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このトークのまとめ

• ジェットの深層学習の問題点(摂動的な量と非摂動的な量を区別せずに使っ
ている） 

• ミンコフスキー汎関数(MF)を使って、非摂動的なエネルギーの低い粒子の分
布に特化した測定量を構築 

• 畳み込みニューラルネット(CNN)が 

• MFを自律的に発見している例 (Dark Jet)  

• MF が見つけられずに中途半端になっている例(top ジェット） 

• MF を実験データから補正するには



ジェットの深層学習と問題点



ジェットの深層学習

• 今後のLHC の物理　高輝度化（HL-LHC) 高エネルギー化（ずっと先） 

• 感度の向上への期待 

• 高エネルギーのtop, Higgs, W からくる粒子の選別　(boosted object ) バックグラウ
ンドはQCDジェット 

• アノーマリの選別 

• 機械学習(BDT) から深層学習 

• 様々なアルゴリズムの提案                              

• 高次の量の利用→低次の量(Jet image など）　
MC レベルではよりよい結果を示す。例えば 

top Higgs vs QCDジェットなど



分類問題と深層学習

1. 特徴を自動的に抽出するための、調整可能
なパラメータスペース 

2. 活性化関数:決定のための非線型応答

様々な分類を効率的にこなすが、特徴量を抽出することが難しい 
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Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron
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This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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3. 損失関数　(交差エントロピー） 

                             シグナル (t=0）vs バックグラウンド(t=1 ） 

L= -t log y - (1-t) log (1-y) 

イベントを少しずつまとめて学習させ、 w, b を損失関
数が最小にになるように調整する。

深層学習が得意なこと 
　　　　任意の応答を記述可能 

高速化が可能

深層学習の構成



CNN(畳み込みニューラルネットワーク) とTOP TAGGING

• 小さい NxN のフィルタから特徴量の抽出を繰
り返す。 

• 多くの実装: CNN, ResNeXT, Particle Net… は
大体同じパフォーマンスを示す。 

• イベントごとの比較が不在、なぜ良いかも不明　　

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer
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Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on

15



深層学習の問題点

• ジェットの中に２つの量がある。 

• IRC safe object: soft or collinear emission に対して安定な量:subjet  

• Soft collinear に対して不安定な量　number of tracks, particles 　MC 

modeling に大きな差 (Pythia vs Hewig  vs 実験データなど）  

• ジェットイメージには全てが優先順位なくに入っている。

摂動論

非摂動 



ハードな量だけの深層学習はベストな結果を出さない

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X
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pT i min
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�
Ni

o
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In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –

In the next section, we will study the information contained in this basis and use it to

identify the features that are exploited in the discrimination of hadronically decaying Z boson

jets from QCD jets.

3 Deep Learning Implementation

In this section, we describe our event simulation and implementation of machine learning to the

N -subjettiness basis of observables introduced in the previous section. We generate pp ! Z+

jet and pp ! ZZ events at the 13 TeV LHC with MadGraph5 v2.5.4 [35]. The Z boson in

pp ! Z+ jet events is decayed to neutrinos, while one Z boson in pp ! ZZ events is decayed

to neutrinos, while the other is decayed to quarks. These tree-level events are then showered

in Pythia v8.223 [36, 37] with default settings. In App. B, we will show results showered with

Herwig v7.0.4 [38, 39], however with one-tenth the number of events as the Pythia samples.

Ignoring the neutrinos in the showered and hadronized events, we use FastJet v3.2.1 [40, 41]

to cluster the jets. On the clustered anti-kT [42] jets with radius R = 0.8 and minimum pT

of 500 GeV, we then measure the basis of N -subjettiness observables using the code provided

in FastJet contrib v1.026. We emphasize that observables are measured on the particles as a

proof of concept; we do not apply any detector simulation.

