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研究分野
1. QCD熱力学 (2008.00493, …) 2. 量子コンピュータ (2001.00485)

3. 機械学習 (本日)

main : 2019/5/24(14:30)

3.1 誤差関数とその統計力学的理解 061

図 3.5 深層ニューラルネットワーク。各層の非線形関数 σ• を作用させた出力値は、統計力
学的な立場では期待値を表します。

− logQJN (d⃗|⟨⃗hN−1⟩) = L(d⃗, ⟨⃗hN ⟩), ⟨⃗hN ⟩ = σN (JN ⟨⃗hN ⟩+ J⃗N )

(3.1.52)

のように書けます。簡単のために J⃗ の部分を略して書くと

⟨⃗hN ⟩ = σN
(
JNσN−1

(
. . . J2σ1(J1x⃗) . . .

))
(3.1.53)

と d⃗の差を計算することになります。通常の深層学習の文脈では

J = W (3.1.54)

J⃗ = b⃗ (3.1.55)

と表現される場合が多く、それぞれ重み (weight)W、バイアス (bias) b⃗と
呼ばれます。
ここまでで、ニューラルネットワークが「導出」されました。次の節で

は、いかに学習を進めるかを見ていきます。
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自己紹介
Who and what am I?

PPP2020

Akio Tomiya

Application of ML to physics 

兵庫県立大(物性) →PhD in 2015 (阪大、素粒子論)  
→華中師範大学（武漢、ポスドク)  
→理化学研究所/ブルックヘブン国立研究所(NY、ポスドク) 今もアメリカ。

詳細はGoogle scholarへ

(c.f. 深谷さんのトーク)

シュウィンガー模型、再現しましたU(1)A とか磁場とか。

https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ
https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ


1.機械学習とは何なのか 
2.物理への応用 
3.2020年代にあたって

話すこと
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※ 何をどう話すか迷いましたが、研究分野の紹介をすることにしました 
(ほとんどレビューです)



Machine learning?
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Machine learning?
最新情報
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- Physics ∩ ML: http://www.physicsmeetsml.org/ 
    - アメリカ東海岸中心, 英語 
    - 日本時間深夜 

- DLAP2020 https://cometscome.github.io/DLAP2020/ 
    - 日本, 日本語 
    - 隔週の木曜朝 
    - 過去の研究会ページ(2017~)もあり。 

どちらでも過去のスライドが見れます。 

http://www.physicsmeetsml.org/
https://cometscome.github.io/DLAP2020/
http://www.physicsmeetsml.org/
https://cometscome.github.io/DLAP2020/
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Machine learning?
教科書、色々ありますが…
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理論系 
- これならわかる機械学習入門 瀧雅人(標準的)


- ディープラーニングと物理学、田中 橋本 富谷(物理屋フレンドリー)

- 入門パターン認識と機械学習 後藤 小林 (ニューラルネット以外、色々載ってる)

- 数学的: ベイズ統計の理論と手法、渡辺澄夫、統計的学習理論、金森敬文 

- パターン認識と機械学習(場の理論の教科書で言うItzykson-Zuberっぽい印象)


実装系 
- PythonとKerasによるディープラーニング、F. Chollet et al(実装)

- PythonユーザのためのJupyter [実戦] 入門、池内et al (Jupyterの使いかた) 

- Pythonで機械学習入門、大関 真之 (物理屋が書いたGAN の実装)
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Machine learning?
Data (empirical knowledge) determine output
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計算機学者のサミュエル による機械学習の古い “定義”

「明示的なプログラムをすることなく、機械が学習できる能力を持つようにする」 

 (1959)

「経験だけから、その背後の構造を抽出し未知の 
状況にも適用できる能力を機械に自動的に獲得させる」 

「フィットでは？」 



9

Machine learning?
Data (empirical knowledge) determine output
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線形回帰

c.f. PPP 2019 の佐藤さんのスライド

x: 入力データ 
y: 教師ラベル

フィット関数 ~ 機械学習のアーキテクチャ
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Machine learning?
Data (empirical knowledge) determine output
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E.g. Supervised learning using neural networks

