Probing Axion-like Particles via CMB Polarization

Collaborators: Tomohiro Fujita, Yuto Minami, Kai Murai, arxiv:2008.02473

Speaker: Hiromasa Nakatsuka ICRR, The University of Tokyo 2nd year PhD student

PPP,2020-09-03

Axion

QCD axion

• Strong CP problem:

C. A. Baker, et al. (2006)

 $\mathcal{L}_{\theta_{QCD}} = \frac{\theta_{QCD}}{32\pi^2} \text{Tr}G_{\mu\nu} \tilde{G}^{\mu\nu} \quad , \quad \theta_{QCD} \lesssim 10^{-10} \quad \text{by the electric dipole moment of neutron}$

• One of solutions is QCD axion:

$$\mathcal{L}_{\theta_{QCD}} \to \left(\theta_{QCD} + \frac{\phi}{f}\right) \frac{1}{32\pi^2} \mathrm{Tr}G_{\mu\nu}\tilde{G}^{\mu\nu}$$

Axion-like particles by String Axiverse

A. Arvanitaki, et al. (2009)

"String theory suggests the simultaneous presence of many ultralight axions"

• Axions have mass nonperturbatively, which is exponentially suppressed:

$$m_{\phi}^2 \propto \left(\frac{\mu^4}{f^2}\right) e^{-S_{\text{inst}}}$$

- Axion as Dark Matter: $10^{-22} \text{eV} \leq m$
- Axion as Dark Energy: $m \lesssim H_0 \sim 10^{-33} \mathrm{eV}$

David J. E. Marsh (2015)

Axion-like Particles

Axion-Photon coupling

$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{4}g\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$$
, ϕ :axion(ALP)

• Axion-photon conversion By background B field:

$$\phi = A_{\mu}^{(\text{ext})}$$

• Rotation of polarization angle

$$\alpha = \frac{g}{2}\Delta\phi = \frac{g}{2}(\phi_f - \phi_i)$$

D.Harari&P.Sikivie (1992)

Axion-photon conversion

Axion Helioscope (e.g., CAST, CAST Collaboration (2005))

Axion Dark Matter eXperiment (ADMX) for Axion DM S.J. Asztalos, et al. (2009)

The microwave cavity for resonant conversion

Polarization rotation

Ground-based experiment: Laser technique

- The background axion DM rotates the polarization angle of laser.
- Laser cavity can detect the small rotation angle. H. Liu, et al. (2018), I. Obata, et al. (2018), K. Nagano, et al. (2019)
- Astronomical source (e.g. proto-planetary disc)
 - Flattened gaseous object surrounding a young star
 - The background axion DM rotates the direction of scattering polarization.

J. Hashimoto, et al. (2011), T. Fujita, et al. (2018), S. Chigusa et al. (2019)

Cosmological source: CMB

S. M. Carroll (1998), A. Lue, et al. (1999), M. A. Fedderke, et al. (2019), G. Sigl&P. Trivedi (2018)

and This work

The constraints of axion-photon coupling

Field Dynamics

Birefringence by $\Delta \overline{\phi}$, $\delta \phi_{obs}$ and $\delta \phi_{LSS}$

- Potential term : $V(\phi) = \frac{1}{2}m^2\phi^2$
- Background motion : $\Delta \bar{\phi} \equiv \bar{\phi}(t_0) \bar{\phi}(t_{\text{LSS}})$,

$$\cdot \begin{cases} \phi_{\text{LSS}} = \bar{\phi}(t_{\text{LSS}}) + \delta \phi_{\text{LSS}}(t_{\text{LSS}}, \hat{n}) \\ \phi_{\text{obs}} = \bar{\phi}(t_0) + \delta \phi_{\text{obs}}(t_0, x = 0) \end{cases}$$

• *H*₀: (current Hubble parameter)

• Dynamics
:
$$\bar{\phi}(t) \propto \begin{cases} \text{constant} & (m < H(t)) \\ a(t)^{-\frac{3}{2}} \sin(mt) & (H(t) < m) \end{cases}$$

• Amplitude
: $|\bar{\phi}| \propto \Omega_{\phi}^{1/2}, \quad \Omega_{\phi} \sim \begin{cases} 0.7 \ (m \le H_0) \\ 0.01 \ (H_0 \le m \le 10^{-25} \text{eV}) \end{cases}$ R.Hlozek, et.al.(2015)

