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The Flavor Problem

Theoretical arguments based on the hierarchy problem  → TeV scale NP

The measurements of quark flavor-violating 
observables show a remarkable overall 
success of the SM 

New flavor-breaking sources of O(1) at the TeV scale are definitely excluded 

ℒeff = ℒSM + ∑
i

Ci

Λ2 #d= 6
i (NP)

|CNP | ∼ 1

Indirect searches with FCNCs (Flavour Changing Neutral Currents)
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The Flavor Problem
G.I, Nir, Perez '10

New flavor-breaking sources of O(1) at the TeV scale are definitely excluded
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G. Isidori –  Symmetries and symmetry-breaking in the flavor sector                               Maiani70, Rome, Sept 2010

The flavor problem 

if we insist with the theoretical prejudice that NP has to emerge in the TeV 
region, we have to conclude that NP have a highly non-generic flavor structure

Flavor symmetry



Flavor symmetry in SM

fermion sector
3

∑
i= 1

∑
ψi

ψ̄iiDψi

in gauge sector  , there is 3 identical replica of the basic fermion family ℒgauge
[ψ = QL, u R, dR, LL, eR]

    ⇒   big flavor symmetry is found in gauge sector   

can be identified with B, L and hypercharge controll flavor dynamics 

U(3)5 = U(3)QL
× U(3)u R

× U(3)dR
× U(3)LL

× U(3)eR

= SU(3)5 × U(1)5

ℒfermion
SM = ℒgauge + ℒYukawa
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Flavor symmetry in SM + NP

3

∑
i= 1

∑
ψi

ψ̄iiDψi

in gauge sector  , there is 3 identical replica of the basic fermion family ℒgauge
[ψ = QL, u R, dR, LL, eR]

    ⇒   big flavor symmetry is found in gauge sector   

ℒY = Q̄i
LYij

Dd j
RH + Q̄i

LYij
Uu j

RH̃ + L̄i
LYij

Eej
RH + (h . c.)

 flavor symmetry is broken only by the Yukawa couplings U(3)5 YD,U,E

U(3)5 = U(3)QL
× U(3)u R

× U(3)dR
× U(3)LL

× U(3)eR

= SU(3)5 × U(1)5

can be identified with B, L and hypercharge controll flavor dynamics 

Assumption that flavor structure in NP is also controlled by Yukawa is the most 
reasonable solution to the flavor problem 

⇒ Minimal Flavor Violation paradigm 

fermion sector

ℒfermion
SM+ NP = ℒgauge + ℒYukawa+ ℒNP



Minimal Flavor Violation (MFV)

ℒY = Q̄i
LYij

Dd j
RH + Q̄i

LYij
Uu j

RH̃ + L̄i
LYij

Eej
RH + (h . c.)

 ,  ,    YU ∼ (3,3̄,1,1,1) YD ∼ (3,1,3̄,1,1) YE ∼ (1,1,1,3,3̄)
under  GF = SU(3)QL

× SU(3)u R
× SU(3)dR

× SU(3)LL
× SU(3)eR

 ,  
,    

QL ∼ (3,1,1,1,1), u R ∼ (1,3,1,1,1), dR ∼ (1,1,3,1,1)
LL ∼ (1,1,1,3,1) eR ∼ (1,1,1,1,3)

D’Ambrosio, Giudice, Isidori,  
Strumia  [hep-ph/0207036]

assume that  is a good symmetry, promoting the  to be 
dynamical fields with non-trivial transformation properties under  :

GF ≡ SU(3)5 YU,D,E
GF
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assume that  is a good symmetry, promoting the  to be 
dynamical fields with non-trivial transformation properties under  :

GF ≡ SU(3)5 YU,D,E
GF

Minimal Flavor Violation (MFV)

ℒY = Q̄i
LYij

Dd j
RH + Q̄i

LYij
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RH̃ + L̄i
LYij

Eej
RH + (h . c.)
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under  GF = SU(3)QL
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,    
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LL ∼ (1,1,1,3,1) eR ∼ (1,1,1,1,3)

3̄QL
3QL
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We then define that an effective theory satisfies the criterion of MFV                              
if all higher-dimensional operators, constructed from SM and   fields (spurion) YU,D,E

ℒNPinMFV = ∑
i

Ci

Λ2 #d= 6
i (SM fields+ YU,D,E)

   invariant GF

D’Ambrosio, Giudice, Isidori,  
Strumia  [hep-ph/0207036]



Minimal Flavor Violation (MFV)
By introducing  fields,  we can write higher-dimensional operators in  
invariant way

YU,D,E GF

         (Q̄i
L γμQj

L)

 
 GF = SU(3)QL

× SU(3)u R
× SU(3)dR

    YU ∼ (3,3̄,1)
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Minimal Flavor Violation (MFV)
By introducing  fields,  we can write higher-dimensional operators in  
invariant way

YU,D,E GF

e.g.)   FCNC transitionbi → bj

 is transforming as YUY†
U (8,1,1)

   invariant GF

int basis

mass basis

 YD = λd
YU = V†

CKMλu
YE = λe

where
λd = diag(md, ms, mb)/v
λu = diag(mu , mc, mt)/v ∼ diag(0,0,1)
λe = diag(me, mμ, mτ)/v

λ2
t V*ti Vtj(b̄i

Lγμbj
L)

 (YUY†
U)ij = (V†λ2

u V )ij ≃λ2
t V*ti Vtj

   most big effect∝( mt

v )
2

(Q̄i
LYUY†

UγμQj
L)

 
 GF = SU(3)QL

× SU(3)u R
× SU(3)dR

(b̄i
LYUY†

Uγμbj
L)

    YU ∼ (3,3̄,1)



Minimal Flavor Violation (MFV)

Different flavor transitions are correlated, differences are only CKM

A(di → dj) = ASM + ANP

CNP

Λ2 λ2
t V*ti Vtj

CSM

16π2v2λ2
t V*ti Vtj

  ( CKM factor ) ∝ [ CSM

16π2v2 + CNP

Λ2 ]
In MFV, flavor violation is completely determined by Yukawa couplings
and all CP violation originates from the CKM phase

  A(b → s) = (VtbV*ts)[ CSM

16π2v2 + CNP

Λ2 ]
               〃            A(s → d ) = (VtsV*td) [ ]

 exactly same structure

very predictive



 type(L̄L)      (b̄i
L YUY†

U bj
L)

 type(R̄R)       (b̄i
R Y†

DYUY†
UYD bj

R)

 type(L̄R)       (b̄i
L YUY†

UYD bj
R)

Minimal Flavor Violation (MFV)

 FCNC transitions in MFV bi → bj



From MFV to U(2)5

MFV virtue MFV main problem
Naturally small effects in FCNC 

observables assuming TeV-scale NP
No explanation for Yukawa hierarchies 
(masses and mixing angles) 

  flavor symmetryU(3)5 = U(3)QL
× U(3)u R

× U(3)dR
× U(3)LL

× U(3)eR

- Largest flavor symmetry group compatible with the SM gauge symmetry

- MFV = minimal breaking of  by SM Yukawa couplingsU(3)5
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 flavor symmetryU(2)5

The symmetry is a good approximation in the SM Yukawa

SM flavor puzzle

exact symmetry for   &  mu , md, mc, ms = 0 VCKM = 1
⇒  we only need small breakings terms 

 = ( 1, 2, 3)

 symmetry gives “natural” explanation of why 3rd Yukawa couplings are large 
(being allowed by the symmetry)
U(2)5

Barbieri, Isidori, Jones-Perez,  
Lodone, Straub [1105.2296]

[3 lepton masses + 6 quark masses + 3+1 CKM parameters] ← fixed by data 

Striking hierarchy Mass :  3rd > 2nd > 1st
Almost diagonal CKM matrix 

                Mu ,d ∼ ( )                 VCKM ∼ ( )

SM flavor sector contains a large number of free parameters

distinguish the first two generations of fermions 
from the 3rd



 flavor symmetryU(2)5

Unbroken symmetry
U(2)q

U(2)u

0

@
0 0 1

1

A

After breaking

Yu = yt

0

@
0 0 0
0 0 0
0 0 1

1

A |V |⇠ |Vts|
U(2) breaking term

The set of breaking terms necessary to reproduce the quark spectrum, while 
keeping small FCNCs beyond the SM

Barbieri, Isidori, Jones-Perez,  
Lodone, Straub [1105.2296]

Under  symmetryU(2)3 = U(2)q× U(2)u × U(2)d
The quarks fields are not triplet anymore (all flavours together) but transform

under GF as

Q(2)
= (Q1, Q2

)≥ (2, 1, 1) Q3
≥ (1, 1, 1) (2)

u(2)
= (u1, u2

) ≥ (1, 2, 1) t ≥ (1, 1, 1) (3)

d(2)
= (d1, d2

) ≥ (1, 1, 2) b ≥ (1, 1, 1) (4)

The only term allowed in the limit of unbroken symmetry is

ytQ
3tHc

(5)

While this term clearly break a U(1) symmetry, it is not clear to me whether

U(1)Q3+t still belongs to GF or both U(1)t and U(1)Q3 are given up on.

