Progress in Particle Physics 2020 2020. 8. 31

Gamma-ray Search of

Nagisa Hiroshima Univ. of Toyama, RIKEN iTHEMS

Contents:

1. Introduction

advantage of the gamma-ray observations

2. To probe heavier WIMP

facility, target, and the problems

3. Future prospects

convolution of the instrumental response and models

4. Conclusion

Introduction

advantage of gamma-ray observations

DM Motivation & Candidate

DM=non-baryonic matter in the Universe of $\Omega_{\rm DM} h^2 \sim 0.12$

motivation

- structure formation
- rotation curves
- bullet cluster

DM structure baryon

structure

• candidate

- Weakly Interacting Massive Particle (WIMP)
- Strongly (or self) Interacting Massive Particle (SIMP)
- axion/axion-like particle (ALP)
- primordial black hole (PBH)

Indirect detections

DM + DM somewhere

in the Universe

something in the SM

on/around the Earth $\gamma, e^{\pm}, p, \bar{p}, \nu, \dots$

γ-ray search

- straight path from the source to the Earth
- _ absorption is negligible at $z \lesssim 0.1$ for $E_{\gamma} \lesssim 1$ TeV
- all the SM particle associates photons at the production

Current limits for WIMP

Fermi-LAT, 11y, 27 dwarf spheroidal galaxies (dSphs)

To probe heavier WIMP

facility, target, and the problems

Current limits for WIMP

Fermi-LAT, 11y, 27 dwarf spheroidal galaxies (dSphs)

Probing the heavier

Comparison

	Fermi	СТА		
type	satellite	IACT		
observation	survey pointing			
energy coverage	20MeV-300GeV	30GeV-100TeV		
energy resolution	<8%	~10%		
flux sensitivity	$10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$ (100GeV, 10year)	$10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}$ (1 TeV, 50h)		
angular resolution	3.5-0.15deg	0.2-0.03deg		

different properties & observing strategies

What we consider is…

We should be able to prove WIMP of $m_{\rm DM} \gtrsim O(1)$ TeV

by observing <u>dSphs</u> with <u>CTA</u>!

• Observable

observable: γ -ray flux ϕ

particle physics J-factor:

astrophysical part

 $\phi \propto$ (integral of the squared DM density $ho_{
m DM}^2 \sim {
m J}$

dSphs: high p_{DM} & inactive

~ 300kpc

15

edSph

 $\mathcal{O}(1 \text{kpc})$

G.C

O(100pc) **I** ~ 50kpc

satellite of the Milky Way

~40 are confirmed

 $M \sim 10^{8-9} M_{\odot}, M/L \sim O(10^3) M_{\odot}/L_{\odot}$

do not show star
 formation activities

 $\cdot \Delta \theta \lesssim \mathcal{O}(1 \text{deg})$

dSphs are resolved as extended sources with CTA!

Milky Way $M \sim 10^{12} M_{\odot}$

density profile of dSphs

We should consider $dJ/d\Omega$, rather than J.

• $\rho_{\rm DM}(r)$?

1. observe proper motion of stars distribution

2. derive the gravitational potential

3. reconstruct the density profile $\rho_{\rm DM}(r)$

··· but dSphs are dark, i.e., limited numbers of

stars are available for reconstructing $\rho_{\rm DM}(r)$

Varieties of profiles

-Power Law (PL) + exp.cutoff

$$\rho(r) = \rho_s \left(\frac{r}{r_s}\right)^{-\gamma} \exp\left[-\frac{r}{r_s}\right]$$

Example: PL + exp.cutoff

$$\log_{10} J [GeV^2/cm^5]$$

Intermediate summary

- γ -ray observation of dSphs is a powerful tool to probe
 - the nature of WIMP.
- In near future, we can go heavier with CTA, with which
 - we should see dSphs as extended sources.
- Then we have to be careful about the DM distribution in target dSphs.
- However, it is difficult to model and still under debate.

We quantify the systematic errors in our sensitivity to DM annihilation cross-section with CTA coming from the DM distribution in dSphs

Future prospect

convolution of the instrumental response and models

Ingredients How does the density profile of the target dSph affect our sensitivity to the DM annihilation cross-section with CTA? observable $\phi = \frac{1}{2} \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{m_{\rm DM}^2} dE \frac{dN}{dE} d\Omega \int_{los}^{l} ds \rho_{\rm DM}^2$

- 1. density profiles of the target:
 - Draco dSph, $J \sim O(10^{19} \text{GeV}^2/\text{cm}^5)$ 16 patterns
- 2. DM annihilation spectrum:
 - $\bar{b}b, W^+W^-, \tau^+\tau^-$
- 3. γ -ray flux (observable)

- hadronization
 - simulation

model

1.p_{DM} models of Draco dSph

- -(RA, DEC) = (260.052, 57.915)
- *d* ~ 80 kpc
- # of stars ~ 1000
- radius of the outermost member star $\sim 1.3^\circ$
- $_{-} J \sim O(10^{19}) \text{ GeV}^2/\text{cm}^5$
- Draco is one of the best-studied dSphs
 - 10 generalized NFW, 3 Burkert, 3 PL+cutoff profiles
 - $-\log_{10} J$ varies from 18.70 to 19.56 in our collection

2.DM annihilation spectra

3.y-ray flux ctools: simulation and analysis software for VHE γ-ray observations (<u>http://cta.irap.omp.eu/ctools/</u>) -CTA-North, full array IRF prod3b North, z20, average, 50h -4 × 4deg around Draco dSph -position center (RA, DEC)=(260.052, 57.915) -500 hour -E=0.03-180TeV photon $4^{\circ} \times 4^{\circ}$ example: 92188344 γ -ray like events w/o source

Combine: likelihood ratio test

- 1. simulate 500hours of observation @Draco dSph
- 2. select data & bin the data
- 0.03-180 TeV, 5 energy bin / decade
- 3. likelihood analysis assuming
 - 16 profiles * 3 annihilation channels = 48 models

Which is more likely,

- ··· "DM signal of the model exists" or
- "the data is consistent with the background" ?

Our accessibility: bb case

Our accessibility: W^+W^- case

Hiroshima et al., 2019 No.16 10-21 No.9 No.14 10-22 point source 95% C.L ^{10 -23} ²⁰ ²⁰ ²³ ²³ ²³ ²⁴ ²⁴ ²⁵ (a) (b) m_{DM}=100GeV m_{DM}=1TeV (c) 105 m_{DM}=10TeV relic abundance m_{DM}=100TeV $E_{\gamma}^{2}dN_{\gamma}/dE_{\gamma}$ [GeV] 10 m_{DM}=1PeV 10-26 10^{3} 10² 101 w+w 10 10-27 10^{-1} 10^{0} 10¹ 10² 10^{-2} 10 1010 m_{DM} [TeV] 104 105 106 10^{-1} 100 101 10² 10³

 E_{v} [GeV]

Our accessibility: $\tau^+\tau^-$ case

Conclusion:

_ WIMP search at $E_{\gamma} \lesssim \mathcal{O}(1)$ TeV is already successful.

- dSphs are good targets to search the WIMP signature

since they are rich in DM but poor in astrophysical γ .

- We can access heavier WIMP in the near future.

- With CTA, we can resolve dSphs as extended sources,

hence their inner DM distribution becomes important.

 $-\rho_{\rm DM}$ of dSphs is still under debate.

-Convolved with the CTA's instrumental response, it is

sure that we can access new parameter spaces, however,

our sensitivity could differ by a factor of $\,\sim\,10$

			21