フレーバー対称性と

素粒子標準模型有効場の理論

山本恵(広島大学)

基研研究会素粒子物理学の進展2020(2020/08/31-9/4) 2020/09/01

Based on

Darius A. Faroughy, Gino Isidori, Felix Wilsch and KY (University of Zurich) [1909.02519]

The Flavor Problem

• Theoretical arguments based on the hierarchy problem \rightarrow TeV scale NP

duded area has CL > 0.95

 $\Delta m_d \& \Delta m_s$

Δm,

1.0

0.5

-0.5

-1.0

-1.5

-1.0

Ø

-0.5

0.0

0.5

 $\overline{\rho}$

1.0

 B_s

 B_d K^0 1.5

2.0

0.0

The measurements of quark flavor-violating observables show a remarkable overall success of the SM

$$\begin{aligned} \mathscr{L}_{eff} &= \mathscr{L}_{SM} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{d=6} \quad \text{(NP)} \\ |C_{NP}| &\sim 1 \quad \longrightarrow \quad \Lambda_{NP} \sim \begin{cases} 500 \text{ TeV} \\ 2000 \text{ TeV} \\ 10^{4} - 10^{5} \text{ TeV} \end{cases} \end{aligned}$$

The Flavor Problem

	Bounds on	Bounds on Λ (TeV)		$(\Lambda = 1 \text{ TeV})$	
Operator	Re	Im	Re	Im	Observables
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \varepsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \varepsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	9.3×10^2	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{B_d \to \psi K}$
$(\bar{b}_L \gamma^{\mu} s_L)^2$	1.1×10^2	1.1×10^2	7.6×10^{-5}	7.6×10^{-5}	Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2	3.7×10^2	1.3×10^{-5}	1.3×10^{-5}	Δm_{B_s}

If we insist with the theoretical prejudice that NP has to emerge in the TeV region, we have to conclude that NP have a highly non-generic flavor structure

Flavor symmetry in SM

$$\mathscr{L}_{SM}^{\text{fermion}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Yukawa}}$$

fermion sector
$$\sum_{i=1}^{3} \sum_{\psi_i} \bar{\psi}_i i \mathcal{D} \psi_i$$

 \blacksquare in gauge sector ${\mathscr L}_{\rm gauge}$, there is 3 identical replica of the basic fermion family $[\psi = Q_I, u_R, d_R, L_I, e_R]$

 \Rightarrow big flavor symmetry is found in gauge sector $U(3)^5 = U(3)_{O_I} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{L_I} \times U(3)_{e_R}$ $= SU(3)^5 \times U(1)^5$

controll flavor dynamics can be identified with B, L and hypercharge

Flavor symmetry in SM

 $\mathscr{L}_{SM}^{\text{fermion}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Yukawa}}$ fermion sector $\sum_{i=1}^{3} \sum_{\psi_{i}} \bar{\psi}_{i} i \not{D} \psi_{i} \quad \mathscr{L}_{Y} = \bar{Q}_{L}^{i} Y_{D}^{ij} d_{R}^{j} H + \bar{Q}_{L}^{i} Y_{U}^{ij} u_{R}^{j} \tilde{H} + \bar{L}_{L}^{i} Y_{E}^{ij} e_{R}^{j} H + (h.c.)$

• in gauge sector \mathscr{L}_{gauge} , there is 3 identical replica of the basic fermion family $[\psi = Q_L, u_R, d_R, L_L, e_R]$

⇒ big flavor symmetry is found in gauge sector $U(3)^{5} = U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}}$ $= SU(3)^{5} \times U(1)^{5}$ In the identified with B L and hypercha

controll flavor dynamics

• $U(3)^5$ flavor symmetry is broken only by the Yukawa couplings $Y_{D,U,E}$

Flavor symmetry in SM + NP

$$\mathscr{L}_{SM+NP}^{\text{fermion}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Yukawa}} + \mathscr{L}_{NP}$$

fermion sector
$$\sum_{i=1}^{3} \sum_{\psi_{i}} \bar{\psi}_{i} i \mathcal{D} \psi_{i} \quad \mathscr{L}_{Y} = \bar{Q}_{L}^{i} Y_{D}^{ij} d_{R}^{j} H + \bar{Q}_{L}^{i} Y_{U}^{ij} u_{R}^{j} \tilde{H} + \bar{L}_{L}^{i} Y_{E}^{ij} e_{R}^{j} H + (h.c.)$$

• in gauge sector \mathscr{L}_{gauge} , there is 3 identical replica of the basic fermion family $[\psi = Q_L, u_R, d_R, L_L, e_R]$

⇒ big flavor symmetry is found in gauge sector $U(3)^{5} = U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}}$ $= SU(3)^{5} \times U(1)^{5}$

controll flavor dynamics

• $U(3)^5$ flavor symmetry is broken only by the Yukawa couplings $Y_{D,U,E}$

Assumption that flavor structure in NP is also controlled by Yukawa is the most reasonable solution to the flavor problem

⇒ Minimal Flavor Violation paradigm

$$\mathscr{L}_Y = \bar{Q}_L^i Y_D^{ij} d_R^j H + \bar{Q}_L^i Y_U^{ij} u_R^j \tilde{H} + \bar{L}_L^i Y_E^{ij} e_R^j H + (h.c.)$$

• assume that $G_F \equiv SU(3)^5$ is a good symmetry, promoting the $Y_{U,D,E}$ to be dynamical fields with non-trivial transformation properties under G_F :

under $G_F = SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R} \times SU(3)_{L_L} \times SU(3)_{e_R}$ $Y_U \sim (3, \bar{3}, 1, 1, 1), \ Y_D \sim (3, 1, \bar{3}, 1, 1), \ Y_E \sim (1, 1, 1, 3, \bar{3})$ $Q_L \sim (3, 1, 1, 1, 1), \ u_R \sim (1, 3, 1, 1, 1), \ d_R \sim (1, 1, 3, 1, 1), \ L_L \sim (1, 1, 1, 3, 1), \ e_R \sim (1, 1, 1, 1, 3)$