Neural 
network 

(param θ)
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Machine learning?
Data (empirical knowledge) determine output
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E.g. Supervised learning using neural networks

Neural 
network 

(param θ)

Training data
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Machine learning?
Data (empirical knowledge) determine output
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E.g. Supervised learning using neural networks

Feed

Sample

Training data

Neural 
network 

(param θ)
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Machine learning?
Data (empirical knowledge) determine output

PPP2020

Akio Tomiya
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E.g. Supervised learning using neural networks

4

3
Feed

Sample

Training data

(wrong)Neural 
network 

(param θ)
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Machine learning?
Data (empirical knowledge) determine output
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Application of ML to physics 

E.g. Supervised learning using neural networks

4

3
Feed

feedback

Sample

Training data

(wrong)Neural 
network 

(param θ)
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Machine learning?
Data (empirical knowledge) determine output
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E.g. Supervised learning using neural networks

4

3
Feed

feedback

Sample

Repeat above 
Many times to 

tune θ (training)

Neural 
network 

(param θ*)
Feed

Training data

(wrong)Neural 
network 

(param θ)

1

6
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Machine learning?
Data (empirical knowledge) determine output
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1

2

ニューラルネット

1の画像データ

2の画像データ

=

0.624
0.21

0.3434
0.756
0.3456
0.64
0.251
0.11
0.23

⋮

画像はベクトル
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Machine learning?
Data (empirical knowledge) determine output
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E.g. Supervised learning using neural networks

4

3
Feed

feedback

Sample

1

6
Feed

Sample

Training data

4

5

Neural 
network 

(param θ*)
Feed

Same parameters work 
(Generalization)

Validation data

(wrong)

Neural 
network 

(param θ*)

Neural 
network 

(param θ)

Repeat above 
Many times to 

tune θ (training)
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Category of machine learning
Unsupervised learning is one of class of machine learning
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• 教師あり学習


• 画像認識など、教師ラベルありのもの。


• 教師なし学習


• 教師ラベルなしでの分類。データの分布を理解する。


• 強化学習


• e.g. Alpha GOなど
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物理への応用
Too many to introduce…
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格子QCDへの応用に話を限ります

1. 格子QCD

    1. Configuration generation in LQCD

    2. Reduction of cost in measurements

    3. Application to QCD thermodynamics

2. Phenomenology

3. String, AdS/CFT

4. Condensed matter


[ディープラーニングと物理学2020]のホームページなどを見てください



物理量の決定にまつわる話
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物理量の決定にまつわる話
3点関数の決定と輸送係数の決定
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格子QCDでは、ゲージ配位を作ったあと、測定をする必要がある

1. 計算コストが大変
2. 格子上でどうやって計算していいかわからない

たまに測定で問題：

1. の例として3点関数

2. の例として輸送係数

があり、それぞれ機械学習を使った解決法が提案されている
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3点関数の予言
核子の行列要素を計算したいがコストが…
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Application of ML to physics 

B Yoon et al 1807.05971, 1909.10990

http://www.int.washington.edu/talks/WorkShops/int_14_57W/People/Syritsyn_S/Syritsyn.pdf

同じ配位から2点関数と3点関数を計算すると相関がある

→なんか予言できる？
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3点関数の予言
行列要素を計算したいがコストが…
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Application of ML to physics 

From Boram’s slides in Lattice 2018

B Yoon et al 1807.05971, 1909.10990

Conf# 3pt @ t=5, tau=10 2pt(tau=10)

1 -0.8 0.1

2 0.2 1.2

3 2.0 3.2

回帰木でフィット
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3点関数の予言
行列要素を計算したいがコストが…
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直接測定

とは言え、系統誤差が気になる
よく知られたAll mode averaging (AMA) と似た感じで補正できる

第一項: 機械学習の予言 
第二項: 補正項

うまく行ってそう
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輸送係数の決定(1/3)
格子QCDでスペクトル関数ρ(ω)を決めるのは難しい

PPP2020

Akio Tomiya

Application of ML to physics 

[https://www.bnl.gov/rhic/news/061907/story2.asp, https://www.bnl.gov/phobos/Presentations/paris01/sld025.htm, 0706.1522]

eta/s < 0.1? 