The precise set of observables we measure on the jet that we use for discrimination are the

following. We measure the jet mass and the collection of N -subjettiness observables su�cient

to completely determine up through 6-body phase space. That is, we measure the collection

of N -subjettiness observables defined with kT axes:
n
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We will see that this collection of N -subjettiness observables is more than su�cient to de-

scribe all of the information useful for discrimination in the jet. Additionally, for comparison,

we will measure a collection of standard observables that have been defined for discrimina-

tion of boosted, hadronic decays of Z bosons from jets initiated by QCD. We measure the

N -subjettiness ratios ⌧
(1)
2,1 and ⌧

(2)
2,1 with one-pass winner-take-all (WTA) axes [32–34], and

(generalized) energy correlation function ratios D
(1)
2 and D

(2)
2 [43] and N

(1)
2 and N

(2)
2 [28].

The discrimination power of these observables will provide a benchmark for the information

extracted in the machine learning of the collection of N -subjettiness observables.

All deep learning analysis was carried out on the NVIDIA DIGITS DevBox, with four

GeForce GTX TitanX GPUs, built on the 28 nm Maxwell architecture. The specifications of

the GPU are listed in Table 1. Only one GPU was used during training and testing.

CUDA
cores

Base/Boost.
clock (MHz)

Memory size
(GB)

Memory
clock (Gbps)

Interface
width

Memory
Bandwidth
(GB/s)

3072 1000/1075 12 7.0 384-bit 336.5

Table 1: Manufacturer specifications of the GTX TitanX.

– 7 –
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Sample mass + CNN1 mass + 3-body mass + 5-body
Top pT 2 [350� 400] GeV 0.9626 0.9503 0.9613
Top pT 2 [500� 550] GeV 0.9678 0.9535 0.9658

Top pT 2 [1300� 1400] GeV 0.9698 0.9607 0.9723

Table 2: The area-under-curve (AUC) values for a selection of our ROC curves. Larger values
are better and AUC=1 corresponds to perfect signal and background discrimination.

Figure 4: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [350, 400] GeV. Adding mass information improves the performance of the
image networks and the n-subjettiness network.

Figure 5: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [500, 550] GeV. In this case the performance after adding mass information is
very similar.

9

CNN との比較 Liam Moore et al  1807.04769

arXiv 1704.08249 Datta Larkoski 

N-subjettiness を使ったNN
Τ2テンション!Τ3 で解消の例

1 つ目のグループ

2つ目のグループ

DNN に高次の N-subjettiness 入力して
もCNN の効率に到達しない。残念



SOFT な物理　カラーコヒーレンス

• カラーコヒーレンス: 　Higgs のようなカラー
シングレットな粒子の作るジェットは、大きい
角度にハドロン粒子を放出しないはず。 

• W, H, Z  粒子束が独立する傾向  

• QCD  より遠方まで粒子を飛ばす傾向 

• クオーク (どちらかと言うと）芯がある vs 

グルーオン より広い　Nq/Ng は理論的に計
算できる量 

• Event generator : Long Distance の効果を適当
な模型を作って、記述する。模型のパラメータ
は実験データで補正する。

Higgs QCD 

Color  
Singlet

Trimming, soft  drop, Iterated soft drop 

深層学習で、エネルギーが低い 
ハドロンの分布はどう影響するか



ジェットのミンコフスキー汎関数に 
よる粒子分布の定量化



ソフトな粒子の分布を定量化するミンコフキー汎関数

Figure 2: (a) The Minkowski functionals are calcu-
lated by imposing discs on the point pattern. This
new secondary structure can be characterized using
topological measures, which vary for different radii
(b) The three reduced Minkowski functionals for a
2-D Poisson (random) process. These functionals are
unitless due to the normalization by the same mea-
sure one would expect for a set of non-overlapping
discs

of the underlying point interactions, including infor-
mation from all possible groupings of points.