D'Ambrosio, Giudice, Isidori, Strumia [hep-ph/0207036]

$$\mathscr{L}_{Y} = \bar{Q}_{L}^{i} Y_{D}^{ij} d_{R}^{j} H + \bar{Q}_{L}^{i} Y_{U}^{ij} u_{R}^{j} \tilde{H} + \bar{L}_{L}^{i} Y_{E}^{ij} e_{R}^{j} H + (h \cdot c.)$$

$$\bar{3}_{Q_{L}} 3_{Q_{L}} \times \bar{3}_{u_{R}} 3_{u_{R}}$$

$$G_{F} \text{ invariant}$$

assume that $G_F \equiv SU(3)^5$ is a good symmetry, promoting the $Y_{U,D,E}$ to be dynamical fields with non-trivial transformation properties under G_F :

under $G_F = SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R} \times SU(3)_{L_L} \times SU(3)_{e_R}$ $Y_U \sim (3, \bar{3}, 1, 1, 1), Y_D \sim (3, 1, \bar{3}, 1, 1), Y_E \sim (1, 1, 1, 3, \bar{3})$ $Q_L \sim (3, 1, 1, 1, 1), u_R \sim (1, 3, 1, 1, 1), d_R \sim (1, 1, 3, 1, 1), L_L \sim (1, 1, 1, 3, 1), e_R \sim (1, 1, 1, 1, 3)$

D'Ambrosio, Giudice, Isidori, Strumia [hep-ph/0207036]

$$\mathscr{L}_{Y} = \bar{Q}_{L}^{i} Y_{D}^{ij} d_{R}^{j} H + \bar{Q}_{L}^{i} Y_{U}^{ij} u_{R}^{j} \tilde{H} + \bar{L}_{L}^{i} Y_{E}^{ij} e_{R}^{j} H + (h \cdot c.)$$

$$\bar{3}_{Q_{L}} 3_{Q_{L}} \times \bar{3}_{u_{R}} 3_{u_{R}}$$

$$G_{F} \text{ invariant}$$

assume that $G_F \equiv SU(3)^5$ is a good symmetry, promoting the $Y_{U,D,E}$ to be dynamical fields with non-trivial transformation properties under G_F :

under $G_F = SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R} \times SU(3)_{L_L} \times SU(3)_{e_R}$ $Y_U \sim (3, \overline{3}, 1, 1, 1), Y_D \sim (3, 1, \overline{3}, 1, 1), Y_E \sim (1, 1, 1, 3, \overline{3})$ $Q_L \sim (3, 1, 1, 1, 1), u_R \sim (1, 3, 1, 1, 1), d_R \sim (1, 1, 3, 1, 1), L_L \sim (1, 1, 1, 3, 1), e_R \sim (1, 1, 1, 1, 3)$

We then define that an effective theory satisfies the criterion of MFV if all higher-dimensional operators, constructed from SM and $Y_{U,D,E}$ fields (spurion) $\mathscr{L}_{NPinMFV} = \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^{d=6} (SM \text{ fields} + Y_{U,D,E})$

• By introducing $Y_{U,D,E}$ fields, we can write higher-dimensional operators in G_F invariant way $G_F = SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R}$

 $Y_{II} \sim (3, \bar{3}, 1)$

• By introducing $Y_{U,D,E}$ fields, we can write higher-dimensional operators in G_F invariant way $G_F = SU(3)_{Q_L} \times SU(3)_{u_R} \times SU(3)_{d_R}$

 G_F invariant $Y_U \sim (3, \overline{3}, 1)$ $Y_U Y_U^{\dagger}$ is transforming as (8, 1, 1)

Syntroducing Y_{U,D,E} fields, we can write higher-dimensional operators in G_F invariant way $G_F = SU(3)_{O_T} \times SU(3)_{U_P} \times SU(3)_{d_P}$

 $(\bar{Q}_L^i Y_U Y_U^\dagger \gamma_\mu Q_L^j)$

 G_F invariant $Y_U \sim (3, \overline{3}, 1)$ $Y_U Y_U^{\dagger}$ is transforming as (8, 1, 1)

e.g.) $b_i \rightarrow b_j$ FCNC transition

int basis $(\bar{b}_L^i Y_U Y_U^\dagger \gamma_\mu b_L^j)$

$$\begin{split} Y_D &= \lambda_d & \lambda_d = \operatorname{diag}(m_d, m_s, m_b)/\nu \\ Y_U &= V_{CKM}^{\dagger} \lambda_u & \text{where} & \lambda_u = \operatorname{diag}(m_u, m_c, m_t)/\nu \sim \operatorname{diag}(0, 0, 1) \\ Y_E &= \lambda_e & \lambda_e = \operatorname{diag}(m_e, m_\mu, m_\tau)/\nu \end{split}$$
 \end{split}

mass basis $\lambda_t^2 V_{ti}^* V_{tj} (\bar{b}_L^i \gamma_\mu b_L^j) \propto \left(\frac{m_t}{v}\right)^2$ most big effect

$$A(d_i \rightarrow d_j) = A_{SM} + A_{NP}$$

$$\frac{C_{SM}}{16\pi^2 v^2} \lambda_t^2 V_{ti}^* V_{tj} \qquad \frac{C_{NP}}{\Lambda^2} \lambda_t^2 V_{ti}^* V_{tj}$$

$$\propto (\text{CKM factor}) \left[\frac{C_{SM}}{16\pi^2 v^2} + \frac{C_{NP}}{\Lambda^2} \right]$$

In MFV, flavor violation is completely determined by Yukawa couplings and all CP violation originates from the CKM phase