s: エントロピー密度、これは格子QCDで計算できていた 
eta: ずり粘性。むずかしい。

η(T ) = π
dρ(ω)

dω ω=0

ρ(ω)

ω

1
T5 ∫ d ⃗x ⟨TR

12(0)TR
12(x)⟩ = ∫

+∞

−∞
dωK(τ, ω)ρ(ω)

格子で測れる、x=O(10)点 ω=O(1000)点

K~tanh

ρを決めるのに情報が足りない (ill-posed)

スペクトル関数の例 ↓未知
(形は温度などによる) 

https://www.bnl.gov/rhic/news/061907/story2.asp
https://www.bnl.gov/phobos/Presentations/paris01/sld025.htm
https://www.bnl.gov/rhic/news/061907/story2.asp
https://www.bnl.gov/phobos/Presentations/paris01/sld025.htm
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輸送係数の決定(2/3)
スパースモデリング法
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E. Itou, Y. Nagai

2004.024261

T5 ∫ d ⃗x ⟨TR
12(0)TR

12(x)⟩ = ∫
+∞

−∞
dωK(τ, ω)ρ(ω)

⟨TT⟩1

⟨TT⟩2

⟨TT⟩3

= (
* * * * *
* * * * *
* * * * * )

ρ1
ρ2
ρ3
ρ4
ρ5

⟨TT⟩′�1
⟨TT⟩′�2
⟨TT⟩′�3

=
s1 0 0 0 0
0 s2 0 0 0
0 0 s3 0 0

ρ′�1

ρ′�2

ρ′�3

ρ′�4

ρ′�5

Kの対角基底

スケマティックには

データによらない。

「ρ’ の内、データから決まるのは一部で決まらないのは0」という

拘束条件をいれたら解ける。

Kの対角基底 + 拘束条件 + フィット = スパースモデリング法



27

輸送係数の決定(3/3)
スパースモデリング法

PPP2020

Akio Tomiya

Application of ML to physics 

L = 64^3 x 16, Plaquette gauge, beta = 6.3
s/T^3 = 4.98(24)

E. Itou, Y. Nagai

2004.02426

flow time

Even for small statistics, it gives consistent results with small error
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Summary for detection
3点の予言と輸送係数
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• 数値計算のコスト削減の１種として機械学習がつかえる。  
核子のチャージの計算は良さそう。


• スパースモデリング (& flow) で誤差少なく、輸送係数の計算


• スパースモデリングは一般的な手法で拘束条件も色々いれれるのでできるこ
とが多そう。



格子ゲージ理論の配位生成
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(確率的シミュレーションの基礎、手塚 集)
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ゲージ場配位の生成
サイコロを振って経路積分する
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⟨O[ϕ]⟩ =
1
Z ∫ 𝒟ϕe−S[ϕ] O[ϕ]

𝒟ϕ = ∏
i∈{ℤ/L}4

dϕi : ~ 10000 次元、台形法など絶望的

• 格子QCDの経路積分は有限次元積分
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ゲージ場配位の生成
サイコロを振って経路積分する

PPP2020

Akio Tomiya

Application of ML to physics 

⟨O[ϕ]⟩ =
1
Z ∫ 𝒟ϕe−S[ϕ] O[ϕ]

𝒟ϕ = ∏
i∈{ℤ/L}4

dϕi

P[ϕ] =
1
Z

e−S[ϕ]

• 格子QCDの経路積分は有限次元積分

サンプ サンプ サンプ→ → → …

ϕ1 ϕ2 ϕ3

代わりに

配位の列(アンサンブル)をつくり、統計平均で期待値を計算する

でマルコフ連鎖モンテカルロ法！

: ~ 10000 次元、台形法など絶望的
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ゲージ場配位の生成
サイコロを振って経路積分する

PPP2020

Akio Tomiya

Application of ML to physics 

⟨O[ϕ]⟩ =
1
Z ∫ 𝒟ϕe−S[ϕ] O[ϕ]

𝒟ϕ = ∏
i∈{ℤ/L}4

dϕi

• 格子QCDの経路積分は有限次元積分

=
1
N

N

∑
k

O[ϕk] ± O(
1

N
) マルコフ連鎖: P[ϕ] =

1
Z

e−S[ϕ]

