Κ→π 崩壊における ε'の格子計算

富井 正明(コネチカット大学)

Co-authors: R. Abbott, T. Blum, P.A. Boyle, M. Bruno, N.H. Christ, D. Hoying, C. Jung, C. Kelly, C. Lehner, R.D. Mawhinney, D.J. Murphy, C.T. Sachrajda, A. Soni, T. Wang

arXiv:2004.09440 (RBC & UKQCD Collaborations) will be published in PRD

The <u>RBC & UKQCD collaborations</u>

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

<u>CERN</u> Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Bob Mawhinney Bigeng Wang Tianle Wang Yidi Zhao

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu Masaaki Tomii

Edinburgh University

Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi

<u>University of Connecticut</u>

UAM Madrid Julien Frison

<u>University of Liverpool</u>

Nicolas Garron

<u>MIT</u> David Murphy

<u>Peking University</u> Xu Feng

<u>University of Regensburg</u> Christoph Lehner (BNL)

<u>University of Southampton</u>

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

• イントロ

- K → ππ における CP の破れと ΔI = 1/2 則
- ▶ 計算方法の概略
- ► 前回の結果 (RBC/UKQCD, 2015)
- K → ππ 行列要素
- 非摂動繰り込みと結果
- 今後の課題

K → ππ における CP の破れ

K_L → ππ: CP 極限で禁止

ε' vs ε

▶ Re (ε'/ε)_{exp} = 16.6(2.3) x 10⁻⁴ (2000年頃)

SM で説明可能か?

 $\eta_{00} \equiv \frac{\mathsf{A}(\mathsf{K}_{\mathsf{L}} \to \pi^{0} \pi^{0})}{\mathsf{A}(\mathsf{K}_{\mathsf{S}} \to \pi^{0} \pi^{0})}$ $\eta_{+-} \equiv \frac{\mathsf{A}(\mathsf{K}_{\mathsf{L}} \to \pi^{+}\pi^{-})}{\mathsf{A}(\mathsf{K}_{\mathsf{C}} \to \pi^{+}\pi^{-})}$

$$\epsilon = \frac{\eta_{00} + 2\eta_{+-}}{3}$$
$$\epsilon' = \frac{\eta_{+-} - \eta_{00}}{3}$$

|=0&|=2崩壊モード

- アイソスピン固有状態への振幅 $A_{I} = \langle (\pi \pi)_{I} | H_{W} | K \rangle$
- アイソスピン極限で計算する場合に便利
- A2:高精度に計算可能 (PRL108 (2012) 141601, PRD91 (2015) 074502)
 - ► 2つの格子間隔: 2.36 GeV, 1.73 GeV → 連続極限
 - Re A₂ = $1.50(4)_{stat}(14)_{sys} \times 10^{-8}$ GeV, Im A₂ = $-6.99(20)_{stat}(84)_{sys} \times 10^{-13}$ GeV cf: $(\text{Re }A_2)_{\text{exp}} = 1.479(4) \times 10^{-8} \text{ GeV}$
- ε': A₀ & A₂ の両方必要

 $\langle (\pi\pi)_{\mathbf{I}=\mathbf{0}} | = \sqrt{1/3} \langle \pi^{0} \pi^{0} | + \sqrt{2/3} \langle \pi^{+} \pi^{-} |, \quad \langle (\pi\pi)_{\mathbf{I}=2}^{\mathbf{I}_{\mathbf{3}}=\mathbf{0}} | = -\sqrt{2/3} \langle \pi^{0} \pi^{0} | + \sqrt{1/3} \langle \pi^{+} \pi^{-} |$

実験事実

$\frac{\text{Re }A_0}{\text{Re }A_2} = 22.45(6) \quad \text{: large suppression of } \Delta I = 3/2 \text{ (A}_2\text{) mode}$

摂動 QCD の LO: Re $A_0 = 2$ Re A_2

10 倍が説明つかない。 QCD or BSM?

$\Delta I = 1/2$ 則

弱崩壊現象へのアプローチ

- 2つの典型的スケール
 - ▶ 電弱スケール: m_W = 80 GeV, m_Z = 91 GeV
 - ► QCD スケール: Λ_{QCD} ≈ 300 MeV

有効相互作用

contributions from heavy particles: effective interactions

行列要素の計算方法

ウィルソン係数 ● 重い粒子の情報 t, W, Z, ...

$$R(\mu)O_{i}^{R}(\mu)$$

有効演算子 (4フェルミなど) ● 軽い粒子からなる g, u, d, s, ... 格子 QCD の担当

ΔS = 1の4フェルミ演算子

• $(\bar{s}q)_{V-A}(\bar{q}'q'')_{V\pm A} = \bar{s}\gamma_{\mu}(1-\gamma_5)q'\cdot\bar{q}'\gamma_{\mu}(1\pm\gamma_5)q''$ • α, β : color indices