Different flavor transitions are correlated, differences are only CKM

$$A(b \to s) = (V_{tb}V_{ts}^*) \left[\frac{C_{SM}}{16\pi^2 v^2} + \frac{C_{NP}}{\Lambda^2} \right]$$

exactly same structure
$$A(s \to d) = (V_{ts}V_{td}^*) \left[\qquad \prime \prime \qquad \right]$$

very predictive

• $b_i \rightarrow b_j$ FCNC transitions in MFV $(\bar{L}L)$ type $(\bar{b}_L^i Y_U Y_U^{\dagger} b_L^j)$ $(\bar{L}R)$ type $(\bar{b}_L^i Y_U Y_U^{\dagger} Y_D b_R^j)$ $(\bar{R}R)$ type $(\bar{b}_R^i Y_D^{\dagger} Y_U Y_U^{\dagger} Y_D b_R^j)$

From MFV to $U(2)^5$

$U(3)^5 = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{L_L} \times U(3)_{e_R} \text{ flavor symmetry}$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^5$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem

No explanation for Yukawa hierarchies (masses and mixing angles)

From MFV to $U(2)^5$

$U(3)^5 = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{L_L} \times U(3)_{e_R} \text{ flavor symmetry}$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^5$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem

No explanation for Yukawa hierarchies (masses and mixing angles)

$U(2)^5 = U(2)_{Q_L} \times U(2)_{u_R} \times U(2)_{d_R} \times U(2)_{L_L} \times U(2)_{e_R} \text{ flavor symmetry}$

• $U(2)^5$ symmetry gives "natural" explanation of why 3rd Yukawa couplings are large (being allowed by the symmetry)

distinguish the first two generations of fermions from the 3rd

$$\psi = (\psi_1, \psi_2, \psi_3)$$

The symmetry is a good approximation in the SM Yukawa

exact symmetry for $m_u, m_d, m_c, m_s = 0 \& V_{CKM} = 1$

⇒ we only need small breakings terms

$U(2)^5$ flavor symmetry

The set of breaking terms necessary to reproduce the quark spectrum, while keeping small FCNCs beyond the SM

Under $U(2)^3 = U(2)^q \times U(2)^u \times U(2)^d$ symmetry

$$Q^{(2)} = (Q^1, Q^2) \sim (2, 1, 1) \qquad Q^3 \sim (1, 1, 1)$$
$$u^{(2)} = (u^1, u^2) \sim (1, 2, 1) \qquad t \sim (1, 1, 1)$$
$$d^{(2)} = (d^1, d^2) \sim (1, 1, 2) \qquad b \sim (1, 1, 1)$$

Spurion

$$V_q \sim (2,1,1), \ \Delta_u \sim (2,\bar{2},1), \ \Delta_d \sim (2,1,\bar{2})$$

(U(2) breaking term)

quark

U(2) flavour symmetry provides natural link to the Yukawa couplings

From MFV to $U(2)^5$

$U(3)^5 = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R} \times U(3)_{L_L} \times U(3)_{e_R} \text{ flavor symmetry}$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^5$ by SM Yukawa couplings

<u>MFV virtue</u>

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem

No explanation for Yukawa hierarchies (masses and mixing angles)

$$U(2)^5 = U(2)_{Q_L} \times U(2)_{u_R} \times U(2)_{d_R} \times U(2)_{L_L} \times U(2)_{e_R} \text{ flavor symmetry}$$

- acting on 1st & 2nd generations only
- The exact symmetry limit is good starting point for the SM quark spectrum $(m_u, m_d, m_c, m_s = 0 \& V_{CKM} = 1) \Rightarrow$ we only need small breaking terms
- B-anomalies are compatible with U(2) flavor symmetry cf [1909.02519]

SM Effective Field Theory (SMEFT) M. Misiak and J. Rosiek

B. Grzadkowski, M. Iskrzynski, [1008.4884].

SMEFT is a effective theory based on $SU(3)_c \times SU(2)_L \times U(1)_Y$ at scale $\mu_{\rm EW} < \mu < \mu_{\rm NP}$

SM Effective Field Theory (SMEFT) M. Misiak and J. Rosiek

B. Grzadkowski, M. Iskrzynski, [1008.4884].

Complete non-redundant classification of baryon- and lepton-number conserving dimension-six operators in the SMEFT has been presented (Warsaw basis)

	$1: X^{3}$	2 :	$: H^6$		$3: H^4D^2$	5 :	: $\psi^2 H^3 + \text{h.c.}$		$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}$	2R)		$8:(\bar{L}L)(\bar{R}R)$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^\dagger H) \Box (H^\dagger H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	·		Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)$	$(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)$	$(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)($	$(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
	$A \cdot Y^2 H^2$		$6 \cdot a/^2 Y H$	∣ h c	7	$\cdot a/^{2} H^{2}$	ת	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)($	$(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
0			$\overline{(\overline{1} - \mu\nu)}$	+ I.c.			\overrightarrow{D}			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)$	$(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
Q_{HG}	$H^{+}H^{-}G^{+}\mu\nu$	Q_{eW}	$(l_p \sigma^{\mu\nu} e$	$e_r)\tau^2 HW$	$\tilde{\mu}_{\nu}$ $Q_{H\dot{l}}^{(3)}$		$D_{\mu}H(l_p\gamma^{\mu}l_r)$			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)$	$(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(l_p \sigma^{\mu l})$	$(e_r)HB_{\mu\nu}$, $Q_{Hl}^{(0)}$	$(H^{\dagger}iD)$	$(l_p \tau^I \gamma^\mu l_r)$						$Q_{ad}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A u_r) \widetilde{H} C$	$q^A_{\mu u} \qquad Q_{He}$	$(H^{\dagger}iL)$	$\overline{O}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$						• qu	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u)$	$(u_r) \tau^I \widetilde{H} W$	$Q_{\mu\nu}^{I} \qquad Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$		$8:(\bar{L}R)(\bar{R})$	L) + h.c.	8 :	$(\bar{L}R)(\bar{L}R) +$	h.c.	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(u_r)\widetilde{H} B_\mu$	$_{ u}$ $Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{q}_p \tau^I \gamma^\mu q_r)$		$Q_{ledq} \mid (\bar{l}_p^j e$	$(\bar{d}_s q_{tj})$) $Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_{jk}$	$(\bar{q}_s^k d_t)$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A d_r) H C$	$Q_{\mu\nu}^A \qquad Q_{Hu}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{u}_p\gamma^{\mu}u_r)$				$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk}$	$(\bar{q}_s^k T^A d_t$.)
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} a)$	$(d_r)\tau^I H W$	$Q_{\mu\nu}$ Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{O}_{\mu}H)(\overline{d}_p\gamma^{\mu}d_r)$				$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk}$	$(\bar{q}_s^k u_t)$	
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu \iota})$	$(d_r)HB_{\mu}$	$_{ u} \qquad \qquad Q_{Hud} + { m h.c.} \; igg $	$i(\widetilde{H}^{\dagger}L$	$(D_{\mu}H)(\bar{u}_p\gamma^{\mu}d_r)$				$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk}$	$(\bar{q}_s^k \sigma^{\mu\nu} u)$	t)

w/o flavor index 59 dim six operators in SMEFT

SM Effective Field Theory (SMEFT)

