フレーバー対称性と
 素粒子標準模型有効場の理論

山本恵（広島大学）
基研研究会 素粒子物理学の進展2020（2020／08／31－9／4） 2020／09／01

Based on

Darius A．Faroughy，Gino Isidori，Felix Wilsch and KY （University of Zurich）［1909．02519］

Universität
Zürich ${ }^{\text {U2H }}$

The Flavor Problem

- Theoretical arguments based on the hierarchy problem $\rightarrow \mathrm{TeV}$ scale NP
- The measurements of quark flavor-violating observables show a remarkable overall success of the SM

New flavor-breaking sources of $\mathrm{O}(1)$ at the TeV scale are definitely excluded

$$
\begin{gather*}
\mathscr{L}_{\text {eff }}=\mathscr{L}_{S M}+\sum_{i} \frac{C_{i}}{\Lambda^{2}} \sigma_{i}^{d=6}(\mathrm{NP}) \tag{NP}\\
\left|C_{N P}\right| \sim 1 \rightarrow \Lambda_{N P} \sim\left\{\begin{array}{ccc}
500 \mathrm{TeV} & : & B_{s} \\
2000 \mathrm{TeV} & : & B_{d} \\
10^{4}-10^{5} \mathrm{TeV} & : & K^{0}
\end{array}\right.
\end{gather*}
$$

The Flavor Problem

Operator	Bounds on $\Lambda(\mathrm{TeV})$		Bounds on $c_{i j}(\Lambda=1 \mathrm{TeV})$		Observables
	Re	Im	Re	Im	
	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_{K} ; \varepsilon_{K}$
$\underline{\left(\bar{s}_{R} d_{L}\right)\left(\bar{s}_{L} d_{R}\right)}$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_{K} ; \varepsilon_{K}$
$\underline{\left(\bar{c}_{L} \gamma^{\mu} u_{L}\right)^{2}}$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_{D} ;\|q / p\|, \phi_{D}$
$\underline{\left(\bar{c}_{R} u_{L}\right)\left(\bar{c}_{L} u_{R}\right)}$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_{D} ;\|q / p\|, \phi_{D}$
$\underline{\left(\bar{b}_{L} \gamma^{\mu} d_{L}\right)^{2}}$	5.1×10^{2}	9.3×10^{2}	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_{d}} ; S_{B_{d} \rightarrow \psi K}$
$\underline{\left(\bar{b}_{R} d_{L}\right)\left(\bar{b}_{L} d_{R}\right)}$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_{d}} ; S_{B_{d} \rightarrow \psi K}$
$\underline{\left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)^{2}}$	1.1×10^{2}	1.1×10^{2}	7.6×10^{-5}	7.6×10^{-5}	$\Delta m_{B_{s}}$
$\underline{\left(\bar{b}_{R} s_{L}\right)\left(\bar{b}_{L} s_{R}\right)}$	3.7×10^{2}	3.7×10^{2}	1.3×10^{-5}	1.3×10^{-5}	$\Delta m_{B_{s}}$

- if we insist with the theoretical prejudice that NP has to emerge in the TeV region, we have to conclude that NP have a highly non-generic flavor structure

Flavor symmetry in SM

$\mathscr{L}_{S M}^{\text {fermion }}=\mathscr{L}_{\text {gauge }}+\mathscr{L}_{\text {Yukawa }}$
fermion sector $\sum_{i=1}^{3} \sum_{\psi_{i}} \overline{\bar{T}}_{i} \bar{D} \psi_{i}$

- in gauge sector $\mathscr{L}_{\text {gauge }}$, there is 3 identical replica of the basic fermion family $\left[\psi=Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right]$
\Rightarrow big flavor symmetry is found in gauge sector

$$
\begin{aligned}
U(3)^{5} & =U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \\
& =S U(3)^{5} \times U(1)^{5}
\end{aligned}
$$

controll flavor dynamics 4 can be identified with B, L and hypercharge

Flavor symmetry in SM

$$
\begin{aligned}
& \mathscr{L}_{S M}^{\text {fermion }}=\mathscr{L}_{\text {gauge }}+\mathscr{L}_{\text {Yukawa }} \\
& \text { fermion sector } \sum_{i=1}^{3} \sum_{y_{i}} \bar{\psi}_{i} i D \psi_{i} \quad \mathscr{L}_{Y}=\bar{Q}_{L}^{i} \sum_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .)
\end{aligned}
$$