• Perturbation: $\delta \phi_{obs} \& \delta \phi_{LSS}$

• $\mathcal{P}_{\phi}^{\inf} = \left(\frac{H_I}{2\pi}\right)^2 = \frac{M_{\text{pl}}^2}{8\pi} \mathcal{P}_{\zeta} \times r$, $\mathcal{P}_{\zeta} \simeq 2 \times 10^{-9}$, r: tensor to scalar ratio, we use r = 0.06

(1) anisotropic rotation (direction dependent): $\alpha(\hat{n}) \equiv -\frac{g}{2}\delta\phi_{\text{LSS}}(\hat{n})$ (2) isotropic rotation : $\bar{\alpha} \equiv \frac{g}{2}(\Delta\bar{\phi} + \delta\phi_{\text{obs}})$

Field Dynamics

- Fluctuation at observer: $\delta \phi_{obs}$
- The Fourier mode $\tilde{\phi}_k$ For $k < d_{LSS}^{-1}$, ϕ_{LSS} , ϕ_{obs} For $k > d_{LSS}^{-1}$, $\phi_{LSS} \neq \phi_{obs}$ • $\langle \delta \phi_{obs}^2 \rangle = \int_{d_{LSS}^{-1}}^{\infty} \int_{d_{LSS}^{-1}}^{\infty} \frac{d^3k d^3p}{(2\pi)^6} \langle \phi_k(\eta_0) \phi_p(\eta_0) \rangle$ = Damping effect by the width of LSS
- Last Scattering Surface(LSS): $t_{\text{LSS}} \sim 3.8 \times 10^5 \text{ yr}$ • Observer: $t_0 \sim 13.8 \times 10^9 \text{ yr}$ present • For $m > 10^{-28} \text{eV}$, ϕ oscillates at LSS: $\langle \bar{\phi} \rangle_{\text{LSS}} = \int dT g(T) \bar{\phi} (t(T))$, visibility function: $g(T) \simeq \frac{1}{\sqrt{2\pi}\sigma_T} \exp\left[-\frac{(T-T_L)^2}{2\sigma_T^2}\right]$

Sensitivity

Current sensitivity from Planck, SPTpol & ACTPol

N. Aghanim, et al. (2016), F. Bianchini, et al. (2020), T. Namikawa, et al. (2020)

(1) anisotropic rotation (direction dependent): $\alpha(\hat{n}) \equiv -\frac{g}{2}\delta\phi_{LSS}(\hat{n})$

$$C_L^{\alpha\alpha} \equiv \frac{1}{2L+1} \sum_M a_{(\alpha)LM} a^*_{(\alpha)LM}, \quad a_{(\alpha)Lm} \equiv \int d\Omega \ \alpha(\hat{n}) \ Y_L^{m*}(\hat{n}) = \int d\Omega \ \alpha(\hat{n}) \ X_L^{m*}(\hat{n}) = \int d\Omega \ \alpha(\hat{n}) \ X_L^{m*}(\hat{n}) = \int d\Omega \ \alpha(\hat{n}) \ Y_L^{m*}(\hat{n}) = \int d\Omega \ \alpha(\hat{n}) \ Y_L^{m*}(\hat{n}) = \int d\Omega \ \alpha(\hat{n}) \ X_L^{m*}(\hat{n}) = \int d\Omega \ \alpha(\hat{n}) \ Y_L^{m*}(\hat{n}) = \int d\Omega \ \alpha($$

• For flat power spectrum,

$$A_{\alpha} \equiv \frac{L(1+L)C_{L}^{\alpha\alpha}}{2\pi}$$

• SPTpol & ACTPol 2020:

$$A_{\alpha} < 8.3 \times 10^{-3} \, \text{deg}^2 \ (68\% \text{CL})$$

2 isotropic rotation

:
$$\bar{\alpha} \equiv \frac{g}{2} (\Delta \bar{\phi} + \delta \phi_{obs})$$

• Planck2016: $|\bar{\alpha}| < 0.6^{\circ}$ (68%CL)

Sensitivity

*H*₀: (current Hubble parameter)

Current sensitivity from Planck & SPTpol

N. Aghanim et al. 2016, F. Bianchini et al. 2020, T. Namikawa et al. 2020

- Red line by $\delta \phi_{\rm LSS}$ For $10^{-28} {\rm eV} < m, \phi$ oscillates during LSS, and the averaged rotation angle damps.
- Purple line by $\Delta \overline{\phi}$ For $m < H_0, \overline{\phi}$ does not roll down the potential, and $\Delta \overline{\phi} \propto (m/H_0)$
- Blue line by $\delta \phi_{obs}$ For $H_0 < m$, $\delta \phi_{obs}$ starts oscillating and damps.