B. Grzadkowski, M. Iskrzynski,M. Misiak and J. Rosiek[1008.4884].

Complete non-redundant classification of baryon- and lepton-number conserving dimension-six operators in the SMEFT has been presented (Warsaw basis)

w/o flavor index

59 dim six operators in SMEFT

	$1: X^{3}$	2 :	$: H^6$		$3: H^4D^2$	5 :	$\psi^2 H^3 + \text{h.c.}$		$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$	(R)		$8:(\bar{L}L)(\bar{R}R)$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^\dagger H) \Box (H^\dagger H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H}$	$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)$	$(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r)$	$(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
	$A \cdot V^2 U^2$		6	- h a	7	. d. ² 11 ²	D	$Q_{lq}^{(3)}$	$(\bar{l}_p\gamma_\mu\tau^I l_r)(\bar{q}_s\gamma^\mu\tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
			$0: \psi \Lambda \Pi$	+ n.c.		: ψ п				$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)$	$(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(l_p \sigma^{\mu\nu} \epsilon)$	$(e_r)\tau^{I}HW$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i I$	$(D_{\mu}H)(l_p\gamma^{\mu}l_r)$			$Q^{(8)}$	$(\bar{u}_m \gamma_{\mu} T^A u_m)$	$(\bar{d}_{\circ} \gamma^{\mu} T^A d_t)$	$Q^{(1)}$	$(\bar{a}_{r}\gamma_{\mu}a_{r})(\bar{d}_{r}\gamma^{\mu}d_{t})$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu})$	$(e_r)HB_{\mu}$	$_{ u}$ $Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$			𝔤 ud ∣	$(\omega_p / \mu_{\perp} - \omega_r)$	$(\omega_s + 1 - \omega_l)$	Q_{qd}	$(qp / \mu qr)(as / al)$
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(A^A u_r) \widetilde{H} $	$Q_{\mu\nu}^A \qquad Q_{He}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$						$Q_{qd}^{(r)}$	$(q_p \gamma_\mu T^{\prime \prime} q_r) (d_s \gamma^\mu T^{\prime \prime} d_t)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u$	$(u_r) \tau^I \widetilde{H} W$	$Q^{I}_{\mu u} \qquad Q^{(1)}_{Hq}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$		$8:(\bar{L}R)(\bar{R})$	L) + h.c	. 8	$(\bar{L}R)(\bar{L}R) +$	h.c.	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu}$	$(u_r)\widetilde{H} B_\mu$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$Q_{ledq} \mid (\bar{l}_p^j \epsilon$	$(\bar{d}_s q_{tj})$) $Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk}$	$(\bar{q}_s^k d_t)$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A d_r) H C$	$G^A_{\mu u}$ Q_{Hu}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{u}_p\gamma^{\mu}u_r)$				$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk}$	$(\bar{q}_s^k T^A d_s)$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d$	$l_r)\tau^I H W$	$Q_{\mu\nu}$ Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{D}_{\mu}H)(\overline{d}_p\gamma^{\mu}d_r)$				$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk}$	$(\bar{q}_s^k u_t)$	
$Q_{H \widetilde{W} B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(d_r)HB_\mu$	$_{ u} \qquad \qquad Q_{Hud} + { m h.c.} \; igg $	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$				$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk}$	$(\bar{q}_s^k \sigma^{\mu\nu} u)$	t)

w/ flavor index

2499 dim six operators in SMEFT

 $(n_g = 3)$

1350 CP-even and 1149 CP-odd

huge number of flavor symmetry

reduce number of independent parameters

free parameters

Our work

• We analyse how $U(3)^5$ and $U(2)^5$ flavor symmetries act on SMEFT, providing an organising principle to classify the large number of dim6 operators involving fermion fields

		N	o symm	netry	
Class	Operators	3 G	len.	1 G	en.
1-4	$X^3, H^6, H^4 D^2, X^2 H^2$	9	6	9	6
5	$\psi^2 H^3$	27	27	3	3
6	$\psi^2 X H$	72	72	8	8
7	$\psi^2 H^2 D$	51	30	8	$1 \parallel$
	$(\bar{L}L)(\bar{L}L)$	171	126	5	_
	$(\bar{R}R)(\bar{R}R)$	255	195	7	-
8	$(\bar{L}L)(\bar{R}R)$	360	288	8	-
	$(\bar{L}R)(\bar{R}L)$	81	81	1	1
	$(\bar{L}R)(\bar{L}R)$	324	324	4	4
	total:	1350	1149	53	23

CP-even CP-odd

- 1) Case for $U(3)^5$ and MFV
- 2) Case for $U(2)^5$
- [3) Case for beyond $U(3)^5$ and $U(2)^5$]

Operator classification

59 dim six operators in SMEFT

class 1-4 : w/o fermion ope.
class 5-7 : w/ 2-fermion ope.

	$1: X^{3}$	ې ۷	$2: H^{6}$		$3: H^4 D^2$	5	$\psi^2 H^3 + \text{h.c.}$
Q_G	$\int f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$\left (H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})\right $
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					Q_{dH}	$ (H^{\dagger}H)(\bar{q}_p d_r H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$						

	$4: X^2 H^2$	6	$\theta: \psi^2 XH + \text{h.c.}$		$7:\psi^2 H^2 D$
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$Q_{Hl}^{\left(3 ight) }$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	$Q_{Hud} + { m h.c.}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Operator classification

) class 8: w/ 4-fermion ope.