- in gauge sector $\mathscr{L}_{\text {gauge }}$, there is 3 identical replica of the basic fermion family

$$
\begin{aligned}
& {\left[\psi=Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right]} \\
& \Rightarrow \quad \text { big flavor symmetry is found in gauge sector } \\
& \quad \begin{aligned}
U(3)^{5} & =U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \\
& =S U(3)^{5} \times U(1)^{5}
\end{aligned}
\end{aligned}
$$

controll flavor dynamics \quad can be identified with B, L and hypercharge

- $U(3)^{5}$ flavor symmetry is broken only by the Yukawa couplings $Y_{D, U, E}$

Flavor symmetry in SM + NP

$$
\mathscr{L}_{S M+N P}^{\text {fermion }}=\mathscr{L}_{\text {gauge }}+\mathscr{L}_{\text {Yukawa }}+\mathscr{L}_{N P}
$$

$$
\text { fermion sector } \sum_{i=1}^{3} \sum_{\psi_{i}} \bar{\psi}_{i} i X_{Y_{i}} \quad \mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .)
$$

- in gauge sector $\mathscr{L}_{\text {gauge }}$, there is 3 identical replica of the basic fermion family $\left[\psi=Q_{L}, u_{R}, d_{R}, L_{L}, e_{R}\right]$
\Rightarrow big flavor symmetry is found in gauge sector

$$
\begin{aligned}
U(3)^{5} & =U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \\
& =S U(3)^{5} \times U(1)^{5}
\end{aligned}
$$

controll flavor dynamics - can be identified with B, L and hypercharge

- $U(3)^{5}$ flavor symmetry is broken only by the Yukawa couplings $Y_{D, U, E}$
- Assumption that flavor structure in NP is also controlled by Yukawa is the most reasonable solution to the flavor problem
\Rightarrow Minimal Flavor Violation paradigm

Minimal Flavor Violation (MFV)

$$
\mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .)
$$

- assume that $G_{F} \equiv S U(3)^{5}$ is a good symmetry, promoting the $Y_{U, D, E}$ to be dynamical fields with non-trivial transformation properties under G_{F} :

$$
\begin{aligned}
& \text { under } G_{F}=\operatorname{SU}(3)_{Q_{L}} \times \operatorname{SU}(3)_{u_{R}} \times \operatorname{SU}(3)_{d_{R}} \times \operatorname{SU}(3)_{L_{L}} \times \operatorname{SU}(3)_{e_{R}} \\
& Y_{U} \sim(3, \overline{3}, 1,1,1), Y_{D} \sim(3,1, \overline{3}, 1,1), Y_{E} \sim(1,1,1,3, \overline{3}) \\
& Q_{L} \sim(3,1,1,1,1), u_{R} \sim(1,3,1,1,1), d_{R} \sim(1,1,3,1,1), \\
& L_{L} \sim(1,1,1,3,1), e_{R} \sim(1,1,1,1,3)
\end{aligned}
$$

Minimal Flavor Violation (MFV)

$$
\begin{gathered}
\mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(\text { h.c. }) \\
\overline{3}_{Q_{L}}^{\lambda}{ }_{Q_{Q_{L}} \times \overline{3}_{u_{R}}}{ }^{3_{u_{R}}} \longrightarrow G_{F} \text { invariant }
\end{gathered}
$$

- assume that $G_{F} \equiv S U(3)^{5}$ is a good symmetry, promoting the $Y_{U, D, E}$ to be dynamical fields with non-trivial transformation properties under G_{F} :

$$
\begin{aligned}
& \text { under } G_{F}=\operatorname{SU}(3)_{Q_{L}} \times \operatorname{SU}(3)_{u_{R}} \times \operatorname{SU}(3)_{d_{R}} \times \operatorname{SU}(3)_{L_{L}} \times \operatorname{SU}(3)_{e_{R}} \\
& Y_{U} \sim(3, \overline{3}, 1,1,1), Y_{D} \sim(3,1, \overline{3}, 1,1), Y_{E} \sim(1,1,1,3, \overline{3}) \\
& Q_{L} \sim(3,1,1,1,1), u_{R} \sim(1,3,1,1,1), d_{R} \sim(1,1,3,1,1), \\
& L_{L} \sim(1,1,1,3,1), e_{R} \sim(1,1,1,1,3)
\end{aligned}
$$

