t) = SR

(

zt(x)
)

− ln
∣

∣detJt(x)
∣

∣, eq. (2.6)]. We repeat the process

sufficiently many times such that local equilibrium is realized for each α.

• Step 3. Starting from α = 0 through α = A − 1, swap the values of x between two

adjacent replicas α and α + 1 with the probability

wα(xα, xα+1) ≡ min
(

1,
e−Seff (xα+1; tα)−Seff (xα; tα+1)

e−Seff (xα; tα)−Seff (xα+1; tα+1)

)

. (2.13)

4 Of course, there can be many variations for this algorithm.
5To make discussions simple, we only take the flow time as a tempering parameter. The algorithm can

be readily extended such that other parameters are included as extra tempering parameters.
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Figure 2: The absolute value of the denominator in (2.14) (divided by the sample

size) as a function of µ with the other parameters set to N = 8, m = 1, g2 = 1/2.

The blue points are the result for the flow time T = 0 and show that the sign

problem actually exists for µ ! 1.0. The green (red) points are the result for the

flow time T = 2 without (with) the parallel tempering implemented, and show

that the sign problem disappears at T = 2.
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Figure 3: Chiral condensate ⟨χ̄χ⟩ as a function of µ with the other parameters

set to N = 8, m = 1, g2 = 1/2. The dotted line represents the analytic result

(3.7). The blue (green) points are the result for the flow time T = 0 (T = 2)

without the parallel tempering implemented. The red points are the result for

the flow time T = 2 with the parallel tempering implemented.
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Hubbard model [Hubbard (1963)]

hopping term

chemical potential term

interaction term
(four-fermion interaction)

The Hubbard model is a simplified model of electrons in a solid.�
: creation, annihilation operator of 
an electron with spin               on site    , 
satisfying
with other anti-commutators 0

c†
x�

, c
x�
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Half-filling is a state s.t. the number density operator vanishes:
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Then the Hamiltonian will be written as :
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FIG. 1. The Schwinger Keldysh contour (left) and its discretization (right).

determined by a time independent hamiltonian Ĥ(t) = Ĥ(0) = Ĥ, the system is in thermodynamic equilibrium which
we will assume. The non-equilibrium case can also be studied within the formalism after a slight modification. We will
briefly comment on this point later. Expectation values of this form can be obtained from the generating functional

Z[J
+

, J
�

, J� ] = Tr[U(T � i�, T ; J�)U(T, T 0; J
�

)U(T 0, T ; J
+

)], (3)

where J
±

, J� are external classical currents coupled to the fields in the theory and U(T, T 0; J) is the time evolution
operator under the influence of the external current J between times T and T 0. In order to compute correlators as in
(2) we need T < t

1

, t
2

, · · · < T 0. The generating function has the path integral representation [3, 4]
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where the action, SSK , is defined as an integral of the Lagrangian along a time contour, C, which lives in the complex
plane:
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with the boundary conditions �
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(T � i�/2) = ��(T � i�/2),��(T �
i�) = �

+

(T ) (��(T � i�) = ��
+

(T ) for fermionic fields). The contour C is depicted in Fig. 1 (left). The upper and
lower parts of the contour, parallel to the real axis, are associated with the forward and backward time evolution (i.e.
the second and third terms in the trace in Eq. 3). The parts that are along the imaginary axis are associated with
the insertion of the density matrix (i.e. the first term in the trace in Eq. 3). Note that we chose to split the density
matrix into two parts that are inserted at times T and T 0. This choice assumes the existence of equilibrium where the
Hamiltonian is time independent and the density matrix commutes with time evolution operator. In order to study
an out-of-equlibrium system this contour has to be modified such that the density matrix is inserted at time T 0 as a
whole. Even though our construction can be generalized, we will not discuss this case in this paper.

Given the path integral representation, the various correlators can be computed by di↵erentiating Z[J
+

, J
�

, J� ]
with respect to external sources. The time ordering is such that the operators that are inserted in the lower branch of
C always have a larger time compared to those that are inserted at the upper branch. A two point correlator with
both operators are in the upper (lower) branch is time ordered (anti time ordered). For instance

hT�(t
1

,x
1

)�(t
2

,x
2

)i = �2Z[J
+

, J
�

, J� ]

�J
+

(t
1

,x
1

)�J
+

(t
2

,x
2

)
. (7)

In the paper, we present a Monte Carlo method to compute time dependent correlation functions as in (7) for
the 1 + 1 dimensional �4 theory with the potential V [�] = 1

2

m2�2 + �
4!

