Gamma-ray Search of Dark Matter

Nagisa Hiroshima
Univ. of Toyama, RIKEN iTHEMS
Contents:

1. Introduction
 advantage of the gamma-ray observations

2. To probe heavier WIMP
 facility, target, and the problems

3. Future prospects
 convolution of the instrumental response and models

4. Conclusion
Introduction

advantage of gamma-ray observations
DM Motivation & Candidate

DM = non-baryonic matter in the Universe of $\Omega_{DM} h^2 \sim 0.12$

- **motivation**
 - structure formation
 - rotation curves
 - bullet cluster
 - ...

- **candidate**
 - Weakly Interacting Massive Particle (WIMP)
 - Strongly (or self) Interacting Massive Particle (SIMP)
 - axion/axion-like particle (ALP)
 - primordial black hole (PBH)
 - ...
WIMP

- feel the gravity (massive)
- the mass $m_{\text{DM}} \sim \mathcal{O}(\text{GeV}) - \mathcal{O}(\text{TeV})$
- freeze-out scenario to achieve the relic abundance $\Omega_{\text{DM}} h^2 \sim 0.12$
- the annihilation cross-section $\langle \sigma v \rangle \sim \mathcal{O}(10^{-26} \text{cm}^3 \text{s}^{-1})$

We do not see the annihilation signature yet.
Three pillars of WIMP search

collider

DM

SM

DM

SM

direct detection

indirect detection
Indirect detections

\[\text{DM} + \text{DM} \rightarrow \text{something in the SM} \]

- somewhere in the Universe
- on/around the Earth
 - \(\gamma, e^\pm, p, \bar{p}, \nu, \ldots \)

- \(\gamma \)-ray search
 - straight path from the source to the Earth
 - absorption is negligible at \(z \lesssim 0.1 \) for \(E_\gamma \lesssim 1 \text{TeV} \)
 - all the SM particle associates photons at the production
Current limits for WIMP

Fermi-LAT, 11y, 27 dwarf spheroidal galaxies (dSphs)

Hoof et al., 2020

$\sim 3 \times 10^{-26} \text{cm}^3/\text{s}$
To probe heavier WIMP

facility, target, and the problems
Current limits for WIMP

Fermi-LAT, 11y, 27 dwarf spheroidal galaxies (dSphs)

Hoof et al., 2020

Canonical

$\sim 3 \times 10^{-26} \text{cm}^3/\text{s}$
Probing the heavier
Cherenkov Telescope Array (CTA)

Imaging Atmospheric Cherenkov Telescope (IACT)

incoming γ-ray + atoms

$\rightarrow e^+ + e^- \rightarrow \gamma + \ldots$

$\rightarrow e^+ + e^- + \ldots$

optical telescope array on the ground

\rightarrow high angular resolution!
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Fermi</th>
<th>CTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>satellite</td>
<td>IACT</td>
</tr>
<tr>
<td>observation</td>
<td>survey</td>
<td>pointing</td>
</tr>
<tr>
<td>energy coverage</td>
<td>20MeV-300GeV</td>
<td>30GeV-100TeV</td>
</tr>
<tr>
<td>energy resolution</td>
<td><8%</td>
<td>~10%</td>
</tr>
<tr>
<td>flux sensitivity</td>
<td>(10^{-12}) erg cm(^{-2}) s(^{-1}) (100GeV, 10year)</td>
<td>(10^{-13}) erg cm(^{-2}) s(^{-1}) (1TeV, 50h)</td>
</tr>
<tr>
<td>angular resolution</td>
<td>3.5-0.15deg</td>
<td>0.2-0.03deg</td>
</tr>
</tbody>
</table>

different properties & observing strategies
What we consider is…

We should be able to prove WIMP of $m_{DM} \gtrsim \mathcal{O}(1)$ TeV by observing dSphs with CTA!

• Observable

observable: γ-ray flux ϕ

$$\phi = \frac{1}{2} \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{m_{DM}^2} \int_{E_{th}}^{m_{DM}} dE \frac{dN}{dE} \cdot \int_{\Delta \Omega} d\Omega \int_{los} ds \rho_{DM}^2$$

particle physics

J-factor:

astrophysical part

$\phi \propto$ (integral of the squared DM density $\rho_{DM}^2 \sim J$)
dSphs: high ρ_{DM} & inactive

- satellite of the Milky Way
- ~ 40 are confirmed

- $M \sim 10^{8-9} M_\odot$, $M/L \sim \mathcal{O}(10^3) M_\odot / L_\odot$

- do not show star formation activities

- dist $d \sim \mathcal{O}(100)$ kpc

- $\Delta \theta \lesssim \mathcal{O}(1 \text{deg})$

dSphs are resolved as extended sources with CTA!
density profile of dSphs

We should consider \(dJ/d\Omega \), rather than \(J \).

\[
J = \int_{\Delta \Omega} d\Omega \frac{dJ}{d\Omega} = \int_{\Delta \Omega} d\Omega \int_{l.o.s} ds \rho_{DM}^2(r)
\]

\(\rho_{DM}(r) \) ?