Minimal Flavor Violation (MFV)

$$
\begin{gathered}
\mathscr{L}_{Y}=\bar{Q}_{L}^{i} Y_{D}^{i j} d_{R}^{j} H+\bar{Q}_{L}^{i} Y_{U}^{i j} u_{R}^{j} \tilde{H}+\bar{L}_{L}^{i} Y_{E}^{i j} e_{R}^{j} H+(h . c .) \\
\overline{3}_{Q_{L}} 3_{Q_{L} \times \overline{3}_{u_{R}}} 3_{u_{u_{R}}}
\end{gathered}
$$

G_{F} invariant

- assume that $G_{F} \equiv S U(3)^{5}$ is a good symmetry, promoting the $Y_{U, D, E}$ to be dynamical fields with non-trivial transformation properties under G_{F} :

$$
\begin{aligned}
& \text { under } G_{F}=\operatorname{SU}(3)_{Q_{L}} \times \operatorname{SU}(3)_{u_{R}} \times \operatorname{SU}(3)_{d_{R}} \times \operatorname{SU}(3)_{L_{L}} \times \operatorname{SU}(3)_{e_{R}} \\
& Y_{U} \sim(3, \overline{3}, 1,1,1), Y_{D} \sim(3,1, \overline{3}, 1,1), Y_{E} \sim(1,1,1,3, \overline{3}) \\
& Q_{L} \sim(3,1,1,1,1), u_{R} \sim(1,3,1,1,1), d_{R} \sim(1,1,3,1,1), \\
& L_{L} \sim(1,1,1,3,1), e_{R} \sim(1,1,1,1,3)
\end{aligned}
$$

We then define that an effective theory satisfies the criterion of MFV if all higher-dimensional operators, constructed from SM and $Y_{U, D, E}$ fields (spurion)

$$
\mathscr{L}_{N P i n M F V}=\sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathscr{O}_{i}^{d=6}\left(\mathrm{SM} \text { fields }+Y_{U, D, E}\right)
$$

Minimal Flavor Violation (MFV)

- By introducing $Y_{U, D, E}$ fields, we can write higher-dimensional operators in G_{F} invariant way

$$
G_{F}=S U(3)_{Q_{L}} \times S U(3)_{u_{R}} \times S U(3)_{d_{R}}
$$

$$
\left(\bar{Q}_{L}^{i} \quad \gamma_{\mu} Q_{L}^{j}\right)
$$

Minimal Flavor Violation (MFV)

- By introducing $Y_{U, D, E}$ fields, we can write higher-dimensional operators in G_{F} invariant way

$$
G_{F}=S U(3)_{Q_{L}} \times S U(3)_{u_{R}} \times S U(3)_{d_{R}}
$$

$$
\left(\bar{Q}_{L}^{i} Y_{U} Y_{U}^{\dagger} \gamma_{\mu} Q_{L}^{j}\right)
$$

G_{F} invariant
$Y_{U} Y_{U}^{\dagger}$ is transforming as $(8,1,1)$

Minimal Flavor Violation (MFV)

- By introducing $Y_{U, D, E}$ fields, we can write higher-dimensional operators in G_{F} invariant way

$$
G_{F}=S U(3)_{Q_{L}} \times S U(3)_{u_{R}} \times S U(3)_{d_{R}}
$$

$$
\left(\bar{Q}_{L}^{i} Y_{U} Y_{U}^{\dagger} \gamma_{\mu} Q_{L}^{j}\right)
$$

G_{F} invariant
$Y_{U} \sim(3, \overline{3}, 1)$

$$
Y_{U} Y_{U}^{\dagger} \text { is transforming as }(8,1,1)
$$

e.g.) $b_{i} \rightarrow b_{j}$ FCNC transition

$$
\text { int basis }\left(\bar{b}_{L}^{i} Y_{U} Y_{U}^{\dagger} \gamma_{\mu} b_{L}^{j}\right)
$$