	$\left(\bar{s}_{\alpha}u_{\beta} ight)_{\mathrm{V-A}}\left(\bar{u}_{\beta}d_{\alpha} ight)_{\mathrm{V-A}}$,	1 =	Q_1
Current	$(\bar{s}u)_{V-A}(\bar{u}d)_{V-A}$,	2 =	Q_2
• $Q_1 =$	$(\bar{s}d)_{\mathrm{V-A}}\sum_{q} (\bar{q}q)_{\mathrm{V-A}}$,	3 =	Q_3
CITCI	$\left(ar{s}_{lpha} d_{eta} ight)_{\mathrm{V-A}} \sum_{a} \left(ar{q}_{eta} q_{lpha} ight)_{\mathrm{V-A}} \; ,$	4 =	Q_4
QCD pe	$(\bar{s}d)_{\mathrm{V-A}}\sum_{q}^{q}(\bar{q}q)_{\mathrm{V+A}}$,	5 =	Q_5
sum of the sum of t	$\left(ar{s}_{lpha} d_{eta} ight)_{\mathrm{V-A}} \sum_{q} \left(ar{q}_{eta} q_{lpha} ight)_{\mathrm{V+A}} \;,$	6 =	Q_6
	$\frac{3}{2} \left(\bar{s}d \right)_{\mathrm{V-A}} \sum_{q} e_q \left(\bar{q}q \right)_{\mathrm{V+A}} ,$	7 =	Q_7
	$\frac{3}{2} \left(\bar{s}_{\alpha} d_{\beta} \right)_{\mathrm{V-A}} \sum_{q} e_{q} \left(\bar{q}_{\beta} q_{\alpha} \right)_{\mathrm{V+A}} ,$	8 =	Q_8
	$\frac{3}{2} \left(\bar{s}d \right)_{\mathrm{V-A}} \sum_{q} e_q \left(\bar{q}q \right)_{\mathrm{V-A}} ,$	9 =	Q_9
	$\frac{3}{2} \left(\bar{s}_{\alpha} d_{\beta} \right)_{\mathrm{V-A}} \sum_{q} e_{q} \left(\bar{q}_{\beta} q_{\alpha} \right)_{\mathrm{V-A}} ,$	0 =	Q_{10}

-current operators

- $(\bar{s}_{\alpha}c_{\beta})_{V-A}(\bar{c}_{\beta}d_{\alpha})_{V-A} \& Q_{2}^{c} = (\bar{s}c)_{V-A}(\bar{c}d)_{V-A}$
- when $n_f \ge 4$

enguin operators

over q runs for all active quarks

guin operators

- F&δ:ππ 散乱から (T. Wang, etal RBC/UKQCD in preparation)
 - ► 2点関数 $\langle O_{\pi\pi}(\vec{p},t)O_{\pi\pi}(\vec{p},0)^{\dagger} \rangle$
 - Lüscher's の方法 [Commun.Math.Phys. 219 (2001) 31]

ε'の計算方法

$$-\frac{\mathrm{Im}\,\mathsf{A}_0}{\mathrm{Re}\,\mathsf{A}_0}\right]\bigg\}\qquad\qquad(\omega=\mathrm{Re}\,\mathsf{A}_2/\mathrm{Re}\,\mathsf{A}_0)$$

Renormalization matrix LQCD pQCD (+pQCD)

前回(2015年)の結果

- Z. Bai et al, (RBC/UKQCD) PRL115(2015) 21, 212001
- シミュレーションパラメータ
 - ► 32³ x 64 (2+1 メビウスフェルミオン)
 - ► およそ物理点直上: m_π = 143.1(2.0) MeV, m_K = 490.6(2.2) MeV
 - ト カットオフ: 1/a = 1.3784(68) GeV
 - ▶ 統計サンプル:216
- Re A₀ & Im A₀: 大きな統計/系統誤差 disconnected diagrams 摂動計算など

同じパラメータだけど

- ▶ 統計サンプル:216 → 741
- ππの演算子を複数用意 → 非物理的状態によるゴミを除去(後で詳説)

要するに色々精度を高める方法を取り入れた

今回のアップデート

▶ 繰り込みスケールを非摂動的に持ち上げ → 摂動計算の部分を改善(後で)

11

マイントロ

- K → ππ 行列要素
 - ► 行列要素の計算方法と on-shell 状態の作り方
 - ππ 散乱の位相差計算での教訓
 - K → ππ
- 非摂動繰り込みと結果
- 今後の課題