When comparing patterns, one actually uses the re-
duced Minkowski functionals, namely the Minkowski
functionals for the pattern divided by what is ex-
pected for a set of non-overlapping discs. These are
given by

a(r) =
A(r)

πNr2
(3)

p(r) =
P (r)

2πNr
(4)

e(r) =
χ(r)

N
(5)

The functionals for a Poisson process are shown in
figure 2.b. The analysis in this paper relies exclu-
sively on these reduced functionals, so we will not
differentiate between the two.

2.2 Sorting the patterns

Our aim is to automatically sort patterns by perform-
ing FPCA on their approximated Minkowski func-
tionals, clustering the patterns with their individual
scores on the principal components. We will do the
same with the pairwise correllation function so that
we can directly compare our method with that of
[13]. For each pattern set, we will use enough prin-
cipal components to account for 95% of the varia-
tion. For the Minkowski functionals, we will calcu-
late the principal component scores individually for
the area, perimeter,and Euler number and then con-
catenate the scores into a larger vector. Then, we will
use these scores as coordinates, applying two different
clustering algorithms:

• Ward’s method [25]: An agglomerative technique
which seeks to minimize the total intercluster
variance of the distances between objects. We
chose this method because it is well known to
the pattern analysis community, and allows us
to directly compare our method with that of Il-
lian et al [13].

• Fast Weighted Modularity [26, 27]: To implement
this routine, we first calculate the pair-wise Eu-
clidean distance between all patterns, Dij , and
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2次元上では　面積、周囲の長さ、オイラー標数(r 依存)で 
点分布が記述される

面積

境界の長さ

オイラー標数 



MF の物理応用

• 天文: 星の分布の定量化、 銀河分布、シ
ミュレーション結果の定量化、non-

Gaussinaity of CMB, weak lensing..  

Additivity, Convexity, and Beyond 113

Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant

統計物理 
左 多孔質体　 

真ん中: 微乳濁液 

 左 コロイド 

体積の占有状況V, 表面の大きさ(S) 等に依存し
て物性が変わる　 

図は　Mecke and Stoyan (2000) 6
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FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the fiducial cosmology, with intrinsic

ellipticity noise from source galaxies and ✓G = 1 arcmin Gaussian smoothing. A source galaxy density of ngal = 15/arcmin
2

at redshift zs = 2 was assumed. Other three panels: the excursion sets above three di↵erent convergence thresholds , i.e. all
pixels with values above (below) the threshold are black (white). The threshold values are  = 0.0 (top right),  = 0.02 (bottom

left), and  = 0.07 (bottom right). The Minkowski Functionals V0, V1, and V2 measure the area, boundary length, and Euler

characteristic (or genus), respectively, of the black regions as a function of threshold.

find excellent agreement out to ` ⇠ 20, 000 for zs = 1 and
out to ` ⇠ 30, 000 for zs = 1, 5 and 2, corresponding to
our resolution limit. Because of this limitation, we will
employ smoothing scales no smaller than 1 arcmin below.
Comparing Figure 4 to Figure 3 in [33], we notice that
the drop-o↵ in power has been pushed out to higher `,

due to the increased resolution of the density planes.
Our results rely mostly on the cosmology-dependence

of the power spectrum (and MFs), rather than its abso-
lute value. We therefore compare the di↵erences of the
power spectra in various cosmologies from the fiducial
case. The results are shown in Figure 5, which shows
that the agreement is excellent for the dependence of the
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点の集まりの意味を定量的に表現する時に使う