• 台形法などは積分の次元が高いときに誤差が大きい、時間かかる


• モンテカルロ法は、次元に依存しないので使える


• モンテカルロ法の誤差は、 独立なサンプル数 で決定されている。

: ~ 10000 次元、台形法など絶望的
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Nindep =
N

2τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

サンプルA サンプルB サンプルC→ → → …

ϕ1 ϕ2 ϕ3

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō)

Γ や τac は、配位間の類似度を測定している

∼ e−t/τac

ゲージ場配位の生成
サンプル間に相関→コスパ悪くなる

t
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長い自己相関はいつ起こる？
自己相関は相転移があると長くなる
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Nindep =
Nconf

2τac

34

⟨O[ϕ]⟩ =
1

Nconf

Nconf

∑
k

O[ϕk] ± O(
1

)

β Nconf τac Nindep

5.166 15k 47 160
5.167 20k 224 45
5.168 20k 656 15
5.169 20k 2940 3
5.170 15k 1306 6
5.171 14k 58 116
5.172 10k 48 106

L3 × Nt = 163 × 4
ma = 0.03

Data from

Nf=3, standard staggered

with magnetic field

τac ∼ ξz ∼ Lz z : Dynamic critical exponent
τac: アルゴリズム依存

(see 1703.03136)

もし z が小さい(or shorter τac) アルゴリズムをみつければ、 
相転移点 (~ 連続極限) に近くても計算コストが削減できる。

k=1000

Nindep

Critical temp.

(N. Madras et. al 1988)
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自己相関は減らせるか？
機械学習で頑張る
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• 自己相関時間  は配位の類似度を与える


•  はアルゴリズムに依存する


• たとえば、 が半分になれば、同じ時間で倍の計算ができる

τac

τac

τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

τac is given by an update algorithm (N. Madras et. al 1988)

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō) ∼ e−t/τac

Nindep =
N

2τac

機械学習をつかって減らせないか？
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Markov chain Monte-Carlo?
If detailed balance satisfied, we can sample using it
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A key concept is the detailed balance condition:

If an update algorithm P(.|.) satisfies

it will converge in a desired distribution (skip proof, + some condition)

Peq(ϕ) =
1

∫ 𝒟ϕ′�e−S[ϕ′ �]
e−S[ϕ]

P(ϕk′�|ϕk)e−S[ϕk] = P(ϕk |ϕk′�)e−S[ϕk′ �]
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Recent progress
Self-learning Monte Carlo
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P(Sk′�|Sk) = min (1,
e−β(H[Sk′�]−Heff[Sk′�])

e−β(H[Sk]−Heff[Sk]) ) Qeff(Sk′�|Sk)

Accept/Reject

Update using 
effective model 
(Cheap)

Corrected by modified 
Metropolis test

This is an exact algorithm: 
if the effective model far from the system, acceptance is zero.

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
Proposing part

https://arxiv.org/abs/1610.03137
https://arxiv.org/abs/1610.03137
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Recent progress
Self-learning Monte Carlo

PPP2020

Akio Tomiya

Application of ML to physics 

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)

P(Sk′�|Sk) = min (1,
e−β(H[Sk′�]−Heff[Sk′�])

e−β(H[Sk]−Heff[Sk]) ) Qeff(Sk′�|Sk)

Accept/Reject

Update using 
effective model 
(Cheap)

Corrected by modified 
Metropolis test

No global update because of 2nd term

Ising model with parameter J̃1

2

FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.

namical exponent z in MC simulation.
Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J

X

hiji

SiSj �K

X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1

X

hiji1

SiSj � J̃2

X

hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using
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Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice
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where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2
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As outlined before, the initial step of the SLMC is to
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where hijin denotes the n-th NN interaction and J̃n is
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We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
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serve as the actual training data. Then, E0 and {J̃n}
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n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
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process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
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FIG. 2. (color online) Fitting of the distribution drawn from
a sample of configurations in a Markov chain. The green dots
represent configurations in the sample, for which the x axis
shows the feature of the nearest-neighbor spin-spin correlation
C1, and the y axis shows the energy (per site) E/N computed
from the original model in Eq. 1.

a simulation at temperature T > Tc, and then generate
another sample at Tc, using the self-learning update with
He↵ learned from the first iteration. Later, a more accu-
rateHe↵ can be learned from the second-iteration sample.
In actual simulations, one can further improve this pro-
cess by using more iterations, each done with a smaller
sample. More details can be found in the Supplemental
Material.