Mass spurions We can introduce three breaking spurions

V ≥ (2, 1, 1) (6)

�Yu ≥ (2, 2̄, 1) (7)

�Yd ≥ (2, 1, 2̄) (8)

that enters the Yukawa as

Yu = yt

A
�Yu xtV

0 1

B

Yd = yb

A
�Yd xbV

0 1

B

(9)

We can now parametrise our spurions. The leading spurion V can be written

as

V = ‘UV ŝ2 ŝ2 =

A
0

1

B

(10)

where UV is a 2 ◊ 2 special unitary matrix and ‘ is a real parameter of order

O(|Vcb| ¥ 4 ◊ 10
≠2

). The other spurions can be written as

�Yu = U †
Qu

�yuUu (11)

�Yd = U †
Qd

�ydUd (12)

where �yu =diag(⁄u1 , ⁄u2) and �yd =diag(⁄d1 , ⁄d2) and the U ’s are 2 ◊ 2

unitary matrices. By construction ⁄d2 ¥ ms/mb = O(‘) and similarly ⁄d1 ¥

md/mb, ⁄u1 ¥ mu/mt, ⁄u2 ¥ mc/mt . To understand the number of degrees

of freedom, we observe that the most general �Y has 2 ◊ 4 = 8 parameters,

2

Spurion
(U(2) breaking term)

quark

Δu
|Δu | ∼ yc

,  ,  Vq ∼ (2,1,1) Δu ∼ (2,2̄,1) Δd ∼ (2,1,2̄)

 flavour symmetry provides natural link to the Yukawa couplingsU(2)

Vq



From MFV to U(2)5

MFV virtue MFV main problem
No explanation for Yukawa hierarchies 
(masses and mixing angles) 

  flavor symmetryU(2)5 = U(2)QL
× U(2)u R

× U(2)dR
× U(2)LL

× U(2)eR

- The exact symmetry limit is good starting point for the SM quark spectrum     
(   &  ) ⇒  we only need small breaking terms mu , md, mc, ms = 0 VCKM = 1

- B-anomalies are compatible with U(2) flavor symmetry

- acting on 1st & 2nd generations only

  flavor symmetryU(3)5 = U(3)QL
× U(3)u R

× U(3)dR
× U(3)LL

× U(3)eR

- Largest flavor symmetry group compatible with the SM gauge symmetry

- MFV = minimal breaking of  by SM Yukawa couplingsU(3)5

Naturally small effects in FCNC 
observables assuming TeV-scale NP

cf [1909.02519]



←Integrate heavy particle

b c

τ ντ

NP

b c
τ

ντ

NP

ℒeff ∼ ∑
i

Ci

Λ2 #d= 6
i

μNP

μEW

full theory

SMEFT

B. Grzadkowski, M. Iskrzynski,  
M. Misiak and J. Rosiek 
 [1008.4884].  

SMEFT is a effective theory based on  at scale 
 

SU(3)c × SU(2)L × U(1)Y
μEW < μ < μNP

SM Effective Field Theory (SMEFT)



SM Effective Field Theory (SMEFT)

Complete non-redundant classification of baryon- and lepton-number conserving 
dimension-six operators in the SMEFT has been presented (Warsaw basis)

B. Grzadkowski, M. Iskrzynski,  
M. Misiak and J. Rosiek 
 [1008.4884].  

59 dim six operators in SMEFTw/o flavor index
1 : X

3

QG f
ABC

G
A⌫

µ
G

B⇢

⌫
G

Cµ

⇢

Q eG f
ABC eGA⌫

µ
G

B⇢

⌫
G

Cµ

⇢

QW ✏
IJK

W
I⌫

µ
W

J⇢

⌫
W

Kµ

⇢

QfW ✏
IJKfW I⌫

µ
W

J⇢

⌫
W

Kµ

⇢

2 : H
6

QH (H†
H)3

3 : H
4
D

2

QH2 (H†
H)2(H†

H)

QHD

�
H

†
DµH

�⇤ �
H

†
DµH

�

5 :  2
H

3 + h.c.

QeH (H†
H)(l̄perH)

QuH (H†
H)(q̄pur

eH)

QdH (H†
H)(q̄pdrH)

4 : X
2
H

2

QHG H
†
H G

A

µ⌫
G

Aµ⌫

Q
H eG H

†
H eGA

µ⌫
G

Aµ⌫

QHW H
†
H W

I

µ⌫
W

Iµ⌫

Q
HfW H

†
H fW I

µ⌫
W

Iµ⌫

QHB H
†
H Bµ⌫B

µ⌫

Q
H eB H

†
H eBµ⌫B

µ⌫

QHWB H
†
⌧
I
H W

I

µ⌫
B

µ⌫

Q
HfWB

H
†
⌧
I
H fW I

µ⌫
B

µ⌫

6 :  2
XH + h.c.

QeW (l̄p�µ⌫
er)⌧ IHW

I

µ⌫

QeB (l̄p�µ⌫
er)HBµ⌫

QuG (q̄p�µ⌫
T

A
ur) eH G

A

µ⌫

QuW (q̄p�µ⌫
ur)⌧ I eH W

I

µ⌫

QuB (q̄p�µ⌫
ur) eH Bµ⌫

QdG (q̄p�µ⌫
T

A
dr)H G

A

µ⌫

QdW (q̄p�µ⌫
dr)⌧ IH W

I

µ⌫

QdB (q̄p�µ⌫
dr)H Bµ⌫

7 :  2
H

2
D

Q
(1)
Hl

(H†
i
 !
D µH)(l̄p�µlr)

Q
(3)
Hl

(H†
i
 !
D

I

µ
H)(l̄p⌧ I�µlr)

QHe (H†
i
 !
D µH)(ēp�µer)

Q
(1)
Hq

(H†
i
 !
D µH)(q̄p�µqr)

Q
(3)
Hq

(H†
i
 !
D

I

µ
H)(q̄p⌧ I�µqr)

QHu (H†
i
 !
D µH)(ūp�

µ
ur)

QHd (H†
i
 !
D µH)(d̄p�µdr)

QHud + h.c. i( eH†
DµH)(ūp�

µ
dr)

8 : (L̄L)(L̄L)

Qll (l̄p�µlr)(l̄s�µlt)

Q
(1)
qq (q̄p�µqr)(q̄s�µqt)

Q
(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt)

Q
(1)
lq

(l̄p�µlr)(q̄s�µqt)

Q
(3)
lq

(l̄p�µ⌧ I lr)(q̄s�µ⌧ Iqt)

8 : (R̄R)(R̄R)

Qee (ēp�µer)(ēs�µet)

Quu (ūp�µur)(ūs�
µ
ut)

Qdd (d̄p�µdr)(d̄s�µdt)

Qeu (ēp�µer)(ūs�
µ
ut)

Qed (ēp�µer)(d̄s�µdt)

Q
(1)
ud

(ūp�µur)(d̄s�µdt)

Q
(8)
ud

(ūp�µT
A
ur)(d̄s�µT

A
dt)

8 : (L̄L)(R̄R)

Qle (l̄p�µlr)(ēs�µet)

Qlu (l̄p�µlr)(ūs�
µ
ut)

Qld (l̄p�µlr)(d̄s�µdt)

Qqe (q̄p�µqr)(ēs�µet)

Q
(1)
qu (q̄p�µqr)(ūs�

µ
ut)

Q
(8)
qu (q̄p�µT

A
qr)(ūs�

µ
T

A
ut)

Q
(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q
(8)
qd

(q̄p�µT
A
qr)(d̄s�µT

A
dt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
p
er)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd

(q̄j
p
ur)✏jk(q̄ksdt)

Q
(8)
quqd

(q̄j
p
T

A
ur)✏jk(q̄ksT

A
dt)

Q
(1)
lequ

(l̄j
p
er)✏jk(q̄ksut)

Q
(3)
lequ

(l̄j
p
�µ⌫er)✏jk(q̄ks�

µ⌫
ut)

Table 1. The 59 independent dimension-6 operators built from Standard Model fields which conserve
baryon number, as given in Ref. [27]. The operators are divided into eight classes: X

3, H
6, etc.

Operators with +h.c. in the table heading also have hermitian conjugates, as does the  2
H

2
D operator

QHud. The subscripts p, r, s, t are flavor indices, The notation is described in [9].
– 33 –
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Table 1. The 59 independent dimension-6 operators built from Standard Model fields which conserve
baryon number, as given in Ref. [27]. The operators are divided into eight classes: X

3, H
6, etc.

Operators with +h.c. in the table heading also have hermitian conjugates, as does the  2
H

2
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QHud. The subscripts p, r, s, t are flavor indices, The notation is described in [9].
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SM Effective Field Theory (SMEFT)

Complete non-redundant classification of baryon- and lepton-number conserving 
dimension-six operators in the SMEFT has been presented (Warsaw basis)
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D µH)(ēp�µer)

Q
(1)
Hq

(H†
i
 !
D µH)(q̄p�µqr)

Q
(3)
Hq

(H†
i
 !
D

I

µ
H)(q̄p⌧ I�µqr)

QHu (H†
i
 !
D µH)(ūp�
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Our work
We analyse how  and  flavor symmetries act on SMEFT, providing an 
organising principle to classify the large number of dim6 operators involving fermion 
fields 

U(3)5 U(2)5

No symmetry U(3)5

Class Operators 3 Gen. 1 Gen. Exact O(Y 1
e,d,u

) O(Y 1
e , Y

1
d
Y 2
u )

1–4 X3, H6, H4D2, X2H2 9 6 9 6 9 6 9 6 9 6

5  2H3 27 27 3 3 – – 3 3 4 4

6  2XH 72 72 8 8 – – 8 8 11 11

7  2H2D 51 30 8 1 7 – 7 – 11 1

8

(L̄L)(L̄L) 171 126 5 – 8 – 8 – 14 –

(R̄R)(R̄R) 255 195 7 – 9 – 9 – 14 –

(L̄L)(R̄R) 360 288 8 – 8 – 8 – 18 –

(L̄R)(R̄L) 81 81 1 1 – – – – – –

(L̄R)(L̄R) 324 324 4 4 – – – – 4 4

total: 1350 1149 53 23 41 6 52 17 85 26

Table 1: Number of independent operators in U(3)5, MFV and without symmetry. In each column
the left (right) number corresponds to the number of CP-even (CP-odd) coe�cients. O(Xn) stands
for including terms up to O(Xn).

2.1 Minimal Flavour Violation.

The MFV hypothesis is the assumption that the SM Yukawa couplings are the only sources of U(3)5

breaking [12,13]. The exact U(3)5 limit analysed before is equivalent to employing the MFV hypothesis
and working to zeroth order in the symmetry breaking terms. To go beyond leading order we promote
the SM Yukawa couplings to U(3)5 spurion fields with the following transformation properties [13]:

Yu = (1, 3, 1, 3̄, 1) , Yd = (1, 3, 1, 1, 3̄) , Ye = (3, 1, 3̄, 1, 1) . (6)

In principle, the spurions can appear with arbitrary powers both in the renormalizable (d = 4) part
of the Lagrangian and in the dimension-six e↵ective operators. However, via a suitable redefinition of
both fermion fields and spurions, we can always put the d = 4 Lagrangian to its standard expression
in Eq. (2), namely we can always identify the spurions with the SM Yukawa couplings. This implies
we can always choose a flavour basis where the spurions are completely determined in terms of fermion
masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix, VCKM. A representative example is the
down-quark mass-eigenstate basis, where

Ye = diag(ye, yµ, y⌧ ) , Yd = diag(yd, ys, yb) , Yu = V †
CKM ⇥ diag(yu, yc, yt) . (7)

The key point is that there are no free (observable) parameters in the structure of the MFV spurions.
As we shall see, this is not the case for less restrictive symmetry hypotheses, such as the U(2)5 case
discussed in sect. 3. We are now ready to count the number of independent operators appearing at
d = 6 in the SMEFT inserting a small number of symmetry breaking terms.