59 dim six operators in SMEFT

	$8:(ar{L}L)(ar{L}L)$		$8:(ar{R}R)(ar{R}R)$		$8:(ar{L}L)(ar{R}R)$
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

$8:(\bar{L}R)(\bar{R}L)+{ m h.c.}$	8	$: (\bar{L}R)(\bar{L}R) + h.c.$
$Q_{ledq} (\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$
	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$
	$Q_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\epsilon_{jk}(\bar{q}_{s}^{k}u_{t})$
	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

I) $U(3)^5$ and MFV

e.g. class 5 : $(\overline{L}R)$ bilinear

No symmetry \rightarrow (# parameters) = (flavor index)^2 non-hermitian ope. \rightarrow Re + Im $(\bar{L}R)$ type ope. \rightarrow \swarrow ($\bar{q} u$), ($\bar{q} d$) : not allowed in exact $U(3)^5$ \rightarrow ($\bar{q} Y_u u$), ($\bar{q} Y_d d$) : allowed w/ Y_u \rightarrow ($\bar{q}^i (Y_u Y_u^{\dagger}) Y_d d^j$) : allowed w/ more $Y_{u,e,d}$:

5: $\psi^2 H^3 + \text{h.c.}$	No sym.	exact $U(3)^5$	$\sim \mathcal{O}(Y_{u,d,e})$	$\sim \mathcal{O}(Y_d Y_u^2)$
$Q_{eH} (H^{\dagger}H)(\bar{\ell}_p e_r H)$	99	0	1 1	1 1
$Q_{uH} (H^{\dagger}H)(\bar{q}_p u_r \tilde{H})$	99	0	1 1	1 1
Q_{dH} $(H^{\dagger}H)(\bar{q}_p d_r H)$	99	0	1 1	22
	27 27	0	3 3	4 4

I) $U(3)^5$ and MFV

		N N	o symn	netry		$\ U(3)^5$						
Class	Operators	3 6	len.	10	len.	Exa	act	$\mathcal{O}(\mathbf{Y})$	$Y^1_{e,d,u})$	$ \mathcal{O}(\mathbf{Y}) $	$Y_e^1, Y_d^1 Y_u^2)$	
1-4	X^3,H^6,H^4D^2,X^2H^2	9	6	9	6	9	6	9	6	9	6	
5	$\psi^2 H^3$	27	27	3	3	_		3	3	4	4	
6	$\psi^2 X H$	72	72	8	8			8	8	11	11	
7	$\psi^2 H^2 D$	51	30	8	1	7		7		11	1	
	$(ar{L}L)(ar{L}L)$	171	126	5		8		8		14		
	$(ar{R}R)(ar{R}R)$	255	195	7		9		9		14		
8	$(ar{L}L)(ar{R}R)$	360	288	8		8		8		18		
	$(ar{L}R)(ar{R}L)$	81	81	1	1							
	$(\bar{L}R)(\bar{L}R)$	324	324	4	4					4	4	
	total:	1350	1149	53	23	41	6	52	17	85	26	

I) $U(3)^5$ and MFV

		No symmetry							U(3)	$)^5$		
Class	Operators	3 G	len.	16	en.	Exa	act	$ \mathcal{O}(\mathbf{Y}) $	$Y_{e,d,u}^1$	$\mathcal{O}(\mathbf{Y})$	$Y_e^1, Y_d^1 Y_u^2)$	
1-4	$X^3, H^6, H^4 D^2, X^2 H^2$	9	6	9	6	9	6	9	6	9	6	
5	$\psi^2 H^3$	27	27	3	3	_		3	3	4	4	
6	$\psi^2 X H$	72	72	8	8	_	_	8	8	11	11	
7	$\psi^2 H^2 D$	51	30	8	1	7	_	7	—	11	1	
	$(\bar{L}L)(\bar{L}L)$	171	126	5	_	8		8	_	14	_	
	$(ar{R}R)(ar{R}R)$	255	195	7	_	9	_	9	_	14	—	
8	$(ar{L}L)(ar{R}R)$	360	288	8	_	8	_	8	_	18	_	
	$(\bar{L}R)(\bar{R}L)$	81	81	1	1	_	_	_	_	_	_	
	$(\bar{L}R)(\bar{L}R)$	324	324	4	4	_	_	_	_	4	4	
	total:	1350	1149	53	23	41	6	52	17 🤇	85	26	
		~25	00						-	~	100	
						M	=V		-			

Yukawa in U(2) $Y_{e} = y_{\tau} \begin{pmatrix} \Delta_{e} & x_{\tau} V_{\ell} \\ 0 & 1 \end{pmatrix}, \qquad Y_{u} = y_{t} \begin{pmatrix} \Delta_{u} & x_{t} V_{q} \\ 0 & 1 \end{pmatrix}, \qquad Y_{d} = y_{b} \begin{pmatrix} \Delta_{d} & x_{b} V_{q} \\ 0 & 1 \end{pmatrix}$ $V_{q} \sim (2,1,1), \ \Delta_{u} \sim (2,\overline{2},1), \ \Delta_{d} \sim (2,1,\overline{2}) \qquad y_{\tau,t,b} \text{ and } x_{\tau,t,b} : \mathcal{O}(1) \text{ free complex parameters}$

