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1. Introduction



The subject today: a new method to calculate the bounce
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e False vacua show up in many particle-physics models

e Tunneling process is dominantly induced by the field con-
figuration called “bounce”



Today, I try to explain

e Why is the calculation of the bounce difficult?
e \What is our new idea?”
e Why does it work?

e Does it really work?
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2. Bounce



Calculation of the decay rate a la Coleman

e [ he decay rate is related to Euclidean partition function
7 = (FV|e "1 |FV) ~ /ng e S o exp(inVT)

e Euclidean action
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e [ he false vacuum decay is dominated by the classical path
one-bounce
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The bounce: spherical solution of Euclidean EoM

[Coleman; Callan & Coleman]
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Bounce is important for the study of false vacuum decay
v = AeS

Why is the calculation of ¢ so difficult?
Bounce is a saddle-point solution of the EoM

Expansion of the action around the bounce: ¢ = ¢+ U

¢ Slp + V] = S[¢p] + %/de\IfM\If + O(0?)
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M= -0 — . fluctuation operator

=
e M has one negative eigenvalue (which we call A_)

[Callan & Coleman]



Fluctuation around the bounce: ¢ = ¢+ U
¢ O, VU(r=0)=0
e U(r=00)=0

We expand ¥ by using eigenfunctions of M

= My = Ay p X

We need to impose relevant boundary conditions

® an(T:O):O
o Xn(r=00)=0



An evidence of the existence of negative eigenvalue

e Functions are expanded by vy, (eigenfunctions of M)
(XnlXm) = 0pm, Where (f|f") = /OOO drr? = f(r) f'(r)
o f(r)=>_(flxn)Xn(r)
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Example: f(r) =1r0,¢

¢ ((r0,0)|M(r0,0)) = —(D = 2) [~ drr”"1(,6)(9,6) < 0
e r0,¢: fluctuation w.r.t. the “scale transformation”

O((1+e)r) = o(r) +erded+ -



Undershoot-overshoot method to calculate the bounce
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2nd term is a ‘friction,” which disappears as r — oo

There should exist bounce, satisfying ¢'(0) =0 and ¢(c0) = v

o If $(0) S ve

— Undershoot VA
o If ¢(0) ~ vp

= Overshoot
e There exists right ¢(0) 0)

= ¢(o0) = v \ Ve VT




It is not easy to obtain bounce in general
= In particular, more difficulties with multi-fields
There has been various methods and attempts

e Undershoot-overshoot method

e Dilatation maximization
[Claudson, Hall, Hinchliffe ('83)]

e Improved action
[Kusenko ('95); Kusenko, Langacker, Segre ('96); Dasgupta ('96)]

e Squared EoM
[Moreno, M. Quiros, M. Seco ('98); John ('98)]

e Backstep
[Cline, Espinosa, Moore, Riotto ('98); Cline, Moore, Servant ('99)]



e Improved potential
[Konstandin, Huber ('06); Park ('10)]

e Path deformation
[Wainwright ("11)]

e Perturbative method
[Akula, Balazs, White ('16); Athron et al. ('19)]

e Multiple shooting
[Masoumi, Olum, Shlaer ('16)]

e Tunneling potential
[Espinosa ('18); Espinosa, Konstandin ('18)]

e Polygon approximation

[Guada, Maiezza, Nemevsek ('18)]

e Machine learning
[Jinno ("18); Piscopo, Spannowsky, Waite ('19)]



3. Bounce from Flow Equation



We want a flow eq. which has bounce as a stable fixed point

e 0,0(r,s) = G|
o O(r,s — 00) = ¢(r)

Schematic view of the flow on the configuration space
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Flow based on the height of &

0sP(r,s) = F(r,s)

_dS[@] ., D-1 AV (D)
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Behavior of fluctuations around the bounce
@(r, 8) = B(r) + X an(s)xa(r)
— Zaan ~ —M Z@an — Z Anaan

Because of y_, bounce cannot be a stable fixed point

= T his does not work



Flow equation of our proposal, which has a parameter

D:b(r,5) = F(r,s) — B(F|g)g(r)
g(r): some function with {(g|g) =1

g(r) = ; CnXn (T)

We will see:

With relevant choices of g(r) and 3, the bounce becomes
a stable fixed point of our flow equation

For 0 # 1:
0 =0 = F =0 (solution of EoM)