Terms of O(Yu,d,e). With a single insertions of the Yukawa couplings, only the operators in class
5 and 6 gets modified with respect to the U(3)3 invariant case: as far as the flavour structure is
concerned, these operators are identical to the three Yukawa interactions in Eq. (2). Since they are
not hermitian, we get 3 (8) CP-even and 3 (8) CP-odd parameters for  2H3+h.c. ( 2XH+h.c.). The
counting of independent terms thus obtained, reported in Table 1, is consistent with that performed
in [22].
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and working to zeroth order in the symmetry breaking terms. To go beyond leading order we promote
the SM Yukawa couplings to U(3)5 spurion fields with the following transformation properties [13]:

Yu = (1, 3, 1, 3̄, 1) , Yd = (1, 3, 1, 1, 3̄) , Ye = (3, 1, 3̄, 1, 1) . (6)

In principle, the spurions can appear with arbitrary powers both in the renormalizable (d = 4) part
of the Lagrangian and in the dimension-six e↵ective operators. However, via a suitable redefinition of
both fermion fields and spurions, we can always put the d = 4 Lagrangian to its standard expression
in Eq. (2), namely we can always identify the spurions with the SM Yukawa couplings. This implies
we can always choose a flavour basis where the spurions are completely determined in terms of fermion
masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix, VCKM. A representative example is the
down-quark mass-eigenstate basis, where

Ye = diag(ye, yµ, y⌧ ) , Yd = diag(yd, ys, yb) , Yu = V †
CKM ⇥ diag(yu, yc, yt) . (7)

The key point is that there are no free (observable) parameters in the structure of the MFV spurions.
As we shall see, this is not the case for less restrictive symmetry hypotheses, such as the U(2)5 case
discussed in sect. 3. We are now ready to count the number of independent operators appearing at
d = 6 in the SMEFT inserting a small number of symmetry breaking terms.

Terms of O(Yu,d,e). With a single insertions of the Yukawa couplings, only the operators in class
5 and 6 gets modified with respect to the U(3)3 invariant case: as far as the flavour structure is
concerned, these operators are identical to the three Yukawa interactions in Eq. (2). Since they are
not hermitian, we get 3 (8) CP-even and 3 (8) CP-odd parameters for  2H3+h.c. ( 2XH+h.c.). The
counting of independent terms thus obtained, reported in Table 1, is consistent with that performed
in [22].
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Operator classification
59 dim six operators in SMEFT
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Table 1. The 59 independent dimension-6 operators built from Standard Model fields which conserve
baryon number, as given in Ref. [27]. The operators are divided into eight classes: X

3, H
6, etc.

Operators with +h.c. in the table heading also have hermitian conjugates, as does the  2
H

2
D operator

QHud. The subscripts p, r, s, t are flavor indices, The notation is described in [9].
– 33 –

class 1-4 : w/o fermion ope. 
class 5-7 : w/ 2-fermion ope. 
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Quu (ūp�µur)(ūs�
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C Summary Tables

5–7: Fermion Bilinears

non-hermitian (L̄R)

5:  2H3+ h.c. 6:  2XH+ h.c.

QeH (H†H)(¯̀perH) QeW (¯̀p�µ⌫er)⌧ IHW I
µ⌫ QuG (q̄p�µ⌫TAur)H̃GA

µ⌫ QdG (q̄p�µ⌫TAdr)HGA
µ⌫

QuH (H†H)(q̄purH̃) QeB (¯̀p�µ⌫er)HBµ⌫ QuW (q̄p�µ⌫ur)⌧ IH̃W I
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Q(3)
H`

(H†i
 !
D I

µH)(¯̀p⌧ I�µ`r) QHu (H†i
 !
D µH)(ūp�µur)
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non-hermitian

(L̄R)(R̄L) + h.c. (L̄R)(L̄R) + h.c.

Q`edq [a] (¯̀jper)(d̄sqtj) Q(1)
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Table 8: List of all fermionic SMEFT operators in the Warsaw basis [2]. The division in classes is
adopted from [5]. The letter in square brackets for the four-fermion operators labels the type of the
operators as defined in section 3.
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1)  and MFVU(3)5

e.g.   class 5 :  bilinear(L̄R)

 type ope.   →          ,   : not allowed in exact   
      → ,  : allowed w/         

      →  : allowed w/ more       :  

(L̄R) (q̄u ) (q̄d ) U(3)5

(q̄Yu u ) (q̄Ydd ) Yu

(q̄i(Yu Y†
u )Ydd j) Yu ,e,d

non-hermitian ope. → Re + Im

 exact  U(3)5

0
0
0

 ∼ #(Yu ,d,e)
1    1
1    1
1    1

CP-ev  CP-odd

No symmetry → (# parameters) = (flavor index)^2

No sym.

9   9
9   9
9   9

 ∼ #(YdY2
u )

1  1
1  1
2  2

27 27 0 3    3 4   4



1)  and MFVU(3)5

No symmetry U(3)5

Class Operators 3 Gen. 1 Gen. Exact O(Y 1
e,d,u

) O(Y 1
e , Y

1
d
Y 2
u )

1–4 X3, H6, H4D2, X2H2 9 6 9 6 9 6 9 6 9 6

5  2H3 27 27 3 3 – – 3 3 4 4

6  2XH 72 72 8 8 – – 8 8 11 11

7  2H2D 51 30 8 1 7 – 7 – 11 1

8

(L̄L)(L̄L) 171 126 5 – 8 – 8 – 14 –

(R̄R)(R̄R) 255 195 7 – 9 – 9 – 14 –

(L̄L)(R̄R) 360 288 8 – 8 – 8 – 18 –

(L̄R)(R̄L) 81 81 1 1 – – – – – –

(L̄R)(L̄R) 324 324 4 4 – – – – 4 4

total: 1350 1149 53 23 41 6 52 17 85 26

Table 1: Number of independent operators in U(3)5, MFV and without symmetry. In each column
the left (right) number corresponds to the number of CP-even (CP-odd) coe�cients. O(Xn) stands
for including terms up to O(Xn).

2.1 Minimal Flavour Violation.

The MFV hypothesis is the assumption that the SM Yukawa couplings are the only sources of U(3)5

breaking [12,13]. The exact U(3)5 limit analysed before is equivalent to employing the MFV hypothesis
and working to zeroth order in the symmetry breaking terms. To go beyond leading order we promote
the SM Yukawa couplings to U(3)5 spurion fields with the following transformation properties [13]:

Yu = (1, 3, 1, 3̄, 1) , Yd = (1, 3, 1, 1, 3̄) , Ye = (3, 1, 3̄, 1, 1) . (6)

In principle, the spurions can appear with arbitrary powers both in the renormalizable (d = 4) part
of the Lagrangian and in the dimension-six e↵ective operators. However, via a suitable redefinition of
both fermion fields and spurions, we can always put the d = 4 Lagrangian to its standard expression
in Eq. (2), namely we can always identify the spurions with the SM Yukawa couplings. This implies
we can always choose a flavour basis where the spurions are completely determined in terms of fermion
masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix, VCKM. A representative example is the
down-quark mass-eigenstate basis, where

Ye = diag(ye, yµ, y⌧ ) , Yd = diag(yd, ys, yb) , Yu = V †
CKM ⇥ diag(yu, yc, yt) . (7)

The key point is that there are no free (observable) parameters in the structure of the MFV spurions.
As we shall see, this is not the case for less restrictive symmetry hypotheses, such as the U(2)5 case
discussed in sect. 3. We are now ready to count the number of independent operators appearing at
d = 6 in the SMEFT inserting a small number of symmetry breaking terms.

Terms of O(Yu,d,e). With a single insertions of the Yukawa couplings, only the operators in class
5 and 6 gets modified with respect to the U(3)3 invariant case: as far as the flavour structure is
concerned, these operators are identical to the three Yukawa interactions in Eq. (2). Since they are
not hermitian, we get 3 (8) CP-even and 3 (8) CP-odd parameters for  2H3+h.c. ( 2XH+h.c.). The
counting of independent terms thus obtained, reported in Table 1, is consistent with that performed
in [22].
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2.2 Summary and discussion
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†
u and Y †

uYu in the
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in [23,24]. However, it is only yt that is large, not the other entries of Yu. The insertion of an arbitrary
powers of yt triggers the following breaking pattern

U(3)q ⌦ U(3)u
yt
�! U(2)q ⌦ U(2)u ⌦ U(1)

q
3
L+tR

. (11)

A similar breaking to U(2) subgroups occurs if we allow the third generation Yukawa couplings of
down quarks and charged leptons to be large (a possibility that naturally occurs in models with an
extended Higgs sector). This observation, together with the more general argument that the third
generation of fermions might play a special role in extensions of the SM, naturally brings us to consider
a smaller symmetry group acting only on the light fermion families, that is what we discuss next.

3 The U(2)5 symmetry

The U(2)5 symmetry is the subgroup of U(3)5 that, by construction, distinguish the first two gen-
erations of fermions from the third one [14–16]. It provides a “natural” explanation of why third-
generation Yukawa couplings are large (being allowed by the symmetry) and, contrary to the MFV
case, it allows us to build an EFT where all the breaking terms are small, o↵ering a more precise
power counting for the operators.