�4. The lattice action corresponding to the
Schwinger-Keldysh path integral is given by

S[�] ⌘ �iSSK,lattice =
X

t,n

ata


(�t+1,n � �t,n)2

2a2t
+

1

2

✓
(�t+1,n+1

� �t+1,n)2

2a2
+

(�t,n+1

� �t,n)2

2a2

◆

+
1

2
m2

�2

t,n + �2

t+1,n

2
+

�

4!

�4

t+1,n + �4

t,n

2

#
,

(8)

Real time dynamics / Schwinger-Keldysh 形式への適用

ボーズ系 (λφ4 μ model) in 0+1dim., 1+1dim. 
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FIG. 5. Left: real part of the correlator for � = 1.0 for momentum p = 2⇡/N
x

, as produced with the Grady and J
0

algorithms,
compared to the perturbative calculation. The simulation points are o↵set horizontally for clarity. Right: the results for zero
distance correlator as a function of the coupling. The blue points are the results of J

0

simulation and the curves correspond to
zeroth, first, and second order calculation.

(with the di↵erence between the correct and the free field jacobian reweighted during measurements). This last
algorithm breaks down at strong enough coupling but we observed that it performs e�ciently well before the point
where perturbation theory is no longer valid.

The algorithms were applied to the computation of real time thermal correlators in the 1 + 1 dimensional �4 scalar
theory. The two methods agreed with each other and with perturbation theory results at small enough values of the
coupling. The “J

0

” algorithm is very e�cient and its success at even relatively large values of the coupling is somewhat
surprising. These calculations are, to our knowledge, the first reliable Monte Carlo real time calculations in a field
theory.

The algorithms developed in this paper paves the way for larger scale calculations with finer lattices and/or larger
number of spatial dimensions. The extension of the maximum time (bound in the present paper by 4�) is a little more
subtle and we uncover some evidence of trapping of the Monte Carlo chain in local minima of the e↵ective action. In
this case, the methods advocated in [19, 29] should be useful and should be incorporated.
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T ≤ 4β
T → ∞

⟨J̄k(t,x)⟩β [V0]

⟨J̄k(t,x)⟩β [V0] ≃
∑

t′x′

GR(t,x; t
′,x′)A0(t

′,x′)

V0(t,x) = eie0A0(t,x) ⇐⇒ J0(t,x)

Vµ(t,x) = eie0Aµ(t,x) ⇐⇒ Jµ(t,x)

GR(x, x
′) = iθ(t− t′)

〈[
J̄k(t,x), J̄0(t

′,x′)
]〉
β

p0 ∈
[
− π

a0
,+ π

a0

]

ρ(p, β)T ≡
T/2∑

t=−T/2

∑

x

eip0t−ipx
〈[
φ(t+ T/2,x),φ(T/2,0)

]〉
β

t > t′

GK
kl(x, x

′) =
1

Nβ

−Nβ−t′∑

s′=t′

∑

x

〈[
J̄k(t,x), J̄l(s

′,x′)
]〉
β

σ =
1

d

T∑

t=t′0

−Nβ−t′0∑

s′=t′0

∑

x

〈[
J̄k(t,x), J̄k(s

′,x′)
]〉
β

⟨Ô(τ)⟩β,µ ≡ Tr
[{

T̂+1

}β−τ
Ô
{
T̂+1

}τ] /
Z(β, µ)

T̂+1 = e−a0Ĥ
(
= e−a0V̂ /2e−a0Π̂2/2e−a0V̂ /2

)
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Sampling method comparison

�23
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update #

〈z
02 〉

Metropolis: τint= 6730(1400) acc=70%

0 100 200 300 400
0
1
2
3

update #

〈z
02 〉

Grady: τint= 628(69) acc=50%

0 100 200 300 400
0
1
2
3 HMC: τint= 1.42(10) acc=87%

Nt=12 Nβ=4 a=0.2 λ=4! dof=28

• Step sizes are chosen to have the 
acceptance rate broadly around 0.5

• None of the implementations is 
optimized

• Run times per update are in the 
rough ratio 1:3:30

• For larger Nt Metropolis and Grady 
autocorrelation times are expected 
to increase faster than for HMC

• Even for this Nt HMC is about 40 
times faster than Grady

[Alexandru, et al., lattice2019]



Summary

the Standard Model / SO(10) chiral gauge theory on the lattice

Lefschetz-Thimble methods !?   
       to overcome the sign problem

       generalized method(GLTM),  tempered method(tLTM) / HMC 

       other methods ( Complex Lengevin, Tensor Network RG, … )

Schwinger-Keldysh formalism for lattice gauge theories !?
       real-time, non-equilibrium dynamics / finite-temperature・density

[Fuji, Hoshina, YK  (2019)]



両手の鳴る音は知る。
片手の鳴る音はいかに？
　　　　　　　ー 禅の公案 ー

What is the sound of 
one hand clapping?