$$
\begin{array}{rlrl}
Y_{D} & =\lambda_{d} & \lambda_{d} & =\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) / v \\
Y_{U}=V_{C K M}^{\dagger} \lambda_{u} & \text { where } & \lambda_{u}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) / v \sim \operatorname{diag}(0,0,1) \\
Y_{E}=\lambda_{e} & & \lambda_{e}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) / v \\
\hline
\end{array}
$$

$$
\left(Y_{U} Y_{U}^{\dagger}\right)^{i j}=\left(V^{\dagger} \lambda_{u}^{2} V\right)^{i j} \simeq \lambda_{t}^{2} V_{t i}^{*} V_{t j}
$$

mass basis $\lambda_{t}^{2} V_{t i}^{*} V_{t j}\left(\bar{b}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right) \quad \propto\left(\frac{m_{t}}{v}\right)^{2}$ most big effect

Minimal Flavor Violation (MFV)

$$
\begin{aligned}
A\left(d_{i} \rightarrow d_{j}\right)= & A_{S M}+A_{N P} \\
\frac{C_{S M}}{16 \pi^{2} v^{2}} \lambda_{t}^{2} V_{t i}^{*} V_{t j} & \frac{C_{N P} \lambda_{t}^{2} V_{t i}^{*} V_{t j}}{\Lambda^{2}} \\
& \propto(\text { CKM factor })\left[\frac{C_{S M}}{16 \pi^{2} v^{2}}+\frac{C_{N P}}{\Lambda^{2}}\right]
\end{aligned}
$$

In MFV, flavor violation is completely determined by Yukawa couplings and all CP violation originates from the CKM phase

- Different flavor transitions are correlated, differences are only CKM

$$
\begin{aligned}
& A(b \rightarrow s)=\left(V_{t b} V_{t s}^{*}\right)\left[\frac{C_{S M}}{16 \pi^{2} v^{2}}+\frac{C_{N P}}{\Lambda^{2}}\right] \\
& A(s \rightarrow d)=\left(V_{t s} V_{t d}^{*}\right)\left[\begin{array}{c}
\|
\end{array}\right]
\end{aligned}
$$

Minimal Flavor Violation (MFV)

- $b_{i} \rightarrow b_{j}$ FCNC transitions in MFV
$(\bar{L} L)$ type $\quad\left(\bar{b}_{L}^{i} Y_{U} Y_{U}^{\dagger} b_{L}^{j}\right)$
$(\bar{L} R)$ type $\quad\left(\bar{b}_{L}^{i} Y_{U} Y_{U}^{\dagger} Y_{D} b_{R}^{j}\right)$
$(\bar{R} R)$ type $\quad\left(\bar{b}_{R}^{i} Y_{D}^{\dagger} Y_{U} Y_{U}^{\dagger} Y_{D} b_{R}^{j}\right)$

From MFV to $U(2)^{5}$

$$
U(3)^{5}=U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \text { flavor symmetry }
$$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^{5}$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem
No explanation for Yukawa hierarchies (masses and mixing angles)

From MFV to $U(2)^{5}$

$$
U(3)^{5}=U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \text { flavor symmetry }
$$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^{5}$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem
No explanation for Yukawa hierarchies (masses and mixing angles)

$$
U(2)^{5}=U(2)_{Q_{L}} \times U(2)_{u_{R}} \times U(2)_{d_{R}} \times U(2)_{L_{L}} \times U(2)_{e_{R}} \text { flavor symmetry }
$$

$U(2)^{5}$ flavor symmetry

SM flavor puzzle

SM flavor sector contains a large number of free parameters
[3 lepton masses +6 quark masses $+3+1$ CKM parameters] \leftarrow fixed by data