● ユークリッド空間上の相関関数 (ゼロ空間運動量/重心系の場合)

 $\int d^3x_{\pi\pi} d^3x_K \langle O_{\pi\pi}(t_{\pi\pi},\vec{x}_{\pi\pi})H_W(t,\vec{0})O_K(t_K,\vec{x}_K)^{\dagger} \rangle$ zero-momentum projection ($e^{i\vec{p}\cdot\vec{x}}=1$)

 $= \sum \langle 0 | O_{\pi\pi} | \pi\pi, \mathbf{m} \rangle \frac{1}{2\mathsf{E}_{\pi\pi,\mathbf{m}}} \langle \pi\pi, \mathbf{m} | \mathsf{H}_{\mathsf{W}} |$ O_{nn}/O_{K} と同じ量子数でゼロ運動量状態の足し

もしも一番軽い基底状態に興味があれば... t_m-t&t-t_Kの大きい所を見れば良い:

 $\rightarrow \langle 0|O_{\pi\pi}|\pi\pi,0\rangle \frac{1}{2\mathsf{E}_{\pi\pi,0}}\langle \pi\pi,0|\mathsf{H}_{\mathsf{W}}|\mathsf{K},0\rangle$

行列要素の計算方法

$$|\mathsf{K},\mathsf{n}
angle rac{1}{2\mathsf{E}_{\mathsf{K},\mathsf{n}}}\langle\mathsf{K},\mathsf{n}|\mathsf{O}_{\mathsf{K}}^{\dagger}|\mathsf{0}
angle \mathrm{e}^{-\mathsf{m}_{\pi,\mathsf{m}}(\mathsf{t}_{\pi\pi}-\mathsf{t})}\mathrm{e}^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})}$$
上げ

$$\label{eq:K_star} \begin{split} & \frac{1}{2E_{K,0}} \langle K,0|O_{K}^{\dagger}|0\rangle e^{-m_{\pi\pi,0}(t_{\pi\pi}-t)} e^{-m_{K,0}(t-t_{K})} \end{split}$$

く)

行列要素の計算方法

● ユークリッド空間上の相関関数 (ゼロ空間運動量/重心系の場合)

 $\int d^3x_{\pi\pi} d^3x_K \langle O_{\pi\pi}(t_{\pi\pi},\vec{x}_{\pi\pi})H_W(t,\vec{0})O_K(t_K,\vec{x}_K)^{\dagger} \rangle$ zero-momentum projection ($e^{i\vec{p}\cdot\vec{x}}=1$)

 $= \sum \langle 0 | O_{\pi\pi} | \pi\pi, \mathbf{m} \rangle \frac{1}{2\mathsf{E}_{\pi\pi,\mathbf{m}}} \langle \pi\pi, \mathbf{m} | \mathsf{H}_{\mathsf{W}} |$ O_{nn}/O_{K} と同じ量子数でゼロ運動量状態の足し

もしも一番軽い基底状態に興味があれば... t_m-t&t-t_Kの大きい所を見れば良い:

 $\rightarrow \langle 0|O_{\pi\pi}|\pi\pi,0\rangle \frac{1}{2\mathsf{E}_{\pi\pi,0}} \frac{\langle \pi\pi,0|\mathsf{H}_{\mathsf{W}}|\mathsf{K},0\rangle}{\mathsf{E}_{\pi\pi,0}}$ これが欲しかったもの

$$|\mathsf{K},\mathsf{n}
angle rac{1}{2\mathsf{E}_{\mathsf{K},\mathsf{n}}}\langle\mathsf{K},\mathsf{n}|\mathsf{O}_{\mathsf{K}}^{\dagger}|\mathsf{0}
angle \mathrm{e}^{-\mathsf{m}_{\pi,\mathsf{m}}(\mathsf{t}_{\pi\pi}-\mathsf{t})}\mathrm{e}^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(\mathsf{t}-\mathsf{t}_{\mathsf{K}})}$$
上げ

$$\frac{1}{2E_{K,0}}\langle K,0|O_{K}^{\dagger}|0\rangle e^{-m_{\pi\pi,0}(t_{\pi\pi}-t)}e^{-m_{K,0}(t-t_{K})}$$

く)

On-shell ππ state は一番軽くない

- K中間子の基底状態はフィジカル: E_K = m_K ≈ 500 MeV
- ππ 基底状態は π が 2 つともゼロ運動量: E_{ππ,0} ≈ 270 MeV
 - ► 欲しいのは | E_{ππ} = m_K ≈ 500 MeV 〉 (π と π の相対運動量が必要)
- 考えられる作戦