Through this iterative training process, we success-
fully arrive at the final He↵. As shown in Fig. 2, He↵

(Self-Learning Fit) indeed fits the energy of the configu-
rations that are statistically significant in the simulation.
In the main part of the figure, the data points are con-
centrated in the vicinity of the fitted line, indicating that
trainedHe↵ is indeed a good description of the low-energy
physics.

Following the procedure of SLMC, once training pro-
cess is finished, cluster update with the Wol↵ algorithm
according to He↵ can be constructed. Then, the gener-
ated cluster update is accepted or rejected with a prob-
ability accounting for the energy di↵erence between the
e↵ective model and the original model. The probability
of accepting a cluster is as follows,

↵(A ! B) = min{1, e��[(EB�Eeff
B )�(EA�Eeff

A )]}, (3)

where A and B denote the configurations before and after
flipping the cluster. EA and E

e↵
A denote the energies of

a configuration A, for the original model in Eq. 1 and
the e↵ective model in Eq. 2, respectively. Derivation of
Eq. 3 can be found in the SM16. With Eq. 3, the detailed
balance is satisfied, and the SLMC is exact, despite the
use of an approximate e↵ective model in constructing the
cluster.

FIG. 3. (color online) The decay of autocorrelation functions
as a function of MC steps, obtained using di↵erent update
algorithms. Inset, semi-log plot of the same data.

To test the e�ciency of the update scheme in SLMC,
we measure the autocorrelation time ⌧ , which signifies
how correlated the MC configurations are in the Markov
chain (detailed relation of ⌧ with the computational com-
plexity of MC algorithm can be found in SM16). In
Fig. 3, we plot ⌧ of the ferromagnetic order parameter
M = 1

N |
P

i Si|, where N is the number of sites, mea-
sured at each step of Markov chain, generated by di↵er-
ent update algorithms on a square lattice of linear size
L = 40. The simulation is done at Tc, which is deter-
mined by the Binder ratio as shown in SM16.

We compare results of the local update, the self-
learning update using He↵ and also a naive Wol↵-like
cluster update with the bare two-body J term from the
original model in Eq. 1 is used to construct a cluster. The
autocorrelation functions generated by all updates decay
with the MC steps �t, and autocorrelation time ⌧ can
be obtained from fitting in the form of e��t/⌧ . Our re-
sults show that comparing to the local and naive cluster
updates, the self-learning update has the much shorter
⌧ . In particular, at this system size, the self-learning
update is about 24-times faster than the local update,
while the naive Wol↵-like cluster update does not gain
much speed-up.

While Fig. 3 is an example of the better performance
of SLMC for a fixed system size at Tc, we have further
collected the autocorrelation time ⌧ at Tc for local and
self-learning updates with many di↵erent system sizes,
and hence extract the scaling behavior of ⌧ with respect
to L. The results are shown in Fig. 4. The blue squares
are the ⌧L, i.e., autocorrelation time for local update,
and it follows ⌧L ⇠ L

2.2, well consistent with literature
on critical slowing down8,9. The green dots are the ⌧S ,
i.e., autocorrelation time for self-learning update. For all
the tested systems size L  80, the ⌧S delivers a large
speedup about 20 times (see inset of Fig. 4 for clarity).
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FIG. 4. (color online) The scaling behavior of autocorrelation
times of local update ⌧L, SLMC update ⌧S , and the restricted
SLMC update ⌧R. Inset is a zooming for L < 80.