Striking hierarchy

$$
\text { Mass : } 3 \mathrm{rd}>2 \mathrm{nd}>1 \mathrm{st}
$$

Almost diagonal CKM matrix

- $U(2)^{5}$ symmetry gives "natural" explanation of why 3rd Yukawa couplings are large (being allowed by the symmetry)
distinguish the first two generations of fermions from the 3rd

$$
\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)
$$

- The symmetry is a good approximation in the SM Yukawa
exact symmetry for $m_{u}, m_{d}, m_{c}, m_{s}=0 \& V_{C K M}=1$
\Rightarrow we only need small breakings terms

$U(2)^{5}$ flavor symmetry

-The set of breaking terms necessary to reproduce the quark spectrum, while keeping small FCNCs beyond the SM

Under $U(2)^{3}=U(2)^{q} \times U(2)^{u} \times U(2)^{d}$ symmetry

$$
\begin{array}{rlr}
Q^{(2)}=\left(Q^{1}, Q^{2}\right) \sim(2,1,1) & Q^{3} \sim(1,1,1) \\
u^{(2)}=\left(u^{1}, u^{2}\right) \sim(1,2,1) & t \sim(1,1,1) \\
d^{(2)}=\left(d^{1}, d^{2}\right) \sim(1,1,2) & b \sim(1,1,1)
\end{array}
$$

quark

Spurion
(U(2) breaking term)

$$
V_{q} \sim(2,1,1), \Delta_{u} \sim(2, \overline{2}, 1), \Delta_{d} \sim(2,1, \overline{2})
$$

Unbroken symmetry

$$
Y_{u}=y_{t}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{U(2)_{u}}
$$

After breaking

$\mathrm{U}(2)$ breaking term

$$
\begin{gathered}
|V| \sim\left|V_{t s}\right| \\
\left|\Delta_{u}\right| \sim y_{c}
\end{gathered}
$$

$U(2)$ flavour symmetry provides natural link to the Yukawa couplings

From MFV to $U(2)^{5}$

$$
U(3)^{5}=U(3)_{Q_{L}} \times U(3)_{u_{R}} \times U(3)_{d_{R}} \times U(3)_{L_{L}} \times U(3)_{e_{R}} \text { flavor symmetry }
$$

- Largest flavor symmetry group compatible with the SM gauge symmetry
- MFV = minimal breaking of $U(3)^{5}$ by SM Yukawa couplings

MFV virtue

Naturally small effects in FCNC observables assuming TeV-scale NP

MFV main problem
No explanation for Yukawa hierarchies (masses and mixing angles)

$$
U(2)^{5}=U(2)_{Q_{L}} \times U(2)_{u_{R}} \times U(2)_{d_{R}} \times U(2)_{L_{L}} \times U(2)_{e_{R}} \text { flavor symmetry }
$$

- acting on 1st \& 2nd generations only
- The exact symmetry limit is good starting point for the SM quark spectrum $\left(m_{u}, m_{d}, m_{c}, m_{s}=0 \& V_{C K M}=1\right) \Rightarrow$ we only need small breaking terms
- B-anomalies are compatible with $\mathbf{U}(2)$ flavor symmetry cf [1909.02519]

SM Effective Field Theory (SMEFT)

- SMEFT is a effective theory based on $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$ at scale $\mu_{\mathrm{EW}}<\mu<\mu_{\mathrm{NP}}$

full theory

SMEFT $\quad \mathscr{L}_{\text {eff }} \sim \sum_{i} \frac{C_{i}}{\Lambda^{2}} \sigma_{i}^{d=6}$

SM Effective Field Theory (SMEFT)

Complete non-redundant classification of baryon- and lepton-number conserving dimension-six operators in the SMEFT has been presented (Warsaw basis)
w/o flavor index 59 dim six operators in SMEFT

SM Effective Field Theory (SMEFT)

- Complete non-redundant classification of baryon- and lepton-number conserving dimension-six operators in the SMEFT has been presented (Warsaw basis)
w/o flavor index 59 dim six operators in SMEFT

w/ flavor index 2499 dim six operators in SMEFT

$$
\left(n_{g}=3\right) \quad 1350 \text { CP-even and } 1149 \text { CP-odd }
$$

huge number of flavor symmetry free parameters

Our work

- We analyse how $U(3)^{5}$ and $U(2)^{5}$ flavor symmetries act on SMEFT, providing an organising principle to classify the large number of dim6 operators involving fermion fields