 - 軽い状態全部考慮して相関関数を解析する
 - ▶ 境界条件を変えて不要な内部運動量のモードを禁止する

体積を適切に調節することが必要

有限体積で計算している → 運動量が離散的(3,4 番目くらいに軽い状態が on-shell)

- ダウンクォークに反周期境界条件
 - $d(x + L\hat{e}_{x_1,\dots,x_n}) = -d(x)$
 - ▶ 荷電パイオンも反周期境界条件を満たす $\pi^{\pm}(\mathbf{x} + \mathbf{L}\hat{\mathbf{e}}_{\mathbf{x}_1,\dots,\mathbf{x}_n}) = -\pi^{\pm}(\mathbf{x})$
- アイソスピン変換 (Wigner-Eckart theorem): $\langle (\pi\pi)_{l=2}^{l_3=1} | \mathbf{H}_{\Delta l=3/2}^{\Delta l_3=1/2} | \mathbf{K}^+ \rangle = \frac{3}{2} \langle (\pi\pi)_{l=2}^{l_3=2} | \mathbf{H}_{\Delta l=3/2}^{\Delta l_3=3/2} | \mathbf{K}^+ \rangle$ $\langle \pi^+ \pi^+ |$
 - on-shellの π+π+ を取り出して A₂の計算が可能

|=2の場合 (PRL108 (2012) 141601, PRD91 (2015) 074502)

► $\tilde{\pi}^{\pm}(\vec{p},t)|_{p_i=0} = 0, i = 1,...,n \rightarrow -$ 番軽い状態のエネルギー: $E_{\pi^{\pm}}^2 = m_{\pi}^2 + n^2 (\pi/L)^2$ L (& n) を適当に選んで E_{π+π+} = m_κ

- アイソスピン不変:中性のパイオンを使うしかない
- G-parity 境界条件:

Charge conjugation 180° isospin rotation

•
$$\widehat{\mathsf{G}}\left(\begin{array}{c} u\\ d\end{array}\right) = \left(\begin{array}{c} -C\overline{d}^{T}\\ C\overline{u}^{T}\end{array}\right), \quad \widehat{\mathsf{G}}\left(\begin{array}{c} \overline{d}\\ \overline{u}\end{array}\right) = \left(\begin{array}{c} -u^{T}C^{-1}\\ d^{T}C^{-1}\end{array}\right)$$

パイオンは全部 G-parity odd になる → 余計なモードを殺せる

=0の場合

→ 反周期境界条件では πº の余計なモードを殺せない

 $f(x + L\hat{e}_{x_1,...,x_n}) = \widehat{G}f(x) = \underline{\widehat{C}}e^{-i\pi \hat{I}_y}f(x) \qquad (f: \text{ isospin representation})$

ππ位相差δの計算

- Lüscher formula 位相差 δ_Iと有限体積での状態の運動量 k の関係式
 - ▶ 例:2ボソン系、1+1次元で空間方向に周期的境界条件、時間方向は無限

周期的境界条件: $e^{ikL+2i\delta(k)} = 1 \rightarrow$

- 分散関係式: $E_n = 2\sqrt{m^2 + k_n^2}$
- δ_Iの計算方法
 - 2点関数から E_n(次のスライド) → 分散関係式から k_n
 - Lüscher formula 3+1次元 G-parity 版から δ(k_n)

T. Wang, et al (RBC/UKQCD) in preparation

$$\mathbf{k}_{n}\mathbf{L} + 2\delta(\mathbf{k}_{n}) = 2n\pi$$

n: 離散的運動量のラベル

Lüscher formula for this toy case

ππ状態のエネルギー

ユークリッド2点相関関数

$$G_{\pi\pi}(t) = \int d^3x \langle O_{\pi\pi}(t,\vec{x})O_{\pi\pi}(0,\vec{y})^{\dagger} \rangle = \sum_{n} \langle 0|O_{\pi\pi}|\pi\pi,n\rangle \frac{1}{2E_{\pi\pi,n}} \langle \pi\pi,n|O_{\pi\pi}^{\dagger}|0\rangle e^{-E_{\pi\pi,n}t}$$

Effective energy $E_{\pi\pi}^{eff}(t) = \ln \frac{G_{\pi\pi}(t)}{G_{\pi\pi}(t+1)} \xrightarrow{\text{large } t} E_{\pi\pi,0}$ G-parity 境界条件によりこれが知りたいエネルギー

• $E_{\pi\pi}^{eff}(t)$ がtに寄らなくなったら $E_{\pi\pi,0}$ に行き着いたと考えられる

でも、実際の計算では判断が難しい(次のスライド)