Given a fermion species  f (f = `, q, e, u, d), the first two generations form a doublet of one of
the U(2) subgroups, whereas  3

f
transform as a singlet. The five independent flavour doublets are

denoted L,Q,E,U,D and the flavour symmetry is decomposed as

U(2)5 = U(2)L ⌦ U(2)Q ⌦ U(2)E ⌦ U(2)U ⌦ U(2)D . (12)

A set of symmetry breaking terms able to reproduce the observed SM Yukawa couplings, which is
minimal both in terms of the number of independent spurions, as well as in their size, is given by [14]

V` ⇠ (2, 1, 1, 1, 1) , Vq ⇠ (1, 2, 1, 1, 1) ,

�e ⇠ (2, 1, 2̄, 1, 1) , �u ⇠ (1, 2, 1, 2̄, 1) , �d ⇠ (1, 2, 1, 1, 2̄) . (13)

By construction, Vq,` are complex two-vectors and �e,u,d are complex 2⇥2 matrices. In terms of these
spurions, we can express the Yukawa matrices as

Ye = y⌧

✓
�e x⌧V`

0 1

◆
, Yu = yt

✓
�u xtVq

0 1

◆
, Yd = yb

✓
�d xbVq

0 1

◆
, (14)

where y⌧,t,b and x⌧,t,b are free complex parameters expected to be of order O(1). Alternative breaking
terms, and the embedding of U(2)5 in U(3)5, are discussed in Section 4.

5A detailed counting order by order in the insertions of di↵erent powers of the Yukawa couplings in presented in
Table 9 in Appendix C.
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Explicit form for the spurions. As already pointed out in the MFV case, the spurions can appear
with arbitrary powers both in the renormalizable (d = 4) part of the Lagrangian and in the dimension-
six e↵ective operators. In this case, we redefine the fields such that the kinetic terms are canonically
normalised and the Yukawa couplings assume the form in Eq. (14). This condition unambiguously
normalises the � spurions, but it leaves an O(1) freedom in the normalisation of the V spurions
(encoded by x⌧,t,b).

Using the residual U(2)5 invariance, we can transform the spurions to the following explicit form

Vq(`) = ei�̄q(`)

✓
0

✏q(`)

◆
, �e = O|

e

✓
�0e 0
0 �e

◆
, �u = U †

u

✓
�0u 0
0 �u

◆
, �d = U †

d

✓
�0
d

0
0 �d

◆
, (15)

The flavour basis where the spurions assume this form is what we define as interaction basis for the
fermion fields in the U(2)5 setup. Here O and U represent 2 ⇥ 2 orthogonal and complex unitary
matrices, respectively

Oe =

✓
ce se
�se ce

◆
, Uq =

✓
cq sq ei↵q

�sq e�i↵q cq

◆
, (16)

with si ⌘ sin ✓i and ci ⌘ cos ✓i. The ✏i and �(0)
i

are small positive real parameters controlling the
overall size of the spurions. From the observed hierarchies of the Yukawa couplings, we deduce

1 � ✏i � �i � �0i > 0 (17)

or, more precisely,

✏i = O

 
Tr(YuY

†
u )�

Tr(YuY
†
uYdY

†
d
)

Tr(YdY
†
d
)

!1/2

= O(yt|Vts|) = O(10�1) , (18)

�i = O

✓
yc
yt
,
ys
yb
,
yµ
y⌧

◆
= O(10�2) , (19)

�0i = O

✓
yu
yt

,
yd
yb

,
ye
y⌧

◆
= O(10�3) . (20)

Starting from the interaction basis, the Yukawa couplings in (14) are diagonalized by unitary trans-

formations of the type L†
f
YfRf = diag(Yf ), with f = u, d, e. The explicit form of these matrices

is reported in Appendix A. While the �(0)
i

are in one-to-one correspondence with the light Yukawa
eigenvalues, not all the other parameters appearing in the Yukawa and spurion decompositions in
Eqs. (14)–(16) can be put in correspondence with SM parameters (in particular with CKM elements).
Contrary to the MFV case, in the U(2)5 setup the structure of the spurions is not completely deter-
mined in terms of known parameters. However, once we impose the hierarchy among the size of the
spurions in Eq. (20), we e↵ectively “protect” quark mixing as in the MFV case [14].

3.1 Fermion bilinears

We can now proceed classifying the number of independent operators appearing at d = 6 in the
SMEFT with a U(2)5 flavour symmetry, minimally broken as discussed above. Our final goal is to
classify the operators up to O(V 3,�1V 1), namely with up to three V spurions (but no � terms),
or with one � and at most one V . Given the size of the spurions in Eq. (20), this corresponds to
neglecting terms which are at most of O(10�4) according to our main hypotheses.

We start the analysis from the operators of classes 5, 6 and 7, which contains a fermion bilinear.
To better illustrate how the hypothesis of a minimally broken U(2)5 symmetry acts on the di↵erent
flavour structures, in the case of left-handed and right-handed bilinears we analyse also the e↵ect of
subleading breaking terms up to O(�2V 2). More precisely, in the following we analyse how to span
the flavour structure of the independent fermion bilinears in terms of the U(2)5 breaking spurions.
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Transformation for spurions
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formations of the type L†
f
YfRf = diag(Yf ), with f = u, d, e. The explicit form of these matrices

is reported in Appendix A. While the �(0)
i

are in one-to-one correspondence with the light Yukawa
eigenvalues, not all the other parameters appearing in the Yukawa and spurion decompositions in
Eqs. (14)–(16) can be put in correspondence with SM parameters (in particular with CKM elements).
Contrary to the MFV case, in the U(2)5 setup the structure of the spurions is not completely deter-
mined in terms of known parameters. However, once we impose the hierarchy among the size of the
spurions in Eq. (20), we e↵ectively “protect” quark mixing as in the MFV case [14].

3.1 Fermion bilinears

We can now proceed classifying the number of independent operators appearing at d = 6 in the
SMEFT with a U(2)5 flavour symmetry, minimally broken as discussed above. Our final goal is to
classify the operators up to O(V 3,�1V 1), namely with up to three V spurions (but no � terms),
or with one � and at most one V . Given the size of the spurions in Eq. (20), this corresponds to
neglecting terms which are at most of O(10�4) according to our main hypotheses.

We start the analysis from the operators of classes 5, 6 and 7, which contains a fermion bilinear.
To better illustrate how the hypothesis of a minimally broken U(2)5 symmetry acts on the di↵erent
flavour structures, in the case of left-handed and right-handed bilinears we analyse also the e↵ect of
subleading breaking terms up to O(�2V 2). More precisely, in the following we analyse how to span
the flavour structure of the independent fermion bilinears in terms of the U(2)5 breaking spurions.
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 : c #(V2)
 : β #(V )
 : a #(V0)

II ) Case for U(2)5

e.g.) leptonic  bilinear(L̄L)

Spurions Operator Explicit expression in flavour components

V 0 a1L̄L + a2 ¯̀3`3 a1
�
¯̀
1`1 + ¯̀

2`2
�
+ a2

�
¯̀
3`3

�

V 1 �1L̄V``3 + h.c. �1✏`
�
¯̀
2`3

�
+ h.c.

V 2 c1L̄V`V
†
`
L c1✏2`

�
¯̀
2`2

�

�1, �1V 1 – –

�2 h1L̄�e�
†
eL ⇡ h1

⇥
�2e(¯̀2`2)� se�2e(¯̀1`2 + ¯̀

2`1) + (s2e�
2
e + �02e )(¯̀1`1)

⇤

�2V 1 �1L̄�e�
†
eV``3 + h.c. ⇡ �1✏`�2e(¯̀2`3 � se ¯̀1`3) + h.c.

�2V 2 µ1L̄�e�
†
eV`V

†
`
L + h.c. ⇡ µ1✏2`�

2
e(¯̀2`2 � se ¯̀1`2) + h.c.

Table 2: Left-handed fermion bilinears allowed by di↵erent U(2) breaking terms. The terms below
the horizontal line are subleading structures which are not considered in the general analysis of
independent terms. The expressions in the third column are expanded in powers of se up to first
non-vanishing terms.

Left-handed bilinears. As a representative example of left-handed fermion bilinears we discuss in
detail the leptonic case (the translation to the quark case being trivial). For simplicity we omit SU(2)L
and spinor indices, and often also flavour indices (except in expressions which would be ambiguous
otherwise). The possible terms at di↵erent orders in the spurions for the case at hand is shown in
Table 2. The results can be summarised as follows in terms of the flavour tensor ⇤LL:

¯̀
p�⇤

pr

LL
`r , ⇤LL =

0

@
a1 0 0
0 a1 + c1✏2` �1✏`
0 �⇤

1✏` a2

1

A+O(�2e) . (21)

The explicit expression of ⇤LL in Eq. (21) corresponds to the expansion truncated at O(�V ) in the
interaction basis. As can be seen, at this order there is no mixing between the first generation and
the others:6 ⇤LL, that in absence of any flavour symmetry is parameterised by 6 real and 3 imaginary
coe�cients has only 4 real (a1,2, c1, Re�1) and 1 imaginary (Im�1) coe�cients. A complete span of
the whole 3⇥3 hermitian structure of ⇤LL occurs only with the inclusion of the terms up to O(�2V 2)
shown in the lower part of Table 2.

Here and in the following, when presenting explicit expressions, the phases of non-hermitian spu-
rion combinations are reabsorbed into that of the corresponding complex coe�cients. The criteria
used to label the di↵erent terms are as follows: we denote with latin (greek) letters the real (complex)
couplings appearing in hermitian (non-hermitian) structures. Terms with the same number of spuri-
ons are denoted with the same latin or greek letter and di↵erent subscript. Note that this notation
focuses only on the flavour indices and not on the electroweak structure. A complete notation for the
coupling of each operator can be chosen of the type CX(F ), where X denotes a specific electroweak
structure, as in Table 8 (X = H`, Hq, . . .), and F = ai,�i, . . . denotes the flavour structure.

Right-handed bilinears. Proceeding in a similar manner, in Table 3 we report right-handed
fermion bilinears which are allowed by di↵erent spurion combinations. The leptonic bilinear ēe is
representative of any right-handed fermion bilinear with identical fields, while we treated separately
the ūd case which appears only for the operator QHud. As far as identical fermions are concerned, we

6 Note that this statement holds only in the interaction basis.
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 = ( 1, 2, 3)

L ℓ3

※ laten ( ): real,  greek( ) : complexa, b, c, , , α, β, γ, , ,

Spurions Operator Explicit expression in flavour components

V 0 a1L̄L + a2 ¯̀3`3 a1
�
¯̀
1`1 + ¯̀

2`2
�
+ a2

�
¯̀
3`3

�

V 1 �1L̄V``3 + h.c. �1✏`
�
¯̀
2`3

�
+ h.c.