ジェット内の粒子分布への応用
• 基本的に良いことばかり 

• それぞれの点の持つ、周囲の点との間の距離の情報
を、同等に取り扱う。ジェット発見のアルゴリズムと
同じコンセプト 

• 重なったエリアを２重に数えないのでパートンシャ
ワーの同方向への分離に対して安定 

• ジェットアルゴリズムの特徴量(Jet Area) と同じ量 

• 全ての粒子間距離をまとめて取り扱うので、統計的な
ふらつきは少ない. 損失関数の最小化と相性がいい。 

• CNNアルゴリズムは、ジェットイメージの一つの
ピクセルごとの揺らぎを直接取り扱わないといけ
ない。

Figure 2: (a) The Minkowski functionals are calcu-
lated by imposing discs on the point pattern. This
new secondary structure can be characterized using
topological measures, which vary for different radii
(b) The three reduced Minkowski functionals for a
2-D Poisson (random) process. These functionals are
unitless due to the normalization by the same mea-
sure one would expect for a set of non-overlapping
discs

of the underlying point interactions, including infor-
mation from all possible groupings of points.

When comparing patterns, one actually uses the re-
duced Minkowski functionals, namely the Minkowski
functionals for the pattern divided by what is ex-
pected for a set of non-overlapping discs. These are
given by

a(r) =
A(r)

πNr2
(3)

p(r) =
P (r)

2πNr
(4)

e(r) =
χ(r)

N
(5)

The functionals for a Poisson process are shown in
figure 2.b. The analysis in this paper relies exclu-
sively on these reduced functionals, so we will not
differentiate between the two.

2.2 Sorting the patterns

Our aim is to automatically sort patterns by perform-
ing FPCA on their approximated Minkowski func-
tionals, clustering the patterns with their individual
scores on the principal components. We will do the
same with the pairwise correllation function so that
we can directly compare our method with that of
[13]. For each pattern set, we will use enough prin-
cipal components to account for 95% of the varia-
tion. For the Minkowski functionals, we will calcu-
late the principal component scores individually for
the area, perimeter,and Euler number and then con-
catenate the scores into a larger vector. Then, we will
use these scores as coordinates, applying two different
clustering algorithms:

• Ward’s method [25]: An agglomerative technique
which seeks to minimize the total intercluster
variance of the distances between objects. We
chose this method because it is well known to
the pattern analysis community, and allows us
to directly compare our method with that of Il-
lian et al [13].

• Fast Weighted Modularity [26, 27]: To implement
this routine, we first calculate the pair-wise Eu-
clidean distance between all patterns, Dij , and

4

}



N1/N0=16/9=1.78 

ジェットイメージに対する実装

•  N1/N0 が持つ情報の例
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Integral Geometry of Soft Emission

One may borrow idea from integral geometry to analyze the

geometry of soft emission. Consider a Minkowski sum of jet images

and square and count number of pixels of the sum. 

3x3 square

See also: 

   Minkowski Functionals for cosmology: arXiv: astro-ph/9508154

   Hadwiger’s theorem

3x3 のマスク N(1)N0 =Npixel=3
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.
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N1/N0=9
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.

all pixel appear in 3x3 

• ジェットイメージのピクセルに対して　3x3 , 5x5, …..のマスクを準備する

VS 

バラバラの点



ミンコフスキー関数を使った 
ジェット分類



DARK JET の場合

• Dark Jet 　pp →Z’ → qD qD→ dark Parton shower → ρdiag→qq 

• 粒子がたくさんあるが、カラーシングレットなクラスターになっている状態
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

Lim, Nojiri   in preparation

mρ=20GeV
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CNN の学習結果
• mρ＝20GeV, 300GeV<pT<400GeV CNN のイベント選択は、MF(k>2) の分布で
カットをかけていた。　

CNN でカット元の分布
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

元のピクセル数 
分布に目立った差はない。

５番目の外周

何もない空間に注目 
している。
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CNN とミンコフスキー関数

• 畳み込みニューラルネット（CNN）:QCD と t, Z, W, 新粒子のジェットイ
メージのMF が十分に違っていれば、CNNはMF を学習しているだろう。

A&A 555, A38 (2013)
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Fig. 1. Structure quantification via Minkowski functionals. a) Counts
map, simulated Poisson-distributed random number of counts k. To
characterize the morphology, the image is turned into a black-and-white
image via thresholding – see b); the three Minkowski functionals are
then evaluated for the b/w image. b) Area A. c) Perimeter P. d) Euler
characteristic χ.

is explained in Sect. 3.1 using a global null hypothesis. The
technique is extended in Sect. 3.2 to local structure deviations
found with Minkowski sky maps, which allows one to resolve
and localize the gamma-ray sources. Section 3.3 applies the
analysis to simulated data. Finally, the results for counts maps
observed with H.E.S.S. are given in Sect. 4.