The "mm puzzle"

- 格子計算と現象論で合わない
 - $\delta_0^{2015} = 23.8(4.9)(2.2)^\circ$, $\delta_0^{2020'} = 19.1(2.5)(1.2)^\circ$ • $\delta_0^{\text{ph}+\text{exp}} = 36^{\circ}$
- 一応、第一励起状態も考慮して解析している
 - ▶ 2種類のフィットで同じ結果 $G(t) = z_0 e^{-E_0 t} \& G(t) = z_0 e^{-E_0 t} + z_1 e^{-E_1 t}$
- なぜ合わない?
 - 結論: 励起状態の取り扱いがアマかった

216 Configs 0.39 $E_{
m eff}$ 0.37Prediction from dispn theory + expt 0.330 2 6 8 0.40 1438 cfgs 0.39 (PRELIMINARY) 0.38 0.36 0.35 (From dispersion theory + expt. data) 0.34 10 12 2 8

 $\pi\pi(I=0)$

🗌 Kaon

0.41

2015 paper

 ππの演算子を複数使う

▶ 2015年 $O_{\pi\pi} = \pi\pi(1, 1, 1)$

- ▶ 2020年の追加分 $\pi\pi(3,1,1), \quad \sigma = \frac{1}{\sqrt{2}}(\bar{u}u + \bar{d}d)$
- 2点関数行列 $G_{ij}(t) = \langle O_i(t)O_j(0)^\dagger \rangle = \sum A_{i,n}A_{j,n}^\dagger e^{-E_n t}$ n
 - ▶ 複数の状態を考慮したフィットの情報が増えている
 - ▶ あるいは適当に線形結合して励起状態 2つを消せる

励起状態の分離

フィット結果: $E_{\pi\pi}^{lat} = 479.5(1.4)$ MeV

$|=0<\pi\pi|Q_i|K>$ from 3pt functions

Revisiting 3pt functions

$$\begin{split} & \mathsf{G}_{i}^{\mathsf{sink}}(t-t_{\mathsf{K}},t_{\mathsf{sink}}-t) = \int d^{3}x_{\mathsf{sink}}d^{3}x_{\mathsf{K}} \langle \mathsf{O}_{\mathsf{sink}}(t_{\mathsf{sink}},\!\vec{x}_{\mathsf{sink}})\mathsf{Q}_{i}(t,\vec{0})\mathsf{O}_{\mathsf{K}}(t_{\mathsf{K}},\!\vec{x}_{\mathsf{K}})^{\dagger} \rangle \\ & = \sum_{\mathsf{m},\mathsf{n}} \frac{\langle \mathsf{0}|\mathsf{O}_{\mathsf{sink}}|\pi\pi,\mathsf{m}\rangle \frac{1}{2\mathsf{E}_{\pi\pi,\mathsf{m}}}}{\mathsf{A}_{\mathsf{sink}}^{\mathsf{m}}} \frac{\langle \pi\pi,\mathsf{m}|\mathsf{H}_{\mathsf{W}}|\mathsf{K},\mathsf{n}\rangle}{\mathsf{M}_{i}^{\mathsf{mn}}} \frac{\frac{1}{2\mathsf{E}_{\mathsf{K},\mathsf{n}}}\langle\mathsf{K},\mathsf{n}|\mathsf{O}_{\mathsf{K}}^{\dagger}|\mathsf{0}\rangle}{\mathsf{A}_{\mathsf{K}}^{\mathsf{n}}} e^{-\mathsf{E}_{\pi\pi,\mathsf{m}}(t_{\mathsf{sink}}-t)} e^{-\mathsf{m}_{\mathsf{K},\mathsf{n}}(t-t_{\mathsf{K}})} \end{split}$$

Effective matrix elements

$$M_i^{eff,sink}(t-t_K,t_{sink}-t)=G_i^{sink}(t-t_K,t_{sink}-t)$$

$$= M_i^{00} + \sum_m \frac{A_{sink}^m}{A_{sink}^0} M_i^{m0} e^{-(E_{\pi\pi,m} - E_{\pi\pi,0})(t_{sink})}$$

 \rightarrow 0 at large t-t_K & t_{sink} -t

Κ→ππ行列要素の計算

• 3 点関数

 $\mathsf{G}_{\mathsf{i}}^{\alpha}(\mathsf{t}-\mathsf{t}_{\mathsf{K}},\mathsf{t}_{\pi\pi}-\mathsf{t}) = \langle \mathsf{O}_{\pi\pi}^{\alpha}(\mathsf{t}_{\pi\pi})\mathsf{Q}_{\mathsf{i}}(\mathsf{t})\mathsf{O}_{\mathsf{K}}(\mathsf{t}_{\mathsf{K}})^{\dagger} \rangle$