Transformation for spurions

$$V_{q(\ell)} = e^{i\bar{\phi}_{q(\ell)}} \begin{pmatrix} 0\\ \epsilon_{q(\ell)} \end{pmatrix} , \quad \Delta_e = O_e^{\mathsf{T}} \begin{pmatrix} \delta'_e & 0\\ 0 & \delta_e \end{pmatrix} , \quad \Delta_u = U_u^{\dagger} \begin{pmatrix} \delta'_u & 0\\ 0 & \delta_u \end{pmatrix} , \quad \Delta_d = U_d^{\dagger} \begin{pmatrix} \delta'_d & 0\\ 0 & \delta_d \end{pmatrix}$$

$$\begin{aligned} \epsilon_{i} &= \mathcal{O}(y_{t}|V_{ts}|) = \mathcal{O}(10^{-1}) \\ \delta_{i} &= \mathcal{O}\left(\frac{y_{c}}{y_{t}}, \frac{y_{s}}{y_{b}}, \frac{y_{\mu}}{y_{\tau}}\right) = \mathcal{O}(10^{-2}) \\ \delta_{i}' &= \mathcal{O}\left(\frac{y_{u}}{y_{t}}, \frac{y_{d}}{y_{b}}, \frac{y_{e}}{y_{\tau}}\right) = \mathcal{O}(10^{-3}) \end{aligned} \qquad 1 \gg \epsilon_{i} \gg \delta_{i} \gg \delta_{i}' > 0 \\ O_{e} &= \begin{pmatrix} c_{e} & s_{e} \\ -s_{e} & c_{e} \end{pmatrix}, \qquad U_{q} = \begin{pmatrix} c_{q} & s_{q} e^{i\alpha_{q}} \\ -s_{q} e^{-i\alpha_{q}} & c_{q} \end{pmatrix} \end{aligned}$$

e.g.) leptonic $(\overline{L}L)$ bilinear

$$\psi = (\psi_1, \psi_2, \psi_3)$$
$$L \quad \ell_3$$

$$\bar{\ell}_{p}\Gamma\Lambda_{LL}^{pr}\ell_{r}, \qquad \Lambda_{LL} = \begin{pmatrix} a_{1} & 0 & 0\\ 0 & a_{1} + c_{1}\epsilon_{\ell}^{2} & \beta_{1}\epsilon_{\ell} \\ 0 & \beta_{1}^{*}\epsilon_{\ell} & a_{2} \end{pmatrix} + \mathcal{O}(\delta_{e}^{2}) \qquad \qquad \begin{array}{c} a:\mathcal{O}(V^{0})\\ \beta:\mathcal{O}(V)\\ c:\mathcal{O}(V^{2}) \\ \end{array}$$

* laten (a, b, c, ., .): real, greek($\alpha, \beta, \gamma, ., .$) : complex

Spurions	Operator	Explicit expression in flavour components
V^0	$a_1\bar{L}L + a_2\bar{\ell}_3\ell_3$	$a_1\left(\bar{\ell}_1\ell_1 + \bar{\ell}_2\ell_2\right) + a_2\left(\bar{\ell}_3\ell_3\right)$
V^1	$\beta_1 \bar{L} V_\ell \ell_3 + \text{h.c.}$	$\beta_1 \epsilon_\ell \left(\bar{\ell}_2 \ell_3 \right) + ext{h.c.}$
V^2	$c_1 \bar{L} V_\ell V_\ell^\dagger L$	$c_1\epsilon_\ell^2\left(ar\ell_2\ell_2 ight)$
$\Delta^1,\Delta^1 V^1$	_	_
Δ^2	$h_1 \bar{L} \Delta_e \Delta_e^{\dagger} L$	$\approx h_1 \left[\delta_e^2(\bar{\ell}_2 \ell_2) - s_e \delta_e^2(\bar{\ell}_1 \ell_2 + \bar{\ell}_2 \ell_1) + (s_e^2 \delta_e^2 + \delta_e'^2)(\bar{\ell}_1 \ell_1) \right]$
$\Delta^2 V^1$	$\lambda_1 \bar{L} \Delta_e \Delta_e^{\dagger} V_\ell \ell_3 + \text{h.c.}$	$\approx \lambda_1 \epsilon_\ell \delta_e^2 (\bar{\ell}_2 \ell_3 - s_e \bar{\ell}_1 \ell_3) + \text{h.c.}$
$\Delta^2 V^2$	$\mu_1 \bar{L} \Delta_e \Delta_e^{\dagger} V_\ell V_\ell^{\dagger} L + \text{h.c.}$	$\approx \mu_1 \epsilon_\ell^2 \delta_e^2 (\bar{\ell}_2 \ell_2 - s_e \bar{\ell}_1 \ell_2) + \text{h.c.}$

e.g.) leptonic $(\bar{R}R)$ bilinear

$$\bar{e}_{p}\Gamma\Lambda_{RR}^{pr}e_{r}, \qquad \Lambda_{RR} = \begin{pmatrix} a_{1} & 0 & \sigma_{1}^{*}\epsilon_{\ell}s_{e}\delta_{e}' \\ 0 & a_{1} & \sigma_{1}^{*}\epsilon_{\ell}\delta_{e} \\ \sigma_{1}\epsilon_{\ell}s_{e}\delta_{e}' & \sigma_{1}\epsilon_{\ell}\delta_{e} & a_{2} \end{pmatrix} + \mathcal{O}(\delta_{e}^{2}) \qquad \begin{array}{c} a: \mathcal{O}(V^{0}) \\ \beta: \mathcal{O}(V) \\ c: \mathcal{O}(V^{2}) \end{array}$$

Spurions	Operator ($\bar{e}e$ type)	Explicit expression in flavour components
V^0	$a_1\bar{E}E + a_2\bar{e}_3e_3$	$a_1 \left(\bar{e}_1 e_1 + \bar{e}_2 e_2 \right) + a_2 \left(\bar{e}_3 e_3 \right)$
V^1, V^2, Δ^1	_	
$\Delta^1 V^1$	$\sigma_1 \bar{e}_3 V_\ell^\dagger \Delta_e E + \text{h.c.}$	$\approx \sigma_1 \epsilon_\ell \left[\delta_e(\bar{e}_3 e_2) + s_e \delta'_e(\bar{e}_3 e_1) \right] + \text{h.c.}$
Δ^2	$h_1 \bar{E} \Delta_e^{\dagger} \Delta_e E$	$h_1 \left[\delta_e^2(\bar{e}_2 e_2) + \delta_e'^2(\bar{e}_1 e_1) \right]$
$\Delta^2 V^1$	_	
$\Delta^2 V^2$	$m_1 \bar{E} \Delta_e^{\dagger} V_{\ell} V_{\ell}^{\dagger} \Delta_e E$	$\approx m_1 \epsilon_{\ell}^2 \left[\delta_e^2(\bar{e}_2 e_2) + s_e \delta_e' \delta_e(\bar{e}_1 e_2 + \bar{e}_2 e_1) + s_e^2 \delta_e'^2(\bar{e}_1 e_1) \right]$