& Fixed points do not depend on



Behavior of the fluctuation: ®(r,s) = ¢(r) +>_ a,(s)xa(r)

F(r,s) ~ —M(® — ¢) = — ; A Xom

(Flg) = =2 AnCmam

n = —Antn + B3 caCnAnm = =3 Lam(B)an
In the matrix form:

—I(p)a
I'(B) = (I — ﬁ&?T) diag(A_, A1, Ao, -+ +)

Eigenvalues of I': ~, (which are complex in general)
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If Re~, >0 for Vn, then d(s — o) =0

We first study detl(3) = [ v»

= detl'(8) > 0, if §>1

= Taking 5 > 1, real parts of all the eigenvalues of I' may
become positive



Existence proof of g(r) which realizes Re~, > 0 for Vn

g(r) =x_, i.e.,, ¢=(1,0,0,---)"
= I'(8) = diag(1 — 8,1,1,---)diag(A_, A1, Aa, - - *)

A guideline to choose ¢(r)

= We should take g(r) with sizable c_
g(r) = cxn(r) with Y& =1
Our choice: ¢(r) x r0,®(r, s)

o (r0,0)|M(r0,0)) = —(D = 2) [~ drr""(8,6)(0,0)

e Empirically, it works well (see the numerical results)



If ®(s — oco,r) goes to a stable fixed point with g > 1

1. &(s — oo, r) is a solution of EoM
2. ®(s — oo, r) satisfies the BCs relevant for the bounce

3. ®(s — oo, ) cannot be the false or true vacuum

< Real parts of the eigenvalues of I'(5 > 1) are all positive
because ®(s — oo, r) is stable against fluctuations

& detl'(f = 0) < 0, so the fluctuation operator around
d(s — oo, r) has a negative eigenvalue

< For the fluctuation operator around the false or true
vacuum, detl'(3 =0) > 0

= Thus, ®(s — oco,r) is a bounce



4. Numerical Analysis



We considered single- and double scalar cases:

e Single-scalar case:

ki+1 5 ki
AT

— False vacuum: ¢ =0

1
() — Z¢4 _

— True vacuum: ¢ =1

e Double-scalar case:
1 1
VE = (2 +562) [5(6 — 1 + (0 — 1] + ko ({01 — 590)
— False vacuum: (¢, ¢,) = (0,0)
— True vacuum: (¢, ¢,) = (1,1)

e \We compare our results with those of CosmoTransitions
[Wainwright]



Single-scalar case (with D = 3)

e Left: thin-wall (model 1a)
e Right: thick-wall (model 1b)
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Double-scalar case (with D = 3)

¢y

e Left: thin-wall (model 2a)
e Right: thick-wall (model 2b)

1o Double-scalar (k, =2, B=2, N=300, R =20) 1> Double-scalar (k, =80, B=2, N=50, R=2)
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Bounce action §[¢]

Model Our Result CosmoTransitions
1a 1092.5 1092.8
1b 6.6298 6.6490
2a 1769.1 1767.7
2b 4.4567 4.4661

e Our results well agree with those of CosmoTransitions

e Bounce configuration (and its action) can be precisely
calculated by using flow equation

e Compared to CosmoTransitions, our method gives better
accuracy for the behavior of ¢(r — o0)



Another approach
[Coleman, Glaser, Martin ('78); Sato ('19)]

1. Determine the configuration ¢(r;P) which minimizes § on
the hypersurface with constant P

PE/CZD:EV

Flow equation:

oV

0.80(r,5) = F — €[0]'5 -

At the fixed point: p(r;P) = &(r, s — o0)
D — oV
O2p + —8 P — N =0
r Op

A = E[P(s — 00)] + 1



2. Use scale transformation:
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5. Summary



We proposed a new method to calculate the bounce

e Our method is based on the gradient flow
e [ he bounce is obtained by solving the flow equation

e It can be easily implemented into numerical code

To-do list:

e Application to BSM models (in particular, SUSY)
[Gunion, Haber, Sher; Casas, Lleyda, Munoz; Kusenko, Langacker, Segre;

Camargo-Molina et al.; Chowdhury et al.; Blinov and Morrissey; Endo, Mo-

roi, Nojiri; Endo, Moroi, Nojiri, Shoji; -]

e Making a public code (7)

Please use our method, if you find any good application