2. Structure characterization

This section describes the structure characterization of a
gamma-ray counts map. While similar methods may be used to
quantify the morphology of extended gamma-ray sources, this
is not the subject of this paper. Although the following struc-
ture analysis has not yet been applied in gamma-ray astronomy,
it is often used in integral geometry and in statistical physics
(Schneider & Weil 2008; Mecke 1998; Mecke & Stoyan 2000).

A gray-scale image, here the counts map, is turned into a
black-and-white (b/w) image (Mecke 1996). For each threshold
value ρ, all pixels with counts k ≥ ρ are set to black, the others
remain white – see Fig. 1. The structure of the image is then
analyzed as a function of the threshold ρ.

The structure of each b/w image is quantified by the
Minkowski functionals1. In two dimensions there are three of
them. They are proportional to well-known geometric quantities:
the area A of the black pixels, their perimeter P, and the Euler
characteristic χ, which is the integral of the Gaussian curvature.
It is a topological constant; for closed domains it is given by the
number of components minus the number of holes. Figure 1 vi-
sualizes how a counts map (a) is turned into a b/w image (b),
which is then quantified by Minkowski functionals (b)−(d). The

1 Other names are valuations, quermaßintegrals, intrinsic volumes, or
Hadwiger measures.

Table 1. Look-up table for Minkowski functionals.

Conf. A P χ Conf. A P χ

1 0 0 0 9 1/4 1 1/4
2 1/4 1 1/4 10 1/2 2 −1/2
3 1/4 1 1/4 11 1/2 1 0
4 1/2 1 0 12 3/4 1 −1/4
5 1/4 1 1/4 13 1/2 1 0
6 1/2 1 0 14 3/4 1 −1/4
7 1/2 2 −1/2 15 3/4 1 −1/4
8 3/4 1 −1/4 16 1 0 0

Notes. The functional values of area A, perimeter P, and Euler charac-
teristic χ are assigned to each 2 × 2 neighborhood of the image. The
unit of length is the edge-length of a pixel. Similar data can be found in
Mecke (1996) and Mantz et al. (2008).

area as a function of the threshold contains the knowledge about
the number of counts. However, it does not supply any informa-
tion about their arrangement, for which additional information is
provided by the perimeter and the Euler characteristic.

The Minkowski functionals are powerful shape measures.
Because of their additivity and continuity, they are robust against
noise and have short computation times. There are several linear
time algorithms for calculating the area, perimeter, and Euler
characteristic (e.g. Mantz et al. 2008; Schröder-Turk et al. 2010)
and for 3D data (e.g. Arns et al. 2010; Schröder-Turk et al.
2011, 2012). The straightforward algorithm used here is based
on Table 1. The image is decomposed into 2 × 2 neighborhoods.
The values of the Minkowski functionals are assigned to each
of the 16 possible configurations. Because of their additivity, the
sum of the local contributions yields their global value. The unit
of length is defined as the edge-length of a single pixel, thus
the area of a pixel is one. To avoid multiple countings when
iterating over the whole image, only that part may contribute
which is unique to a 2 × 2 neighborhood, i.e., each quarter of
the four pixels next to the center. For example, a single black
pixel has area and Euler characteristic one and perimeter four.
However, when iterating over the image, it will appear in four
different 2× 2 neighborhoods, namely configurations two, three,
five, and nine. Thus, Table 1 assigns to each of them area and
Euler characteristic one fourth and perimeter one. The white
pixel in configuration 15 can be interpreted as part of a hole;
it contributes negatively to the Euler characteristic. In configu-
rations seven and ten in Table 1 the black pixels sharing only
a vertex are chosen to be connected. If they were disconnected,
the weights for the Euler characteristic would be positive. The
choice is arbitrary, as long as the probability distribution for the
Euler characteristic is calculated consistently. However, connect-
ing them helps to distinguish a single cluster of black pixels from
two domains distant from each other2.