For very large system size, we find ⌧S increases ex-
ponentially with L, ⌧S / e

L/L0 (more details in SM16).
This is because of a finite energy di↵erence between the
e↵ective model in Eq. 2 and the original model in Eq. 1.
Therefore, the acceptance ratio of flipping the whole clus-
ter in Eq. 3 decreases exponentially as the length of clus-
ter boundary grows with increasing L, which renders the
exponential increase of the autocorrelation time. But
this drawback in SLMC can be easily remedied by sim-
ply restricting the maximum size of the cluster in Wol↵
algorithm24. With this improvement, the averaged ac-
ceptance ratio can be expected to be fixed and SLMC
should have the same scaling function for autocorrela-
tion time as local update, ⌧R = ⌧0L

z. However, by tun-
ing the maximum size of cluster, we can achieve a much
smaller prefactor ⌧0, and the optimized maximum clus-
ter size can be automatically self-learned via a model-
independent procedure (more details in SM16). This is
indeed the case. As shown by the red dots in Fig. 4, when
the growth of the cluster is restricted to an area within
40 lattice spacing, the autocorrelation time ⌧R becomes
⌧R / L

2.1, which obeys the same power law as ⌧L, but

with a prefactor about 10 times smaller (More details
about the design of this restricted SLMC is provided in
SM16). Therefore, although SLMC still su↵ers from the
critical slowing down in the thermodynamic limit, we can
gain a 10-fold speedup. That means SLMC can achieve
much larger system size than local update, which helps to
overcome the finite size e↵ect. Moreover, for medium-size
systems, the SLMC without restriction can easily gain a
20-fold speedup, as shown by ⌧S .
Discussion: We now discuss the applicability of SLMC

method to a broader class of problems in statistical and
condensed matter systems. Besides spin systems, many
models of great interest may be transformed into spin
models with short-range interactions5,25, for which ef-
ficient global update methods are available. In such
cases, SLMC can be readily implemented similar to our
model studied above. In particular, we expect SLMC to
be very useful for studying strongly correlated fermion
systems26,27, where no e�cient global update method
is currently known. Moreover, by employing rapidly-
developing machine learning techniques, SLMC method
may be able to learn configuration update on its own,
without relying on a given e↵ective Hamiltonian. If real-
ized, this will further increase the e�ciency and versatil-
ity of SLMC.
SLMC may also bridge numerical and theoretical stud-

ies. The e↵ective Hamiltonian trained or learned from
the MC simulation may guide the theoretical study of
the original model. The benefit is mutual: theoretical
understanding may improve the accuracy of the e↵ective
model and thus the performance of numerical simulation.
Note added: Recently we noted a related work28.
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namical exponent z in MC simulation.
Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J
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where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
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where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca
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n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
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generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1
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hiji1

SiSj � J̃2
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hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using
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self-learning Monte Carlo.
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where hijin denotes the n-th NN interaction and J̃n is
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mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
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shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
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Testcase

This is an exact algorithm.

https://arxiv.org/abs/1610.03137
https://arxiv.org/abs/1610.03137
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Recent progress
QCD with Self-learning Monte Carlo

PPP2020

Akio Tomiya

Application of ML to physics 

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Seff[Uk′�])

e−(S[Uk]−Seff[Uk]) ) Qeff(Uk′�|Uk)

Effective action = hopping parameter expanded action, heatbath
Setup: SU(2) plaquette action + staggered quarks + 4dim

Collaborate with

Akinori Tanaka (Riken iTHENS)

Yuki Nagai (JAEA/ RIKEN AIP)
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Recent progress
QCD with Self-learning Monte Carlo

PPP2020

Akio Tomiya

Application of ML to physics 

Collaborate with

Akinori Tanaka (Riken iTHENS)

Yuki Nagai (JAEA/ RIKEN AIP)

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Seff[Uk′�])

e−(S[Uk]−Seff[Uk]) ) Qeff(Uk′�|Uk)

Observables（■=HMC, ■=SLMC）

So far so good

Effective action = hopping parameter expanded action, heatbath
Setup: SU(2) plaquette action + staggered quarks + 4dim
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Recent progress
QCD with Self-learning Monte Carlo

PPP2020

Akio Tomiya

Application of ML to physics 

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Seff[Uk′�])

e−(S[Uk]−Seff[Uk]) ) Qeff(Uk′�|Uk)