- Effective matrix elements
 - $M_{i}^{eff,\alpha}(t-t_{K},t_{\pi\pi}-t)$ (定義は Slack)
 - ▶ 励起状態による寄与の有無を調べるツール
 - 基底状態でサチったところでは欲しい行列要素で一定になる

▶ 十分に大きな t – t_K, t_{$\pi\pi$} – t で欲しい行列要素からの寄与(基底状態)でサチる

Effective MEs

3種類の ππ 演算子

$$\mathsf{O}^{\alpha}_{\pi\pi} = \mathsf{O}_{\pi\pi(1,1,1)}, \ \mathsf{O}_{\sigma}, \ \mathsf{O}_{\mathsf{opt}}$$

O_{opt}: ππ(1,1,1) & σの適当な線形結合 $O_{opt} = r_1 O_{\pi\pi(1,1,1)} + r_2 O_{\sigma}$ ▶ 第一励起状態を殺す組み合わせ

フィット結果

- 色々なフィット
 - ► t'_{min}: min of (t_{sink} t) [3-8]
 - ► t_{min}: min of (t-t_K) [6-8]
 - (# of operators) x (# of states considered)
- ππ(311)の演算子は系統誤差の評価に利用
- 2015年は励起状態の寄与が
 過小評価されていた

フィット結果

- 色々なフィット
 - ► t'_{min}: min of (t_{sink} t) [3-8]
 - ► t_{min}: min of (t-t_K) [6-8]
 - (# of operators) x (# of states considered)
- ππ(311)の演算子は系統誤差の評価に利用
- 2015年は励起状態の寄与が
 過小評価されていた

G-parity 境界条件で on-shell 状態の扱いを簡単化 - ππの励起状態が前よりうまく除去できた

ε'の計算方法

$$-\frac{\mathrm{Im}\,\mathsf{A}_0}{\mathrm{Re}\,\mathsf{A}_0}\right]\bigg\}\qquad\qquad(\omega=\mathrm{Re}\,\mathsf{A}_2/\mathrm{Re}\,\mathsf{A}_0)$$

Renormalization matrix

+
$$\tau y_i(\mu)] Z_{ij}(\mu) \langle (\pi \pi)_I | Q_j^{lat} | K \rangle$$

on coefs. LQCD
QCD (+pQCD) LQCD

残りは繰り込みとウィルソン係数

マイントロ

☑ K → ππ 行列要素

非摂動繰り込みと結果

- ► RI/SMOM スキームと window problem
- ► ステップスケーリング
- ▶ 最終結果
- 今後の課題

Power divergence

Quadratic divergence (~ a⁻²) appears in MEs from

- due to mixing 4-quark operators with $O(m/a^2)\overline{s}\gamma_5 d$
- Remove by subtraction

Condition: $\langle Q'_i(t_0)K(0) \rangle = 0$ at specific t_0

 $K \rightarrow \pi\pi$ MEs shown earlier are the results after the subtraction

 $Q_i \rightarrow Q'_i = Q_i - \alpha_i \bar{s} \gamma_5 d$ (mixing w/ parity-even operator $\bar{s}d$ is invalid)

素粒子物理学の進展2020 富井正明 ε'

Renormalization

ベキの発散を除いた後、log の発散 ln a² を乗法的に除去

To construct appropriate Hamiltonian

 $\begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \textbf{perturbative} \end{array} \end{array} \hspace{0.1 cm} \mathbf{Z}^{\mathsf{R}}_{\mathsf{ij}}(\mu') \mathbf{Q}^{\mathsf{lat}}_{\mathsf{j}} \\ \end{array}$ matching Wilson coefficients

RI/SMOM スキーム (よく使われる) p_2 **p**₂

$\mu'^2 = p_1^2 = p_2^2 = (p_1 - p_2)^2$

素粒子物理学の進展2020 富井正明 ε'

Renormalization

ベキの発散を除いた後、log の発散 ln a² を乗法的に除去

To construct appropriate Hamiltonian

← - - - → $Z_{ij}^{R}(\mu')Q_{j}^{lat}$ ← matching Wilson coefficients

RI/SMOM スキーム (よく使われる) p_2 **p**₂

ステップスケーリング

非摂動的に繰り込みスケールを持ち上げ

$$Z(\mu_{\text{high}}, a_{\text{coarse}}) = \left(\frac{Z(\mu_{\text{high}}, a_{\text{fine}})}{Z(\mu_{\text{low}}, a_{\text{fine}})}\right) \frac{Z(\mu_{\text{low}}, a_{\text{coarse}})}{\text{used in 2015}}$$

$$a_{fine}^{-1} = 3.148(17) \text{ GeV} \qquad a_{coarse}^{-1} =$$

 $\mu_{
m high} \simeq 4.0 \; {
m GeV}$

fine lattice ensemble created ($\mu_{high} \ll \pi/a_{fine}$)