II) Case for $U(2)^5$

Results for bilinear structure

	N. indep.	$U(2)^5$ breaking terms									
Class	structures	V^0		V^1		V^2		Δ^1		$\Delta^1 V^1$	
5 & 6: $(\bar{L}R)$	11	11	11	11	11	_		11	11	11	11
7: $(\bar{L}L)$	4	8	—	4	4	4	—	_	—	_	—
7: $\left(\bar{R}R\right)$	3	6	—	_	—	_	—	_	—	3	3
7: Q_{Hud}	1	1	1	_	—	_		_	—	2	2
total:	19	26	$\overline{12}$	15	15	4		11	11	16	16

II) Case for $U(2)^{5}$

4 fermion operator $(\overline{L}L)(\overline{L}L)$

 $\psi = (\psi_1, \psi_2, \psi_3)$ $L \quad \ell_3$

 $Q_{\ell\ell}, Q_{qq}^{(1)}$ and $Q_{qq}^{(3)}$ case

- $V^{0}: \left[a_{1}(\bar{L}^{p}L^{p})(\bar{L}^{r}L^{r}) + a_{2}(\bar{L}^{p}L^{r})(\bar{L}^{r}L^{p}) + a_{3}(\bar{L}L)(\bar{\ell}_{3}\ell_{3}) + a_{4}(\bar{L}\ell_{3})(\bar{\ell}_{3}L) + a_{5}(\bar{\ell}_{3}\ell_{3})(\bar{\ell}_{3}\ell_{3})\right],$
- $V^{1}: \quad \left[\beta_{1}(\bar{L}^{p}V_{\ell}^{p}\ell_{3})(\bar{L}^{r}L^{r}) + \beta_{2}(\bar{L}V_{\ell}\ell_{3})(\bar{\ell}_{3}\ell_{3}) + \beta_{3}(\bar{L}^{p}V_{\ell}^{p}L^{r})(\bar{L}^{r}\ell_{3}) + \text{h.c.}\right],$
- $V^{2}: \left[c_{1}(\bar{L}^{p}V_{\ell}^{p}V_{\ell}^{\dagger r}L^{r})(\bar{L}^{s}L^{s}) + c_{2}(\bar{L}^{p}V_{\ell}^{p}V_{\ell}^{\dagger r}L^{r})(\bar{\ell}_{3}\ell_{3}) + c_{3}(\bar{L}^{p}V_{\ell}^{p}\ell_{3})(\bar{\ell}_{3}V_{\ell}^{\dagger r}L^{r}) + c_{4}(\bar{L}^{p}V_{\ell}^{p}L^{r})(\bar{L}^{r}V_{\ell}^{\dagger s}L^{s}) + (\gamma_{1}(\bar{L}^{p}V_{\ell}^{p}\ell_{3})(\bar{L}^{r}V_{\ell}^{r}\ell_{3}) + \text{h.c.})\right],$
- $V^{3}: \left[\xi_{1}(\bar{L}^{p}V_{\ell}^{p}V_{\ell}^{\dagger r}L^{r})(\bar{L}^{s}V_{\ell}^{s}\ell_{3}) + \text{h.c.}\right].$

II) Case for $U(2)^5$

4 fermion operator $(\bar{L}L)(\bar{L}L)$

a: $\mathcal{O}(V^0)$ β : $\mathcal{O}(V)$ *c*: $\mathcal{O}(V^2)$

Table 12: The $\Sigma_{\ell\ell}^{ij,nm}$ tensor in the interaction basis as defined in Eq. (27): the entries are as indicated in rows (ij) and columns (nm), respectively. All terms in each cell should be added.

	$ $ $U(2)^5$ [terms summed up to different orders]													
Operators	rs Exact		$\mathcal{O}(V^1)$		$\mathcal{O}(V^2)$		$\mathcal{O}(V^1, \Delta^1)$		$\mathcal{O}(V^2,\Delta^1)$		$\mathcal{O}(V^2, \Delta^1 V^1)$		$\Big \ \mathcal{O}(V^3,\Delta^1 V^1)$	
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	—	29	—	29	—	29	_	29	—	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	—	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	8	234	93	212	111	264	123	349	208	356	215

~300

~600

e.g. relevant operators for semileptonic B decays

$$\begin{aligned} \mathcal{O}_{\ell q}^{(1)} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}) (\bar{q}_L^i \gamma_{\mu} q_L^j) \,, \\ \mathcal{O}_{\ell q}^{(3)} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \tau^I \ell_L^{\beta}) (\bar{q}_L^i \gamma_{\mu} \tau^I q_L^j) \,, \\ \mathcal{O}_{\ell d} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}) (\bar{d}_R^i \gamma_{\mu} d_R^j) \,, \\ \mathcal{O}_{q e} &= (\bar{q}_L^i \gamma^{\mu} q_L^j) (\bar{e}_R^{\alpha} \gamma_{\mu} e_R^{\beta}) \,, \end{aligned}$$

$$\mathcal{O}_{ed} = (\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}) (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}) ,$$

$$\mathcal{O}_{\ell edq} = (\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}) (\bar{d}_{R}^{i} q_{L}^{j}) ,$$

$$\mathcal{O}_{\ell equ}^{(1)} = (\bar{\ell}_{L}^{a,\alpha} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{a,i} u_{R}^{j}) ,$$

$$\mathcal{O}_{\ell equ}^{(3)} = (\bar{\ell}_{L}^{a,\alpha} \sigma_{\mu\nu} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{b,i} \sigma^{\mu\nu} u_{R}^{j})$$