V 2 c1L̄V`V
†
`
L c1✏2`

�
¯̀
2`2

�

�1, �1V 1 – –

�2 h1L̄�e�
†
eL ⇡ h1

⇥
�2e(¯̀2`2)� se�2e(¯̀1`2 + ¯̀

2`1) + (s2e�
2
e + �02e )(¯̀1`1)

⇤

�2V 1 �1L̄�e�
†
eV``3 + h.c. ⇡ �1✏`�2e(¯̀2`3 � se ¯̀1`3) + h.c.

�2V 2 µ1L̄�e�
†
eV`V

†
`
L + h.c. ⇡ µ1✏2`�

2
e(¯̀2`2 � se ¯̀1`2) + h.c.

Table 2: Left-handed fermion bilinears allowed by di↵erent U(2) breaking terms. The terms below
the horizontal line are subleading structures which are not considered in the general analysis of
independent terms. The expressions in the third column are expanded in powers of se up to first
non-vanishing terms.

Left-handed bilinears. As a representative example of left-handed fermion bilinears we discuss in
detail the leptonic case (the translation to the quark case being trivial). For simplicity we omit SU(2)L
and spinor indices, and often also flavour indices (except in expressions which would be ambiguous
otherwise). The possible terms at di↵erent orders in the spurions for the case at hand is shown in
Table 2. The results can be summarised as follows in terms of the flavour tensor ⇤LL:

¯̀
p�⇤

pr

LL
`r , ⇤LL =

0

@
a1 0 0
0 a1 + c1✏2` �1✏`
0 �⇤

1✏` a2

1

A+O(�2e) . (21)

The explicit expression of ⇤LL in Eq. (21) corresponds to the expansion truncated at O(�V ) in the
interaction basis. As can be seen, at this order there is no mixing between the first generation and
the others:6 ⇤LL, that in absence of any flavour symmetry is parameterised by 6 real and 3 imaginary
coe�cients has only 4 real (a1,2, c1, Re�1) and 1 imaginary (Im�1) coe�cients. A complete span of
the whole 3⇥3 hermitian structure of ⇤LL occurs only with the inclusion of the terms up to O(�2V 2)
shown in the lower part of Table 2.

Here and in the following, when presenting explicit expressions, the phases of non-hermitian spu-
rion combinations are reabsorbed into that of the corresponding complex coe�cients. The criteria
used to label the di↵erent terms are as follows: we denote with latin (greek) letters the real (complex)
couplings appearing in hermitian (non-hermitian) structures. Terms with the same number of spuri-
ons are denoted with the same latin or greek letter and di↵erent subscript. Note that this notation
focuses only on the flavour indices and not on the electroweak structure. A complete notation for the
coupling of each operator can be chosen of the type CX(F ), where X denotes a specific electroweak
structure, as in Table 8 (X = H`, Hq, . . .), and F = ai,�i, . . . denotes the flavour structure.

Right-handed bilinears. Proceeding in a similar manner, in Table 3 we report right-handed
fermion bilinears which are allowed by di↵erent spurion combinations. The leptonic bilinear ēe is
representative of any right-handed fermion bilinear with identical fields, while we treated separately
the ūd case which appears only for the operator QHud. As far as identical fermions are concerned, we

6 Note that this statement holds only in the interaction basis.
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II ) Case for U(2)5

e.g.) leptonic  bilinear(R̄R)

Spurions Operator (ēe type) Explicit expression in flavour components

V 0 a1ĒE + a2ē3e3 a1 (ē1e1 + ē2e2) + a2 (ē3e3)

V 1, V 2,�1 –

�1V 1 �1ē3V
†
`
�eE + h.c. ⇡ �1✏` [�e(ē3e2) + se�0e(ē3e1)] + h.c.

�2 h1Ē�†
e�eE h1

⇥
�2e(ē2e2) + �02e (ē1e1)

⇤

�2V 1 –

�2V 2 m1Ē�†
eV`V

†
`
�eE ⇡ m1✏2`

⇥
�2e(ē2e2) + se�0e�e(ē1e2 + ē2e1) + s2e�

02
e (ē1e1)

⇤

Spurions Operator (ūd type) Explicit expression in flavour components

V 0 ↵1ū3d3 + h.c. ↵1 (ū3d3) + h.c.

V 1, V 2,�1 –

�1V 1 �1Ū�†
uVqd3 + h.c. ⇡ �1✏q

⇥
�u (ū2d3) + suei↵u�0u(ū1d3)

⇤
+ h.c.

�1V 1 �2ū3V
†
q �dD + h.c. ⇡ �2✏q

⇥
�d (ū3d2) + sde�i↵d�0

d
(ū3d1)

⇤
+ h.c.

Table 3: Right-handed fermion bilinears allowed by di↵erent U(2) breaking terms. Notation as in
Table 2.

can express the result via the flavour tensor ⇤RR:

ēp�⇤
pr

RR
er , ⇤RR =

0

BB@

a1 0 �⇤
1✏`se�

0
e

0 a1 �⇤
1✏`�e

�1✏`se�0e �1✏`�e a2

1

CCA+O(�2e) . (22)

Terminating the expansion up to O(�V ), ⇤RR contains 3 real and 1 imaginary coe�cients. At the
same order, in the case of the (non-hermitian) ūd bilinear one finds 3 real and 3 imaginary coe�cients
(see Table 3).

Interestingly, this structure is quite “robust” with respect to higher-order corrections. At O(�2)
one generates a di↵erence between the 11 and 22 entires of ⇤RR, and only at O(�2V 2) non-vanishing
12 and 21 entries, but this is not enough to span the entire 3⇥3 hermitian structure: this goal can be
achieved only with inclusion of O(�4V 2) terms. Most important, mixing terms involving first and/or
second generations always require a suppression factor proportional to �f and/or �0

f
. This is a feature

related to our minimal choice of breaking terms.

Left-right bilinears. The independent flavour structures of left-right fermion bilinear are listed in
Table 4, where we focus on the leptonic sector as representative example. Expressing the result via
the flavour tensor ⇤LR we find

¯̀
p�⇤

pr

LR
er , ⇤LR =

0

BB@

⇢1�0e �⇢1se�e 0

⇢1se�0e ⇢1�e �1✏`

�1✏`se�0e �1✏`�e ↵1

1

CCA +O(�e✏
2
`
) . (23)

Terminating the expansion up to O(�V ), we find 4 complex coe�cients, to be compared with the
potential 9 complex coe�cients in absence of any flavour symmetry. For the same argument discussed
in the case of the right-handed structures, in this case a span of the entire flavour space require terms
with up to three powers of �.
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Spurions Operator (ēe type) Explicit expression in flavour components

V 0 a1ĒE + a2ē3e3 a1 (ē1e1 + ē2e2) + a2 (ē3e3)

V 1, V 2,�1 –

�1V 1 �1ē3V
†
`
�eE + h.c. ⇡ �1✏` [�e(ē3e2) + se�0e(ē3e1)] + h.c.

�2 h1Ē�†
e�eE h1

⇥
�2e(ē2e2) + �02e (ē1e1)

⇤

�2V 1 –

�2V 2 m1Ē�†
eV`V

†
`
�eE ⇡ m1✏2`

⇥
�2e(ē2e2) + se�0e�e(ē1e2 + ē2e1) + s2e�

02
e (ē1e1)

⇤

Spurions Operator (ūd type) Explicit expression in flavour components

V 0 ↵1ū3d3 + h.c. ↵1 (ū3d3) + h.c.

V 1, V 2,�1 –

�1V 1 �1Ū�†
uVqd3 + h.c. ⇡ �1✏q

⇥
�u (ū2d3) + suei↵u�0u(ū1d3)

⇤
+ h.c.

�1V 1 �2ū3V
†
q �dD + h.c. ⇡ �2✏q

⇥
�d (ū3d2) + sde�i↵d�0

d
(ū3d1)

⇤
+ h.c.

Table 3: Right-handed fermion bilinears allowed by di↵erent U(2) breaking terms. Notation as in
Table 2.

can express the result via the flavour tensor ⇤RR:

ēp�⇤
pr

RR
er , ⇤RR =

0

BB@

a1 0 �⇤
1✏`se�

0
e

0 a1 �⇤
1✏`�e

�1✏`se�0e �1✏`�e a2

1

CCA+O(�2e) . (22)

Terminating the expansion up to O(�V ), ⇤RR contains 3 real and 1 imaginary coe�cients. At the
same order, in the case of the (non-hermitian) ūd bilinear one finds 3 real and 3 imaginary coe�cients
(see Table 3).

Interestingly, this structure is quite “robust” with respect to higher-order corrections. At O(�2)
one generates a di↵erence between the 11 and 22 entires of ⇤RR, and only at O(�2V 2) non-vanishing
12 and 21 entries, but this is not enough to span the entire 3⇥3 hermitian structure: this goal can be
achieved only with inclusion of O(�4V 2) terms. Most important, mixing terms involving first and/or
second generations always require a suppression factor proportional to �f and/or �0

f
. This is a feature

related to our minimal choice of breaking terms.

Left-right bilinears. The independent flavour structures of left-right fermion bilinear are listed in
Table 4, where we focus on the leptonic sector as representative example. Expressing the result via
the flavour tensor ⇤LR we find

¯̀
p�⇤

pr

LR
er , ⇤LR =

0

BB@

⇢1�0e �⇢1se�e 0

⇢1se�0e ⇢1�e �1✏`

�1✏`se�0e �1✏`�e ↵1

1

CCA +O(�e✏
2
`
) . (23)

Terminating the expansion up to O(�V ), we find 4 complex coe�cients, to be compared with the
potential 9 complex coe�cients in absence of any flavour symmetry. For the same argument discussed
in the case of the right-handed structures, in this case a span of the entire flavour space require terms
with up to three powers of �.
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II ) Case for U(2)5

Spurions Operator Explicit expression in flavour components

V 0 ↵1
¯̀
3e3 ↵1

�
¯̀
3e3

�

V 1 �1L̄V`e3 �1✏`
�
¯̀
2e3

�

V 2 –

�1 ⇢1L̄�eE ⇡ ⇢1
⇥
�e

�
¯̀
2e2

�
� se�e

�
¯̀
1e2

�
+ se�0e

�
¯̀
2e1

�
+ �0e

�
¯̀
1e1

�⇤

�1V 1 �1 ¯̀3V
†
`
�eE ⇡ �1✏`

⇥
�e

�
¯̀
3e2

�
+ se�0e

�
¯̀
3e1

�⇤

Table 4: Left-right fermion bilinears allowed by di↵erent U(2) breaking terms (the sum over hermitian
conjugates is understood for all structures). Notation as in Table 2.