The choice of boundary conditions has a strong influence
on the structure quantification and its efficiency (Stoyan et al.
1987). Throughout this work, closed boundary conditions are
applied. This means all pixels outside the window of observa-
tion are set to white, thus all domains are closed. A discussion

2 If a marching square algorithm is used to find a more complex tri-
angulation of the domain of black pixels, the weights for area and
perimeter have to be adjusted – see Mantz et al. (2008). The proba-
bility distributions for the Minkowski functionals have to be calculated
consistently. However, no significant effect on the final results has yet
been observed.
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実際 MF　は 2x 2 のフィルターへのヒットを以下の数値を与えることで計算できる  

 v (fi ) →（Ai , Pi ,  χi ）、(A, P, χ）＝ Σi v( fi )



もっといいNN を作ろう!

• RN( Relational network) : 

• Jet mass, jet pT  

• N(0)~ N(3)   [pT cut なし、2 GeV, 4 GeV]  

• エネルギーに依存する情報 

• S2 : C correlator( Energy correlator)  f (θ）=Ei Ej 

δ(θーθij)     

•  Tkachov (hep-ph 960138) Lim, Nojiri 
1807.03312, Chakrabory, Lim Nojiri 
1904.02092    ~ τの任意のβの情報を担ってい
る。 

• Top 等の場合、3点も重要なはず； 

• [Leading subjetの粒子との２点関数] 

• [Leading subject の粒子を除いた2点関数]
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TOP VS QCD ジェット

• pT 500GeV~ 600 GeV までのtop jet.  

• Area 情報だけ使用した段階ではCNNと
RN は同等 

• RN に図形の面積だけでなく、周囲の長
さ、オイラー標数も情報として追加する
ことで、CNN を凌駕 

• Dark Jet の場合と違って、Area 分布が劇
的に違わなかったので、CNNはMFを特徴
量として認識できなかった。
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LOCAL MINIMUM 問題の改善
• CNN のloss function の最小化で、「真のminimum にたどり着く」ことはあまりない。 

• ROC は安定しているが、個々のイベントに対して、違うseed で使ったclassifier は違
う結果を出す。 

• RN + MF は input が少ないのでevent ごとの結果も遙かに安定　(900-> 85)
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Figure 10. TEST (top) RN (bottom) CNN,

6 About sampling phase space of IRC unsafe variables

In this section, we study the dependence on event generators. In section 2 and 3, we have shown
the results of the Pythia 8(PY8) tt̄ and dijet events. Because event generation involves resummation
and soft physics, the generated events are model dependent. The distribution has been tuned over
the data, however the final distribution of hadrons inside and outside of the jet are quite complex
and it is not trivial to have perfect agreement. As the result, the existing event distributions of
di↵erent generators such are quite di↵erent, and sometimes neither of them agree with experimental
data. The question is how precisely these MC event distributions should agree with the data. For
the analysis which depends only on high pT objects, the e↵ect of the soft particles are small. On
the other hand, for the jet classification using models built with ML and jet image, IRC unsafe
quantities contribute to the classification significantly. If agreement between the data and MCs were
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In this section, we study the dependence on event generators. In section 2 and 3, we have shown
the results of the Pythia 8(PY8) tt̄ and dijet events. Because event generation involves resummation
and soft physics, the generated events are model dependent. The distribution has been tuned over
the data, however the final distribution of hadrons inside and outside of the jet are quite complex
and it is not trivial to have perfect agreement. As the result, the existing event distributions of
di↵erent generators such are quite di↵erent, and sometimes neither of them agree with experimental
data. The question is how precisely these MC event distributions should agree with the data. For
the analysis which depends only on high pT objects, the e↵ect of the soft particles are small. On
the other hand, for the jet classification using models built with ML and jet image, IRC unsafe
quantities contribute to the classification significantly. If agreement between the data and MCs were
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MC TURNING とかCALIBRATION とか