e.g. relevant operators for semileptonic B decays

only few yield sizable effects if we impose a minimally broken $U(2)^5$ symmetry $\sim \mathcal{O}(V^2)$

$$\begin{split} \mathcal{O}_{\ell q}^{(1)} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}) (\bar{q}_L^i \gamma_{\mu} q_L^j) \,, \\ \mathcal{O}_{\ell q}^{(3)} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \tau^I \ell_L^{\beta}) (\bar{q}_L^i \gamma_{\mu} \tau^I q_L^j) \,, \\ \mathcal{O}_{\ell d} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}) (\bar{d}_R^i \gamma_{\mu} d_R^j) \,, \\ \mathcal{O}_{q e} &= (\bar{q}_L^i \gamma^{\mu} q_L^j) (\bar{e}_R^{\alpha} \gamma_{\mu} e_R^{\beta}) \,, \end{split}$$

$$\mathcal{O}_{ed} = (\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}) (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}),$$

$$\mathcal{O}_{\ell edq} = (\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}) (\bar{d}_{R}^{i} q_{L}^{j}),$$

$$\mathcal{O}_{\ell equ}^{(1)} = (\bar{\ell}_{L}^{a,\alpha} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{a,i} u_{R}^{j}),$$

$$\mathcal{O}_{\ell equ}^{(3)} = (\bar{\ell}_{L}^{a,\alpha} \sigma_{\mu\nu} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{b,i} \sigma^{\mu\nu} u_{R}^{j})$$

Summary

NP may have a highly non-generic flavor structure

```
Flavor symmetry MFV and U(2) flavor symmetry
```

• We analyze how $U(3)^5$ and $U(2)^5$ flavor symmetries act on SMEFT


```
U(3)^5 and MFV drastic reduction : ~ 25 times smaller
U(2)^5 drastic reduction : ~ one order smaller
```

This classification can be a useful first step toward a systematic analysis in motivated flavor versions of the SMEFT

$U(2)^5$ flavor symmetry

Yukawa after removing unphysical parameters

$$\begin{split} Y_{u} &= |y_{t}| \begin{pmatrix} U_{q}^{\dagger} O_{u}^{\dagger} \hat{\Delta}_{u} & |V_{q}| |x_{t}| e^{i\phi_{q}} \overrightarrow{n} \\ 0 & 1 \end{pmatrix} \\ \hat{\Delta}_{u,d,e} : 2 \times 2 \text{ diagonal positive matrix} \\ Y_{d} &= |y_{b}| \begin{pmatrix} U_{q}^{\dagger} \hat{\Delta}_{d} & |V_{q}| |x_{b}| e^{i\phi_{q}} \overrightarrow{n} \\ 0 & 1 \end{pmatrix} \\ O_{u,e} : 2 \times 2 \text{ orthogonal matrix} \\ Y_{e} &= |y_{\tau}| \begin{pmatrix} O_{e}^{\dagger} \hat{\Delta}_{e} & |V_{e}| |x_{\tau}| \overrightarrow{n} \\ 0 & 1 \end{pmatrix} \\ U_{q} &= \begin{pmatrix} c_{d} & s_{d} e^{i\alpha_{d}} \\ -s_{d} e^{-i\alpha_{d}} & c_{d} \end{pmatrix}, \ \overrightarrow{n} &= \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{split}$$

Structure of Yukawa is fixed under U(2) symmetry

→ elements in diagonal matrixes are described by CKM elements & fermions masses

where

$$L_{d} \approx \begin{pmatrix} c_{d} & -s_{d} e^{i\alpha_{d}} & 0\\ s_{d} e^{-i\alpha_{d}} & c_{d} & s_{b}\\ -s_{d} s_{b} e^{-i(\alpha_{d} + \phi_{q})} & -c_{d} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix} \qquad R_{d} \approx \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b}\\ 0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$s_{d}/c_{d} = |V_{td}/V_{ts}|, \alpha_{d} = -\operatorname{Arg}(V_{td}/V_{ts}), s_{t} = s_{b} - V_{cb}, s_{u}$$

$U(2)^5$ flavor symmetry

Yukawa after removing unphysical parameters

$$\begin{split} Y_{u} &= |y_{t}| \begin{pmatrix} U_{q}^{\dagger} O_{u}^{\dagger} \hat{\Delta}_{u} & |V_{q}| |x_{t}| e^{i\phi_{q}} \overrightarrow{n} \\ 0 & 1 \end{pmatrix} \\ \hat{\Delta}_{u,d,e} : 2 \times 2 \text{ diagonal positive matrix} \\ Y_{d} &= |y_{b}| \begin{pmatrix} U_{q}^{\dagger} \hat{\Delta}_{d} & |V_{q}| |x_{b}| e^{i\phi_{q}} \overrightarrow{n} \\ 0 & 1 \end{pmatrix} \\ O_{u,e} : 2 \times 2 \text{ orthogonal matrix} \\ Y_{e} &= |y_{\tau}| \begin{pmatrix} O_{e}^{\dagger} \hat{\Delta}_{e} & |V_{e}| |x_{\tau}| \overrightarrow{n} \\ 0 & 1 \end{pmatrix} \\ U_{q} &= \begin{pmatrix} c_{d} & s_{d} e^{i\alpha_{d}} \\ -s_{d} e^{-i\alpha_{d}} & c_{d} \end{pmatrix}, \ \overrightarrow{n} &= \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{split}$$

Structure of Yukawa is fixed under U(2) symmetry

→ elements in diagonal matrixes are described by CKM elements & fermions masses

Parameters constrained quark $s_d/c_d = |V_{td}/V_{ts}|, \alpha_d = -\operatorname{Arg}(V_{td}/V_{ts}), s_t = s_b - V_{cb}, s_u$ $s_b/c_b = |x_b| |V_q|, \phi_q$ lepton $s_{\tau}/c_{\tau} = |x_{\tau}| |V_{\ell}|, s_e$