1. observe proper motion of stars distribution
2. derive the gravitational potential
3. reconstruct the density profile \(\rho_{DM}(r) \)

\(\cdots \) but dSphs are dark, i.e., limited numbers of stars are available for reconstructing \(\rho_{DM}(r) \)
Varieties of profiles

-(generalized) NFW

\[\rho(r) = \rho_s \left(\frac{r}{r_s} \right)^{-\gamma} \left(1 + \left(\frac{r}{r_s} \right)^{\alpha} \right)^{-(\beta-\gamma)/\alpha} \]

NFW: \((\alpha, \beta, \gamma) = (1,3,1)\)

-Burkert

\[\rho(r) = \rho_s \left(1 + \frac{r}{r_s} \right)^{-1} \left(1 + \left(\frac{r}{r_s} \right)^{2} \right)^{-1} \]

-Power Law (PL) + exp.cutoff

\[\rho(r) = \rho_s \left(\frac{r}{r_s} \right)^{-\gamma} \exp \left[-\frac{r}{r_s} \right] \]
Example: NFW

\[\rho(r) = \rho_s \left(\frac{r}{r_s} \right)^{-1} \left(1 + \left(\frac{r}{r_s} \right) \right)^{-2} \]

\[\ln r \ \text{vs} \ \ln \rho_{DM}(r) \]
Example: Burkert

\[\rho(r) = \rho_s \left(\frac{1 + \frac{r}{r_s}}{1 + \left(\frac{r}{r_s} \right)^2} \right)^{-1} \]

\(\ln r \) vs \(\ln \rho_{\text{DM}}(r) \)
Example: PL + exp.cutoff

\[\rho(r) = \rho_s \left(\frac{r}{r_s} \right)^{-0} \exp \left[-\frac{r}{r_s} \right] \]

\[\ln r \text{ vs } \ln \rho_{DM}(r) \]

\[\log_{10} J \text{ [GeV}^2{\text{/cm}^5}] \]
Intermediate summary

- γ-ray observation of dSphs is a powerful tool to probe the nature of WIMP.
- In near future, we can go heavier with CTA, with which we should see dSphs as extended sources.
- Then we have to be careful about the DM distribution in target dSphs.
- However, it is difficult to model and still under debate.

We quantify the systematic errors in our sensitivity to DM annihilation cross-section with CTA coming from the DM distribution in dSphs
Future prospect
convolution of the instrumental response and models
Ingredients

How does the density profile of the target dSph affect our sensitivity to the DM annihilation cross-section with CTA?

<table>
<thead>
<tr>
<th>Observable</th>
<th>Density Profiles of the Target</th>
<th>DM Annihilation Spectrum</th>
<th>γ-ray Flux (Observable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>observer</td>
<td>Draco dSph, $J \sim \mathcal{O}(10^{19}\text{GeV}^2/\text{cm}^5)$</td>
<td>$\bar{b}b, W^+W^-, \tau^+\tau^-$</td>
<td>Simulation</td>
</tr>
</tbody>
</table>

16 patterns

hadronization

model
ρ_{DM} models of Draco dSph

- (RA, DEC) = (260.052, 57.915)
- $d \sim 80$ kpc
- # of stars ~ 1000
- radius of the outermost member star $\sim 1.3^\circ$
- $J \sim \mathcal{O}(10^{19})$ GeV2/cm5

Draco is one of the best-studied dSphs
- 10 generalized NFW, 3 Burkert, 3 PL+cutoff profiles
- $\log_{10} J$ varies from 18.70 to 19.56 in our collection
2. DM annihilation spectra

- $\bar{b}b$ (quark)
- W^+W^- (weak boson)
- $\tau^+\tau^-$ (lepton)

pythia8 for hadronization
(http://home.thep.lu.se/Pythia/)
3. γ-ray flux

c-tools: simulation and analysis software for VHE γ-ray observations (http://cta.irap.omp.eu/c-tools/)

- CTA-North, full array

IRF prod3b North, z20, average, 50h

- 4×4deg around Draco dSph

- position center

(RA, DEC) = (260.052, 57.915)

- 500 hour

- $E = 0.03 - 180$TeV photon

(example: 92188344 γ-ray like events w/o source)
Combine: likelihood ratio test

1. simulate 500 hours of observation @ Draco dSph
2. select data & bin the data
 0.03-180 TeV, 5 energy bin / decade
3. likelihood analysis assuming
 16 profiles * 3 annihilation channels = 48 models

Which is more likely,
… “DM signal of the model exists” or
“the data is consistent with the background”?
Our accessibility: $\bar{b}b$ case

Hiroshima et al., 2019

$J = 10^{18.56}$

$J = 10^{18.69}$

$J = 10^{19.15}$

$J = 10^{19.15}$

95% C.L
Our accessibility: W^+W^- case

Hiroshima et al., 2019

95% C.L
Our accessibility: $\tau^+\tau^-$ case

Hiroshima et al., 2019

95% C.L
Conclusion
Conclusion:

- WIMP search at $E_\gamma \lesssim \mathcal{O}(1)$ TeV is already successful.
- dSphs are good targets to search the WIMP signature since they are rich in DM but poor in astrophysical γ.
- We can access heavier WIMP in the near future.
- With CTA, we can resolve dSphs as extended sources, hence their inner DM distribution becomes important.
- ρ_{DM} of dSphs is still under debate.
- Convolved with the CTA’s instrumental response, it is sure that we can access new parameter spaces, however, our sensitivity could differ by a factor of ~ 10.