- = 1.378(7) GeV
- $\mu_{\mathsf{low}}\simeq 1.5\;\mathsf{GeV}$

$${
m Re}(\epsilon'/\epsilon)_{{
m SM},2015} = 1.38(5.15)_{
m stat}(4.59)_{
m sys} imes 10^{-4}$$

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)_{\mathrm{SM}} = \operatorname{Re}\left\{\frac{\mathrm{i}\omega \mathrm{e}^{\mathrm{i}(\delta_{2}-\delta_{0})}}{\sqrt{2}\epsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right]\right\}$$
$$= 21.7(2.6)_{\mathrm{stat}}(6.2)_{\mathrm{sys}}(5.0)_{\mathrm{EM/IB}} \times 10^{-4}$$

$$\operatorname{Re}(\epsilon'/\epsilon)_{\exp} = 16.66$$

☆ ΔI = 1/2 則も再現 (Re A₀/Re A₂)_{SM} = 19.9(2.3)(4

終結果

 $5(2.3) \times 10^{-4}$

4.4)
$$\iff (\text{Re} A_0/\text{Re} A_2)_{\text{exp}} = 22.45(6)$$

結果が変わったことについて Southampton 2015 年は世界初で、とりあえず結果を出そうってノリだった

今回は励起状態の寄与を徹底的に調べた。

Southampton ππ 演算子 1 つだけで励起状態の寄与の概算した気になってたのがマズかった

Breakdown of sys. errors on A₀

Description

Operator normalisation Wilson coefficients Finite lattice spacing Lellouch - Lüscher factor **Residual FV corrections** Parametric errors Excited state contamination Unphysical kinematics Total

- ¹ As a result of step scaling from $\mu = 1.53 \,\text{GeV} \rightarrow 4.00 \,\text{GeV}$.
- ² Better control of $\pi\pi$ system due to additional operators.
- ³ Largest uncertainty is due to $\tau \sim 5\%$.
- ⁴ Significantly underestimated in 2015.

2015 Error	2020 Error
15%	5% ¹
12%	unchanged
12%	unchanged
11%	1.5% ²
7%	unchanged
5%	6% ³
5%	negligible ⁴
3%	5%
27%	21%

Breakdown of sys. errors on A₀

Description 20 **Operator normalisation** Wilson coefficients Finite lattice spacing Lellouch - Lüscher factor **Residual FV corrections** Parametric errors Excited state contamination Unphysical kinematics Total

- ¹ As a result of step scaling from $\mu = 1.53 \,\text{GeV} \rightarrow 4.00 \,\text{GeV}$.
- ² Better control of $\pi\pi$ system due to additional operators.
- ³ Largest uncertainty is due to $\tau \sim 5\%$.
- ⁴ Significantly underestimated in 2015.

)15 Error 2	2020 Error		NP treatment on going
15% 12% u	5% ¹ Inchanged		(next final topic)
12% u	Inchanged		
11%	$1.5\%^2$		
7% u	inchanged		finer lattice & continuum li
5%	6% ³		(not planned)
5% r	negligible ⁴		
3%	5%		
27%	21%	_	

31

ダイントロ

- **☑** K → ππ 行列要素
- ☑ 非摂動繰り込みと結果

今後の課題

- ▶ ウィルソン係数の非摂動マッチング b/w 3/4フレーバー理論
- 周期的境界条件で再チャレンジ
- ► アイソスピンの破れとQED補正

ウィルソン係数のマッチング $< f|H_W|i> = \Sigma_i w_i^{3f}(\mu) < f|O_i^{3f}(\mu)|i>$ pQCD LQCD

μ

w³(µ):不正確 Re A₀, Im A₀: 12%の不定性

w^{4f}_i(µ): µが大きければ高精度

ウィルソン係数のマッチング

μ

w³(µ):不正確 Re A₀, Im A₀: 12%の不定性

w^{4f}_i(µ): µが大きければ高精度

- シーチャーム → $O(\alpha_s^2)$, 今回は無視
- 今回の O^{4†}はチャームを含む
 - ► O^{3f}ではチャームがない代わりに ウィルソン係数にその寄与が入る
- なぜ格子計算では O^{3†}を使った?
 - ► $32^3 \times 64$, $a^{-1} \approx 1.38$ GeV
 - この粗い格子上にはチャームを乗せれない
 - (もうすぐ)

Wi **#** Wi⁴?