Autocorrelation for Polyakov loop（■=HMC, ■=SLMC）
Effective action = hopping parameter expanded action, heatbath

Collaborate with

Akinori Tanaka (Riken iTHENS)

Yuki Nagai (JAEA/ RIKEN AIP)

Setup: SU(2) plaquette action + staggered quarks + 4dim



43

Recent progress
QCD with Self-learning Monte Carlo

PPP2020

Akio Tomiya

Application of ML to physics 

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Seff[Uk′�])

e−(S[Uk]−Seff[Uk]) ) Qeff(Uk′�|Uk)

Autocorrelation for Polyakov loop（■=HMC, ■=SLMC）
Effective action = hopping parameter expanded action, heatbath

Collaborate with

Akinori Tanaka (Riken iTHENS)

Yuki Nagai (JAEA/ RIKEN AIP)

Bad news: it works only with m > 0.1 for now 
Stay tuned!

Setup: SU(2) plaquette action + staggered quarks + 4dim
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Flow based algorithm
(un)-Trivializing map

PPP2020

Akio Tomiya

Application of ML to physics 

Luscher の夢 (0907.5491)

~ Flow equation

もし ならば、

実際には、Wilson flow だとJacobian が…
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Flow based algorithm
(un)-Trivializing map

PPP2020

Akio Tomiya

Application of ML to physics 

MIT + Google brain2d scalar

ニューラルネットで可逆なTrivializing map を再現 
もし作れれば、自由場でサンプルして逆にたどればOK 

Normalizing flow という仕組みでできる

1904.12072, 2003.06413, 2008.05456
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Flow based algorithm
(un)-Trivializing map

PPP2020

Akio Tomiya

Application of ML to physics 

MIT + Google brain2d scalar

格子上のz をガウシアンでサンプル→inverse trivializing map 
で場の理論の作用にあう様に変形していく。Jacobian も計算できる。 
アンサンブルを作った後にメトロポリステスト→厳密！

1904.12072, 2003.06413, 2008.05456
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Flow based algorithm
(un)-Trivializing map

PPP2020

Akio Tomiya

Application of ML to physics 

MIT + Google brain
2d scalar

2d pure U(1)

2d pure SU(N) の結果もある。
1904.12072, 2003.06413, 2008.05456
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Summary and outlook for here
Machine learning + MCMC = efficient(?)

PPP2020

Akio Tomiya

Application of ML to physics 

• Markov chain Monte-Carlo enables us to evaluate expectation values of 
QFT but inefficiency comes from algorithm in practice = autocorrelation


• Autocorrelation can be reduced by using RBM but convergence is not 
guaranteed. We need to monitor distribution of observables


• Other works with GAN share same problem (worse?) for convergence.  
It is not guaranteed.


• Self-learning Monte-Carlo(SLMC) for LQCD might work well, at least it is a 
converging algorithm and it can treat gauge field but a lot of effort is 
needed.


• FLOW based model is OK, application in low dimension, quenched



2020年代にあたって

49
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2020年代にあたって
2016年以降、色々方向性が固まってきた。次は？

PPP2020

Akio Tomiya

Application of ML to physics 

機械学習を物理(格子QCD)に応用できることはわかった。

ほんとに良いの？
• 配位生成はOKとしても物理量は信頼できない。エラーバーは？ 
→ 出力の不定性を評価できれば…


• 見知らぬデータに関する誤差？  
→ 汎化の理解が進めば…


• アルゴリズムはスケールするの？ 
→ 商用の応用があるのでこれは多分OK


• ほんとに信用できたり使える道具になるためにはこれらをなんとかしないと。


• もしこれらが乗り越えられたらもっと強力な道具に。
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Summary
Machine learning provides us new techniques

PPP2020

Akio Tomiya

Application of ML to physics 

• 通常の格子QCDの歴史でたとえるなら、1980年代前半から後半の領域に
入ってきた？ (できないことも多いが、挑戦できること多そう)


• 分野としての課題 (2020年代?)


• ニューラルネットの汎化の理解 (物理→機械学習の応用？)


• 系統誤差のない/系統誤差を評価できる アルゴリズム・枠組みの開発  
(工学的な道具から科学で使える道具へ) 