N. indep. U(2)5 breaking terms

Class structures V 0 V 1 V 2 �1 �1V 1

5 & 6:
�
L̄R

�
11 11 11 11 11 – – 11 11 11 11

7:
�
L̄L

�
4 8 – 4 4 4 – – – – –

7:
�
R̄R

�
3 6 – – – – – – – 3 3

7: QHud 1 1 1 – – – – – – 2 2

total: 19 26 12 15 15 4 – 11 11 16 16

Table 5: Number of independent operators with fermion bilinears in U(2)5. Notation as in Table 1;
however, here each column denotes the operators with a precise power of spurions, as indicated in the
first row.

Summary. The total number of CP-even and CP-odd coe�cients for all the operators with fermion
bilinears constructed with spurions up to O(�1V 1) are reported in Table 5.

3.2 Four fermion operators.

In this section we proceed analysing the operators in class 8 which contain four fermion fields. In
analogy to the 2-index tensors ⇤ introduced to describe the fermion bilinears, the flavour structure
of theses operators is described by 4-index tensors ⌃. As an illustration, and also in view of the
phenomenological application in Sect. 5, in the case of (L̄L)(L̄L) operators we present the explicit
component structure of these tensor. For the other operators we simply list the allowed structures up
to O(V 3,�1V 1).

(L̄L)(L̄L) structures. In this category of operators we can distinguish two di↵erent subclasses as
far as flavour structure and spurion analysis are concerned. The first one contains operators where

both bilinears are of the same form, namely Q``, Q
(1)
qq and Q(3)

qq . Considering Q`` as representative
example of this class of operators, the terms generated up to O(V 3) are

V 0 :
⇥
a1(L̄pLp)(L̄rLr) + a2(L̄pLr)(L̄rLp) + a3(L̄L)(¯̀3`3)

+a4(L̄`3)(¯̀3L) + a5(¯̀3`3)(¯̀3`3)
⇤
,

V 1 :
⇥
�1(L̄pV p

`
`3)(L̄rLr) + �2(L̄V``3)(¯̀3`3) + �3(L̄pV p

`
Lr)(L̄r`3) + h.c.

⇤
,

V 2 :
⇥
c1(L̄pV p

`
V † r
`

Lr)(L̄sLs) + c2(L̄pV p

`
V † r
`

Lr)(¯̀3`3) + c3(L̄pV p

`
`3)(¯̀3V

† r
`

Lr)

+c4(L̄pV p

`
Lr)(L̄rV † s

`
Ls) + (�1(L̄pV p

`
`3)(L̄rV r

`
`3) + h.c.)

⇤
,

V 3 :
⇥
⇠1(L̄pV p

`
V † r
`

Lr)(L̄sV s

`
`3) + h.c.

⇤
.

(24)
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II ) Case for U(2)5

4 fermion operator (L̄L)(L̄L)

Spurions Operator Explicit expression in flavour components

V 0 ↵1
¯̀
3e3 ↵1

�
¯̀
3e3

�

V 1 �1L̄V`e3 �1✏`
�
¯̀
2e3

�

V 2 –

�1 ⇢1L̄�eE ⇡ ⇢1
⇥
�e

�
¯̀
2e2

�
� se�e

�
¯̀
1e2

�
+ se�0e

�
¯̀
2e1

�
+ �0e

�
¯̀
1e1

�⇤

�1V 1 �1 ¯̀3V
†
`
�eE ⇡ �1✏`

⇥
�e

�
¯̀
3e2

�
+ se�0e

�
¯̀
3e1

�⇤

Table 4: Left-right fermion bilinears allowed by di↵erent U(2) breaking terms (the sum over hermitian
conjugates is understood for all structures). Notation as in Table 2.

N. indep. U(2)5 breaking terms

Class structures V 0 V 1 V 2 �1 �1V 1

5 & 6:
�
L̄R

�
11 11 11 11 11 – – 11 11 11 11

7:
�
L̄L

�
4 8 – 4 4 4 – – – – –

7:
�
R̄R

�
3 6 – – – – – – – 3 3

7: QHud 1 1 1 – – – – – – 2 2

total: 19 26 12 15 15 4 – 11 11 16 16

Table 5: Number of independent operators with fermion bilinears in U(2)5. Notation as in Table 1;
however, here each column denotes the operators with a precise power of spurions, as indicated in the
first row.

Summary. The total number of CP-even and CP-odd coe�cients for all the operators with fermion
bilinears constructed with spurions up to O(�1V 1) are reported in Table 5.

3.2 Four fermion operators.

In this section we proceed analysing the operators in class 8 which contain four fermion fields. In
analogy to the 2-index tensors ⇤ introduced to describe the fermion bilinears, the flavour structure
of theses operators is described by 4-index tensors ⌃. As an illustration, and also in view of the
phenomenological application in Sect. 5, in the case of (L̄L)(L̄L) operators we present the explicit
component structure of these tensor. For the other operators we simply list the allowed structures up
to O(V 3,�1V 1).

(L̄L)(L̄L) structures. In this category of operators we can distinguish two di↵erent subclasses as
far as flavour structure and spurion analysis are concerned. The first one contains operators where

both bilinears are of the same form, namely Q``, Q
(1)
qq and Q(3)

qq . Considering Q`` as representative
example of this class of operators, the terms generated up to O(V 3) are

V 0 :
⇥
a1(L̄pLp)(L̄rLr) + a2(L̄pLr)(L̄rLp) + a3(L̄L)(¯̀3`3)

+a4(L̄`3)(¯̀3L) + a5(¯̀3`3)(¯̀3`3)
⇤
,

V 1 :
⇥
�1(L̄pV p

`
`3)(L̄rLr) + �2(L̄V``3)(¯̀3`3) + �3(L̄pV p

`
Lr)(L̄r`3) + h.c.

⇤
,

V 2 :
⇥
c1(L̄pV p

`
V † r
`

Lr)(L̄sLs) + c2(L̄pV p

`
V † r
`

Lr)(¯̀3`3) + c3(L̄pV p

`
`3)(¯̀3V

† r
`

Lr)

+c4(L̄pV p

`
Lr)(L̄rV † s

`
Ls) + (�1(L̄pV p

`
`3)(L̄rV r

`
`3) + h.c.)

⇤
,

V 3 :
⇥
⇠1(L̄pV p

`
V † r
`

Lr)(L̄sV s

`
`3) + h.c.

⇤
.

(24)
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Spurions Operator Explicit expression in flavour components

V 0 ↵1
¯̀
3e3 ↵1

�
¯̀
3e3

�

V 1 �1L̄V`e3 �1✏`
�
¯̀
2e3
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V 2 –

�1 ⇢1L̄�eE ⇡ ⇢1
⇥
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�
¯̀
2e2

�
� se�e

�
¯̀
1e2

�
+ se�0e

�
¯̀
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�
+ �0e
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¯̀
1e1

�⇤

�1V 1 �1 ¯̀3V
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�eE ⇡ �1✏`
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3e2

�
+ se�0e
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Table 4: Left-right fermion bilinears allowed by di↵erent U(2) breaking terms (the sum over hermitian
conjugates is understood for all structures). Notation as in Table 2.

N. indep. U(2)5 breaking terms

Class structures V 0 V 1 V 2 �1 �1V 1

5 & 6:
�
L̄R

�
11 11 11 11 11 – – 11 11 11 11

7:
�
L̄L

�
4 8 – 4 4 4 – – – – –

7:
�
R̄R

�
3 6 – – – – – – – 3 3

7: QHud 1 1 1 – – – – – – 2 2

total: 19 26 12 15 15 4 – 11 11 16 16

Table 5: Number of independent operators with fermion bilinears in U(2)5. Notation as in Table 1;
however, here each column denotes the operators with a precise power of spurions, as indicated in the
first row.

Summary. The total number of CP-even and CP-odd coe�cients for all the operators with fermion
bilinears constructed with spurions up to O(�1V 1) are reported in Table 5.

3.2 Four fermion operators.

In this section we proceed analysing the operators in class 8 which contain four fermion fields. In
analogy to the 2-index tensors ⇤ introduced to describe the fermion bilinears, the flavour structure
of theses operators is described by 4-index tensors ⌃. As an illustration, and also in view of the
phenomenological application in Sect. 5, in the case of (L̄L)(L̄L) operators we present the explicit
component structure of these tensor. For the other operators we simply list the allowed structures up
to O(V 3,�1V 1).

(L̄L)(L̄L) structures. In this category of operators we can distinguish two di↵erent subclasses as
far as flavour structure and spurion analysis are concerned. The first one contains operators where

both bilinears are of the same form, namely Q``, Q
(1)
qq and Q(3)

qq . Considering Q`` as representative
example of this class of operators, the terms generated up to O(V 3) are

V 0 :
⇥
a1(L̄pLp)(L̄rLr) + a2(L̄pLr)(L̄rLp) + a3(L̄L)(¯̀3`3)
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⇥
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⇤
,

V 3 :
⇥
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⇤
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(24)
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4 fermion operator (L̄L)(L̄L)

Spurions Operator Explicit expression in flavour components
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Summary. The total number of CP-even and CP-odd coe�cients for all the operators with fermion
bilinears constructed with spurions up to O(�1V 1) are reported in Table 5.

3.2 Four fermion operators.

In this section we proceed analysing the operators in class 8 which contain four fermion fields. In
analogy to the 2-index tensors ⇤ introduced to describe the fermion bilinears, the flavour structure
of theses operators is described by 4-index tensors ⌃. As an illustration, and also in view of the
phenomenological application in Sect. 5, in the case of (L̄L)(L̄L) operators we present the explicit
component structure of these tensor. For the other operators we simply list the allowed structures up
to O(V 3,�1V 1).