• TQCD ジェットは event generator が違うと結構違う
分布を予言する。 

• 特に、QCDジェットの粒子数と広がりが大きく違う、し
かも実験データとも合わない。（モデルの改善が必要） 

• [MC を”実データ”で補正] MF の値が同じになるよう
に、イベントにウエイトをつけると、一致がよくなる。

(a) (b)

Figure 14: (N (0)
, N

(0)(4 GeV)) distributions for (a) PY8 and (b) HW7
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Figure 15: (N (0)
, N

(1)
/N

(0)) distributions for (a) PY8 and (b) HW7

The separation of the top jets and QCD jets is worse for HW7 compared with PY8 discussed in
previous sections. The AUC of the top jet vs. QCD jet classification predicted by HW7 is smaller than
that predicted by PY8. In figure 16, we show the ROC curves of each classifier trained on HW7 events.
The performance of the RNS2 is similar to that trained on PY8 events. Once N

(0) is additionally
considered in the classification, the performance is improved. However, the improvement from
adding N

(0) is significantly small in HW7, because the N
(0) distributions of top jets and QCD jets
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Figure 18: The ŷ
0 distributions of PY8 and HW7 test samples for the model trained on the

PY8 events. The neural networks used in the plots are (a) RNS2 , (b) RNS2,N(0),N(0)(4 GeV), (c)
RNS2,N(0),N(1) , and (d) CNN.

and the reweighting is then e↵ective for transforming the PY8 samples to HW7 samples. The opposite
is not true because there are QCD jets which are not in HW7 generated samples. The reweighting is
not exact because we have only a small number of events in some phase space region, and we see
some deviation in ŷ distribution, as shown in figure 18(b). If one wishes to describe real data by
assigning an appropriate weight for each simulated events, it is better to use a generator setup that
covers wider phase space so that we can correct the event distribution by using experimental data
afterwords.
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Phythia で　training した classifier で　 

Herwig のQCD jet を分類

N0 分布を補正した後



深層学習と物理

• MF: カラー構造の違う粒子の比較的運動量が小さいエネルギーdepositの分布を効率的
に捉えているように見える。 

• Dark Jet vs QCD 深層学習が自律的にミンコフスキー汎関数（物理）を見つけてきた。 

•  Top jet vs QCD 深層学習は、支配的な特徴量(subjet 分布）しか見つけたれなかった。 

• もっとも特徴的な量に損失関数が支配されて、それ以上改善しない。 

• pixelごとの Order(1) でふらつく情報ではなく、MF のような「まとめ指標」の方が
キャリブレーションにも便利かもしれない 

• 他の問題（例えば、displace vertex の発見など深層学習が得意な分野）にも使えるかも



おまけ　NN のシステム

S2
S2 

to/without  
1st subejt

KIN

MINKOWSKI 
INFO  

N0 N1 
MLP

MLP

MLP

Adding N1 fill  the gap between CNN and our approach. 

process  
pp →tt vs pp→2j 
500GeV<pT<600GeV   
150GeV<mj<200GeV 

case 1  
   modulation for two point correlation  
   two point correlation + Kin→5 outputs  
   correlation to/without leading jet  
              → 5  outputs 
          →ROC  

case2   + N0( number of active pixel)                    
→ROC  

case 3 + N0,N1→ROC  
  

OUTPUT 

LOSS FUNCTION 

5 outputs 5 outputs

30 input 25 inputs

4 inputs 

6 inputs