Sensitivity

*H*₀: (current Hubble parameter)

Current sensitivity from Planck & SPTpol

- Even if no BG axion $\Omega_{\phi} \rightarrow 0$, we ubiquitously have $\delta \phi_{\rm LSS} \& \delta \phi_{\rm obs}$ from inflation.
 - + $\delta\phi_{
 m LSS}$:anisotropic birefringence
 - $\delta\phi_{
 m obs}$:isotropic birefringence

Future sensitivity

TABLE I. Current bounds and projected sensitivities to the (b) polarization rotation parameters.

	Current	LiteBIRD	SO	$\begin{array}{c} \mathrm{CMB}\text{-}\mathrm{S4} \\ \mathrm{like} \end{array}$
$ \bar{\alpha} $ (°)	< 0.6 [46]	$0.1 \ [47]$	-	-
$A_{lpha}(10^{-3}\mathrm{deg}^2)$	< 8.3 [48, 49]	$4.0 \ [50]$	$0.55 \ [50]$	0.033 [50]

Table in our paper, arxiv:2008.02473

• Here, $r = 10^{-3}$ in the reach of LiteBIRD

What if we detect ... ?

1 anisotropic birefringence

- 2 Only isotropic (no anisotropic) birefringence $\overset{ ext{(b)}}{}_{\scriptscriptstyle 10^{-8}}$
- ③ Only anisotropic (no isotropic) birefringence

LiteBIRD

 10^{-31}

 10^{-27}

 10^{-20}

 10^{-39}

 10^{-35}

m [eV]

What if we detect ... ?

@ Only isotropic birefringence by $\delta \phi_{
m obs}$ or $\Delta ar{\phi}$

- Non-detection of $\delta\phi_{\rm LSS}$ means $\Delta\overline{\phi}$, not $\delta\phi_{\rm obs}$
- g has upper bound, then

$$10^{-8} \left(\frac{|\bar{\alpha}|}{0.3^{\circ}} \right) < \frac{m}{H_0} < 10^8 \left(\frac{|\bar{\alpha}|}{0.3^{\circ}} \right)$$

We can investigate the mass of axion DE, including very small Equation of State w !

What if we detect ... ?

- ③ Only anisotropic birefringence
 - Non-detection of $\delta \phi_{
 m obs}$ means

$$1 \lesssim \frac{m}{H_0}$$

• Non-detection of $\Delta \overline{\phi}$ means

$$\Omega_{\phi} h^2 \lesssim 2 \times 10^{-13} \left(\frac{|\bar{\alpha}|}{0.05^{\circ}} \right)^2 \left(\frac{A_{\alpha}^{\text{CMB}}}{4 \times 10^{-3} \text{deg}^2} \right)^{-1} \left(\frac{r}{0.06} \right)$$

 We can put a stringent constraint on the energy fraction of the axion!

Conclusion

- Future CMB experiments investigates the broad range of axion-photon coupling, including
 - dark energy axion
 - axion with tiny energy fraction
- Detection of birefringence provides valuable information;
 - through anisotropic birefringence, we can search $\frac{2}{3}$ small-scale inflation with $r > 5 \times 10^{-9}$.
 - through isotropic rotation, we can search tiny energy fraction of axion with $\Omega_{\phi}h^2 \leq 2 \times 10^{-13}$.

Detailed calculations in arxiv:2008.02473

 m/H_0 10^{2} 10^{-4} 10^{-2} 10^{4} 10^{6} 10^{8} 10^{-10} CAST 10^{-13} liteBIRD SOS 10-16 10^{-19} LiteBIRD 10^{-40} 10^{-38} 10^{-36} 10^{-34} 10^{-32} 10^{-30} 10^{-28} 10^{-26}

m | eV

m[eV]

Backup

About CMB observation

$$\langle C^{EB,o} \rangle = \frac{\tan(4\alpha_s)}{2} (\langle C^{EE,o} \rangle - \langle C^{BB,o} \rangle) + \frac{\sin(4\alpha)}{2\cos(4\alpha_s)} (\langle C^{EE,CMB} \rangle - \langle C^{BB,CMB} \rangle)$$

 α_s : rotation of polarization sensitive detector α : cosmic birefringence

Y.Minami, et.al.(2019)