(L̄L)(L̄L) structures. In this category of operators we can distinguish two di↵erent subclasses as
far as flavour structure and spurion analysis are concerned. The first one contains operators where

both bilinears are of the same form, namely Q``, Q
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qq . Considering Q`` as representative
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(24)
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case
(11) (12) (13) (21) (22) (23) (31) (32) (33)

(11) a1
a2

2a1
c1✏2`

�1✏` �⇤
1✏` a3

(12) 2a2
c4✏2`

�⇤
3✏`

(13) �3✏` a4

(21) 2a2
c4✏2`

�3✏`

(22) 2a1
c1✏2`

a1
a2 c1✏2`
c4✏2`

�1✏`
�3✏`
⇠1✏3`

�⇤
1✏`

�⇤
3✏`

⇠⇤1✏
3
`

a3
c2✏2`

(23) �1✏` �1✏`
�3✏`
⇠1✏3`

�1✏2` a4
c3✏2`

�2✏`

(31) �⇤
3✏` a4

(32) �⇤
1✏` �⇤

1✏`
�⇤
3✏`

⇠⇤1✏
3
`

a4
c3✏2`

�⇤1✏
2
`

�⇤
2✏`

(33) a3 a3
c2✏2`

�2✏` �⇤
2✏` a5

Table 12: The ⌃ij,nm

``
tensor in the interaction basis as defined in Eq. (27): the entries are as indicated

in rows (ij) and columns (nm), respectively. All terms in each cell should be added.
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II ) Case for U(2)5

U(2)5 [terms summed up to di↵erent orders]

Operators Exact O(V 1) O(V 2) O(V 1,�1) O(V 2,�1) O(V 2,�1V 1) O(V 3,�1V 1)

Class 1–4 9 6 9 6 9 6 9 6 9 6 9 6 9 6

 2H3 3 3 6 6 6 6 9 9 9 9 12 12 12 12

 2XH 8 8 16 16 16 16 24 24 24 24 32 32 32 32

 2H2D 15 1 19 5 23 5 19 5 23 5 28 10 28 10

(L̄L)(L̄L) 23 – 40 17 67 24 40 17 67 24 67 24 74 31

(R̄R)(R̄R) 29 – 29 – 29 – 29 – 29 – 53 24 53 24

(L̄L)(R̄R) 32 – 48 16 64 16 53 21 69 21 90 42 90 42

(L̄R)(R̄L) 1 1 3 3 4 4 5 5 6 6 10 10 10 10

(L̄R)(L̄R) 4 4 12 12 16 16 24 24 28 28 48 48 48 48

total: 124 23 182 81 234 93 212 111 264 123 349 208 356 215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken U(2)5 sym-
metry, including breaking terms up to O(V 3,�1V 1). Notations as in Table 1.

As far as (L̄R)(L̄R) structures are concerned, we need to distinguish between Q(1,3)
lequ

and Q(1,3)
quqd

. In
the first case we have the same decomposition as for Qledq, while in the second case we get

V 0 :
⇥
↵1(q̄3u3)(q̄3d3) + h.c.

⇤
,

V 1 :
⇥
�1(Q̄Vqu3)(q̄3d3) + �2(q̄3u3)(Q̄Vqd) + h.c.

⇤
,

V 2 :
⇥
�1(Q̄Vqu3)(Q̄Vqd3) + h.c.

⇤
,

�1V 0 :
⇥
⇢1(Q̄�uU)(q̄3d3) + ⇢2(q̄3u3)(Q̄�dD)

+⇢3(q̄3�uU)(Q̄d3) + ⇢4(Q̄u3)(q̄3�dD) + h.c.
⇤
,

�1V 1 :
⇥
�1(q̄3V

†
q �uU)(q̄3d3) + �2(Q̄p�pr

u U r)(Q̄sV s
q d3) + �3(q̄3u3)(q̄3V

†
q �dD)

+�4(Q̄pV p
q u3)(Q̄r�rs

d
Ds) + �5(Q̄pV p

q U r)�sr
u (Q̄sd3) + �6(Q̄pu3)�

pr

d
(Q̄sV s

q D
r) + h.c.

⇤
.

(35)
For each electroweak structure of (L̄R)(R̄L) and (L̄R)(L̄R) operators we therefore find the following
number of real and imaginary coe�cients at a given order in the spurion expansion:

V 0 V 1 V 2 �1 �1V 1 V 3

Typa “a” [Qledq, Q
(1,3)
lequ

] : 1 1 2 2 1 1 2 2 4 4 � �

Type “b” [Q(1,8)
quqd

] : 1 1 2 2 1 1 4 4 6 6 � �

(36)

3.3 Summary and discussion

The results for all SMEFT operators are summarized in Table 6, while the detailed counting order
by order, organised according to the di↵erent sub-categories of operators is presented in Table 10
in Appendix C. As expected, the smaller symmetry group leads to a significantly larger number of
terms compared to the MFV case in Table 1. However, we emphasise that the number of independent
terms is still rather small compared to the case of no symmetry, even when considering high powers
of the spurions. It is also worth stressing that the smallness (and the nature) of the U(2)5 breaking
terms allows us to consider only limited subsets of the terms reported in Table 6 depending on the
observables, and the level of precision, we are interested in. For instance, in the limit where we neglect
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~600
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~300



II ) Case for U(2)5

3

fields,2 that we write generically as

LEFT = � 1

v2

X

k,[ij↵�]

C[ij↵�]
k

O[ij↵�]
k

+ h.c. , (10)

where v ⇡ 246 GeV is the SM Higgs vev, {↵,�} are
lepton-flavor indices, and {i, j} are quark-flavor indices.
The operators in the Warsaw basis [24] with a non-
vanishing tree-level matrix element in semileptonic B de-
cays are

O(1)
`q

= (¯̀↵
L
�µ`�

L
)(q̄i

L
�µq

j

L
) ,

O(3)
`q

= (¯̀↵
L
�µ⌧ I`�

L
)(q̄i

L
�µ⌧

Iqj
L
) ,

O`d = (¯̀↵
L
�µ`�

L
)(d̄i

R
�µd

j

R
) ,

Oqe = (q̄i
L
�µqj

L
)(ē↵

R
�µe

�

R
) ,

Oed = (ē↵
R
�µe�

R
)(d̄i

R
�µd

j

R
) ,

O`edq = (¯̀↵
L
e�
R
)(d̄i

R
qj
L
) ,

O(1)
`equ

= (¯̀a,↵
L

e�
R
)✏ab(q̄

a,i

L
uj

R
) ,

O(3)
`equ

= (¯̀a,↵
L

�µ⌫e
�

R
)✏ab(q̄

b,i

L
�µ⌫uj

R
) ,

(11)

where ⌧ I are the Pauli matrices and {a, b} are SU(2)L
indices. Our main hypothesis is to reduce the number

of C[ij↵�]
k

retaining only those corresponding to U(2)5 in-
variant operators, up to the insertion of one or two powers
of the leading SU(2)q ⇥ SU(2)` spurions in (5).
A first strong simplification arises by neglecting sub-

leading spurions with non-trivial transformation proper-
ties under U(2)u,d,e. Since we are interested in processes
of the type b ! c(u)`⌫̄ and b ! s(d)`¯̀(0), this implies

that only the operators O(1)
`q

, O(3)
`q

, Oqe and O`edq can
yield a relevant contribution. Among those, Oqe can sig-
nificantly contribute at tree-level only to b ! s⌧ ⌧̄ tran-
sitions: since the latter are currently poorly constrained
(see sect. IVC), we do not consider this operator for sim-
plicity. We are thus left with the following e↵ective La-
grangian

LEFT = � 1

v2

h
CV1 ⇤

[ij↵�]
V1

O(1)
`q

+ CV3 ⇤
[ij↵�]
V3

O(3)
`q

+(2CS ⇤[ij↵�]
S

O`edq + h.c.)
i
,

(12)

where CVi,S control the overall strength of the NP e↵ects
and ⇤Vi,S are tensors that parametrize the flavor struc-

ture. They are normalized by setting ⇤[3333]
Vi,S

= 1, which

is the only term surviving in the exact U(2)5 limit.

Let us consider first the structure of ⇤[ij↵�]
S

, which is
particularly simple. Neglecting U(2)d,e breaking spuri-
ons, it factorizes to

⇤[ij↵�]
S

= (�†
L
)↵j ⇥ �i�

R
, (13)

2
We neglect operators which modify the e↵ective couplings of W
and Z bosons. These are highly constrained and cannot induce

sizable LFU violating e↵ects.

where, in the interaction basis,

�i↵

L
=

 
xq`V i

q
(V ↵

`
)⇤ xqV i

q

x`(V ↵

`
)⇤ 1

!
, �R =

✓
0 0
0 1

◆
. (14)

Here xq,`,q` are O(1) coe�cients and we have neglected
higher-order terms in Vq,` (that would simply redefine
such coe�cients). Moving to the mass-eigenstate basis
of down quarks and charged leptons, where

qi
L
=

✓
V ⇤
ji
uj

L

di
L

◆
, `↵

L
=

✓
⌫↵
L

e↵
L

◆
, (15)

we have �L ! �̂L ⌘ L†
d
�LLe and �R ! �̂R ⌘ R†

d
�RRe

[see (9)], with the new matrices assuming the following
explicit form in 3⇥ 3 notation

�̂L =

0

B@
�de

q`
�dµ

q`
�d

q

�se

q`
�sµ

q`
�s

q
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�µ

`
xb⌧

q`

1

CA ⇡

0
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0 0 �d
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�µ
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ei�q

1
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�̂R ⇡ ei�q

0
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0 0 0

0 0 �ms
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m⌧
s⌧ 1

1

CA .