▶ 物理点のパイオン質量とチャームの同時実現には 80³ x 160 くらいの格子が必要

▶ 長距離相関関数にマッチング条件

 $\frac{\langle O_i^{4f}(x)O_j^{3f}(y)^\dagger\rangle}{G_{ij}^{4-3}(x-y)} = \sum_k M_{ik} \frac{\langle O_k^{3f}(x)O_j^{3f}(y)^\dagger\rangle}{G_{ij}^{3-3}(x-y)}$

Operator basis for \Delta S = 1

Type	Q_i
current-current	$Q_1 = (\overline{s}_{\alpha} d_{\alpha})_L (\overline{u}_{\beta} u_{\beta})_L$
	$Q_2 = (\overline{s}_{\alpha} d_{\beta})_L (\overline{u}_{\beta} u_{\alpha})_L$
QCD penguin	$Q_3 = (\overline{s}_{\alpha} d_{\alpha})_L \sum_q^{3f} (\overline{q}_{\beta} q_{\beta})_L$
	$Q_4 = (\overline{s}_{\alpha} d_{\beta})_L \sum_q^{3f} (\overline{q}_{\beta} q_{\alpha})_L$
	$Q_5 = (\overline{s}_{\alpha} d_{\alpha})_L \sum_q^{3f} (\overline{q}_{\beta} q_{\beta})_R$
	$Q_6 = (\overline{s}_{\alpha} d_{\beta})_L \sum_q^{3f} (\overline{q}_{\beta} q_{\alpha})_R$
EW penguin	$Q_7 = \frac{3}{2} (\overline{s}_{\alpha} d_{\alpha})_L \sum_q^{3f} e_q (\overline{q}_{\beta} q_{\beta})_R$
	$Q_8 = \frac{3}{2} (\overline{s}_{\alpha} d_{\beta})_L \sum_q^{3f} e_q (\overline{q}_{\beta} q_{\alpha})_R$
	$Q_9 = \frac{3}{2} (\overline{s}_{\alpha} d_{\alpha})_L \sum_q^{3f} e_q (\overline{q}_{\beta} q_{\beta})_L$
	$Q_{10} = \frac{3}{2} (\overline{s}_{\alpha} d_{\beta})_L \sum_q^{3f} e_q (\overline{q}_{\beta} q_{\alpha})_L$

- $M_{ii} = G_{ik}^{4-3}(x-y)(G^{3-3}(x-y)^{-1})_{ki}$
 - $G^{3-3}(x-y)^{-1}$ exists when O_i^{3f} are independent
- $\Delta S = 1$ operators (n_f = 3)
 - Solutions among the 10 operators **Fierz transformation + linear algebra**
 - 7 independent ones (if theory is not dimensionally regularized)

Operator basis for $\Delta S = 1$

 (n_L, n_R) : Representation of SU(3)_L x SU(3)_R

- Classification of 7 independent $n_f = 3$ operators
 - ► 1 in (27,1); 4 in (8,1); 2 in (8,8)
- 4 charm operators $(\bar{s}_{\alpha}d_{\alpha/\beta})_{L}(\bar{c}_{\beta}c_{\beta/\alpha})_{L/R}$ all in (8,1)
- Only operators in (8,1) matter
 - $O_i^{3f} = (Q'_1, Q'_2, Q'_3, Q'_4)$
 - $O_i^{4f} = (Q'_1, Q'_2, Q'_3, Q'_4, P_1, P_2, P_3, P_4)$

16 nontrivial elements

1.78 GeV の格子での結果

 M_{61} 0.25 $am_c = 0.60$ **Preliminary** $am_c = 0.36$ \mapsto 0.20 $am_c = 0.24$ 0.15 0.10 0.05 0.00 -0.05 L____ 0.2 5 0.6 0 1 / |*x*| [GeV] 0.3 0.4 8.0 0.5 0.7 0.9

チャームがちゃんと乗る 3.15 GeV の格子で計算中

小さい格子でテスト計算

- G-parity 境界条件を用いた計算のアップデート
 - ▶ 統計数:216 confs → 741 confs
 - ππの演算子を増やして励起状態の寄与を分離
 - ► ステップスケーリング → 摂動計算の不定性を削減
 - ► Re(ε'/ε) & ΔI = 1/2 則:実験と合った
- On-going works
 - NP matching of Wilson coefficients b/w 3/4-flavor theories
 - $K \rightarrow \pi\pi$ calculation w/ periodic boundary conditions
 - Strategy for EM correction & isospin breaking effects being considered

まとめ (ε')