(16)

The (complex) parameters �i

q
, �↵

`
, and �↵i

q`
are a com-

bination of the spurions in (14) and the rotation terms
from Ld,e, that satisfy

�s

q
= O(|Vq|) , �µ

`
= O(|V`|) , �sµ

q`
= O(�s

q
�µ

`
) ,

�d

q

�s
q

=
�d↵
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�s↵

q`

=
V ⇤
td

V ⇤
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,
�e

`

�µ

`

=
�ie

q`

�iµ

q`

= se . (17)

On the r.h.s. of the first line of (16) we have neglected
tiny terms suppressed by more than two powers of |Vq,`|
or sd,e.
If we consider at most one power of Vq and one power

of V`, then also ⇤[ij↵�]
Vi

factorizes into

⇤[ij↵�]
Vi

= (�Vi
L

†
)↵j ⇥ (�Vi

L
)i� , (18)

where �V1
L

and �V3
L

have the same structure as �L with, a
priori, di↵erent O(1) coe�cients for the spurions. Mov-
ing to the basis (15), �Vi

L
assumes the same structure of

�̂L in (16), with parameters which can di↵er by O(1)
overall factors, but that obey the same flavor ratios as
in (17). Corrections to the factorized structure in (18)
arises only to second order in Vq or V`, generating terms
which are either irrelevant or can be reabsorbed in a re-
definition of the observable parameters in the processes
we are interested in (see sect. IV).

A. Matching to the U1 leptoquark case

The EFT in (12), with factorized flavor couplings as
in (13) and (18), nicely matches the structure generated
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where ⌧ I are the Pauli matrices and {a, b} are SU(2)L
indices. Our main hypothesis is to reduce the number
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retaining only those corresponding to U(2)5 in-
variant operators, up to the insertion of one or two powers
of the leading SU(2)q ⇥ SU(2)` spurions in (5).
A first strong simplification arises by neglecting sub-

leading spurions with non-trivial transformation proper-
ties under U(2)u,d,e. Since we are interested in processes
of the type b ! c(u)`⌫̄ and b ! s(d)`¯̀(0), this implies

that only the operators O(1)
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, Oqe and O`edq can
yield a relevant contribution. Among those, Oqe can sig-
nificantly contribute at tree-level only to b ! s⌧ ⌧̄ tran-
sitions: since the latter are currently poorly constrained
(see sect. IVC), we do not consider this operator for sim-
plicity. We are thus left with the following e↵ective La-
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The (complex) parameters �i

q
, �↵

`
, and �↵i

q`
are a com-

bination of the spurions in (14) and the rotation terms
from Ld,e, that satisfy
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On the r.h.s. of the first line of (16) we have neglected
tiny terms suppressed by more than two powers of |Vq,`|
or sd,e.
If we consider at most one power of Vq and one power

of V`, then also ⇤[ij↵�]
Vi

factorizes into

⇤[ij↵�]
Vi

= (�Vi
L

†
)↵j ⇥ (�Vi

L
)i� , (18)

where �V1
L

and �V3
L

have the same structure as �L with, a
priori, di↵erent O(1) coe�cients for the spurions. Mov-
ing to the basis (15), �Vi

L
assumes the same structure of

�̂L in (16), with parameters which can di↵er by O(1)
overall factors, but that obey the same flavor ratios as
in (17). Corrections to the factorized structure in (18)
arises only to second order in Vq or V`, generating terms
which are either irrelevant or can be reabsorbed in a re-
definition of the observable parameters in the processes
we are interested in (see sect. IV).

A. Matching to the U1 leptoquark case

The EFT in (12), with factorized flavor couplings as
in (13) and (18), nicely matches the structure generated

e.g. relevant operators for semileptonic  decaysB
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fields,2 that we write generically as
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+ h.c. , (10)

where v ⇡ 246 GeV is the SM Higgs vev, {↵,�} are
lepton-flavor indices, and {i, j} are quark-flavor indices.
The operators in the Warsaw basis [24] with a non-
vanishing tree-level matrix element in semileptonic B de-
cays are
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where ⌧ I are the Pauli matrices and {a, b} are SU(2)L
indices. Our main hypothesis is to reduce the number

of C[ij↵�]
k

retaining only those corresponding to U(2)5 in-
variant operators, up to the insertion of one or two powers
of the leading SU(2)q ⇥ SU(2)` spurions in (5).
A first strong simplification arises by neglecting sub-

leading spurions with non-trivial transformation proper-
ties under U(2)u,d,e. Since we are interested in processes
of the type b ! c(u)`⌫̄ and b ! s(d)`¯̀(0), this implies

that only the operators O(1)
`q

, O(3)
`q

, Oqe and O`edq can
yield a relevant contribution. Among those, Oqe can sig-
nificantly contribute at tree-level only to b ! s⌧ ⌧̄ tran-
sitions: since the latter are currently poorly constrained
(see sect. IVC), we do not consider this operator for sim-
plicity. We are thus left with the following e↵ective La-
grangian
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where CVi,S control the overall strength of the NP e↵ects
and ⇤Vi,S are tensors that parametrize the flavor struc-

ture. They are normalized by setting ⇤[3333]
Vi,S

= 1, which

is the only term surviving in the exact U(2)5 limit.

Let us consider first the structure of ⇤[ij↵�]
S

, which is
particularly simple. Neglecting U(2)d,e breaking spuri-
ons, it factorizes to
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, (13)

2
We neglect operators which modify the e↵ective couplings of W
and Z bosons. These are highly constrained and cannot induce

sizable LFU violating e↵ects.
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Here xq,`,q` are O(1) coe�cients and we have neglected
higher-order terms in Vq,` (that would simply redefine
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we have �L ! �̂L ⌘ L†
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�LLe and �R ! �̂R ⌘ R†
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[see (9)], with the new matrices assuming the following
explicit form in 3⇥ 3 notation
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from Ld,e, that satisfy
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On the r.h.s. of the first line of (16) we have neglected
tiny terms suppressed by more than two powers of |Vq,`|
or sd,e.
If we consider at most one power of Vq and one power

of V`, then also ⇤[ij↵�]
Vi

factorizes into
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= (�Vi
L

†
)↵j ⇥ (�Vi

L
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where �V1
L

and �V3
L

have the same structure as �L with, a
priori, di↵erent O(1) coe�cients for the spurions. Mov-
ing to the basis (15), �Vi

L
assumes the same structure of

�̂L in (16), with parameters which can di↵er by O(1)
overall factors, but that obey the same flavor ratios as
in (17). Corrections to the factorized structure in (18)
arises only to second order in Vq or V`, generating terms
which are either irrelevant or can be reabsorbed in a re-
definition of the observable parameters in the processes
we are interested in (see sect. IV).

A. Matching to the U1 leptoquark case

The EFT in (12), with factorized flavor couplings as
in (13) and (18), nicely matches the structure generated
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On the r.h.s. of the first line of (16) we have neglected
tiny terms suppressed by more than two powers of |Vq,`|
or sd,e.
If we consider at most one power of Vq and one power
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where �V1
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priori, di↵erent O(1) coe�cients for the spurions. Mov-
ing to the basis (15), �Vi
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assumes the same structure of

�̂L in (16), with parameters which can di↵er by O(1)
overall factors, but that obey the same flavor ratios as
in (17). Corrections to the factorized structure in (18)
arises only to second order in Vq or V`, generating terms
which are either irrelevant or can be reabsorbed in a re-
definition of the observable parameters in the processes
we are interested in (see sect. IV).

A. Matching to the U1 leptoquark case

The EFT in (12), with factorized flavor couplings as
in (13) and (18), nicely matches the structure generated

II ) Case for U(2)5

only few yield sizable effects if we impose a minimally broken  symmetry U(2)5

∼ #(V2)

e.g. relevant operators for semileptonic  decaysB



Summary

Flavor symmetry  

NP may have a highly non-generic flavor structure 

MFV and  flavor symmetryU(2)

We analyze how  and  flavor symmetries act on SMEFTU(3)5 U(2)5

U(2)5
 and MFVU(3)5

2499 in SMEFT
huge number of 
free parameters

reduce number of 
independent parameters 

flavor symmetry

drastic reduction : ~ 25 times smaller

drastic reduction : ~ one order smaller

This classification can be a useful first step toward a systematic analysis in 
motivated flavor versions of the SMEFT
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Yukawa after removing unphysical parameters

where

Ld ≈
cd − sd eiαd 0

sd e−iαd cd sb

− sd sb e−i(αd+ ϕq) − cd sb e−iϕq e−iϕq

Rd ≈

1 0 0
0 1 ms

mb
sb

0 − ms

mb
sb e−iϕq e−iϕq

 :  diagonal positive matrix

 :  orthogonal matrix

 , 

Δ̂u ,d,e 2 × 2

Ou ,e 2 × 2

Uq = ( cd sd eiαd

− sd e−iαd cd ) ⃗n = (0
1)

Yu = |yt |(U†
qO⊺

u Δ̂u |Vq| |xt | eiϕq ⃗n
0 1 )

Yd = |yb |(U†
qΔ̂d |Vq| |xb | eiϕq ⃗n
0 1 )

Ye = |yτ |(O⊺
e Δ̂e |Ve | |xτ | ⃗n
0 1 )

Structure of Yukawa is fixed under  symmetry 

→ elements in diagonal matrixes are described by CKM elements & fermions masses

U(2)

diag(Yf ) = L†
f Yf Rf ( f = u , d )Yf

QL → L†
d QL dR → Rd†dR

sd /cd = |Vtd /Vts | , αd = − Arg(Vtd /Vts) , st = sb − Vcb , su

 flavor symmetryU(2)5



Yukawa after removing unphysical parameters

Structure of Yukawa is fixed under  symmetry 

→ elements in diagonal matrixes are described by CKM elements & fermions masses

U(2)

diag(Yf ) = L†
f Yf Rf ( f = u , d )Yf

 :  diagonal positive matrix

 :  orthogonal matrix

 , 

Δ̂u ,d,e 2 × 2

Ou ,e 2 × 2

Uq = ( cd sd eiαd

− sd e−iαd cd ) ⃗n = (0
1)

Yu = |yt |(U†
qO⊺

u Δ̂u |Vq| |xt | eiϕq ⃗n
0 1 )

Yd = |yb |(U†
qΔ̂d |Vq| |xb | eiϕq ⃗n
0 1 )

Ye = |yτ |(O⊺
e Δ̂e |Ve | |xτ | ⃗n
0 1 )

QL → L†
d QL dR → Rd†dR

Parameters
quark

lepton

constrained
sd /cd = |Vtd /Vts | , αd = − Arg(Vtd /Vts) , st = sb − Vcb , su sb/cb = |xb | |Vq| , ϕq

sτ /cτ = |xτ | |Vℓ | , se

 flavor symmetryU(2)5