Class	Operators	No symmetry				$U(3)^{5}$	$U(2)^{5}$
1-4	$X^{3}, H^{6}, H^{4} D^{2}, X^{2} H^{2}$	9	6	9	6	?	?
5	$\psi^{2} H^{3}$	27	27	3	3		
6	ψ^{2} X H	72	72	8	8		
7	$\psi^{2} H^{2} D$	51	30	8	1		
8	$(\bar{L} L)(\bar{L} L)$	171	126	5	-		
	$(\bar{R} R)(\bar{R} R)$		195	7	-		
	$(\bar{L} L)(\bar{R} R)$		288	8	-		
	$(\bar{L} R)(\bar{R} L)$		81		1		
	$(\bar{L} R)(\bar{L} R)$	324	324	4	4		
total:		1350	1149		23		

1) Case for $U(3)^{5}$ and MFV
2) Case for $U(2)^{5}$
[3) Case for beyond $U(3)^{5}$ and $U(2)^{5}$]

Operator classification

59 dim six operators in SMEFT
class 1-4: w/o fermion ope.
0 class 5-7 : w/ 2-fermion ope.

$1: X^{3}$		$2: H^{6}$		$3: H^{4} D^{2}$		5: $\psi^{2} H^{3}+$ h.c.	
Q_{G}	$f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	Q_{H}	$\left(H^{\dagger} H\right)^{3}$	$Q_{H \square}$	$\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$	$Q_{e H}$	$\left(H^{\dagger} H\right)\left(\bar{l}_{p} e_{r} H\right.$
$Q_{\widetilde{G}}$	$f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$			$Q_{H D}$	$\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D_{\mu} H\right)$	$Q_{u H}$	$\left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \widetilde{H}\right.$
Q_{W}	$\epsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$					$Q_{\text {dH }}$	$\left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right.$
$Q_{\widetilde{W}}$	$\epsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}$						

4: $X^{2} H^{2}$		6: $\psi^{2} X H+$ h.c.		$7: \psi^{2} H^{2} D$	
$Q_{H G}$	$H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{\text {eW }}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) \tau^{I} H W_{\mu \nu}^{I}$	$Q_{H l}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{l}_{p} \gamma^{\mu} l_{r}\right)$
$Q_{H \widetilde{G}}$	$H^{\dagger} H \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}$	$Q_{e B}$	$\left(\bar{l}_{p} \sigma^{\mu \nu} e_{r}\right) H B_{\mu \nu}$	$Q_{H l}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D_{\mu}^{\prime}} H\right)\left(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}\right)$
$Q_{H W}$	$H^{\dagger} H W_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{H} G_{\mu \nu}^{A}$	$Q_{\text {He }}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{e}_{p} \gamma^{\mu} e_{r}\right)$
$Q_{H \widetilde{W}}$	$H^{\dagger} H \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}$	$Q_{u W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \tau^{I} \widetilde{H} W_{\mu \nu}^{I}$	$Q_{H q}^{(1)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{q}_{p} \gamma^{\mu} q_{r}\right)$
$Q_{H B}$	$H^{\dagger} H B_{\mu \nu} B^{\mu \nu}$	$Q_{u B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} u_{r}\right) \widetilde{H} B_{\mu \nu}$	$Q_{H q}^{(3)}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right)\left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$
$Q_{H \widetilde{B}}$	$H^{\dagger} H \widetilde{B}_{\mu \nu} B^{\mu \nu}$	$Q_{d G}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) H G_{\mu \nu}^{A}$	$Q_{H u}$	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} u_{r}\right)$
$Q_{H W B}$	$H^{\dagger} \tau^{I} H W_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d W}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) \tau^{I} H W_{\mu \nu}^{I}$	Q_{H}	$\left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right)\left(\bar{d}_{p} \gamma^{\mu} d_{r}\right)$
$Q_{H \widetilde{W} B}$	$H^{\dagger} \tau^{I} H \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}$	$Q_{d B}$	$\left(\bar{q}_{p} \sigma^{\mu \nu} d_{r}\right) H B_{\mu \nu}$	$Q_{H u d}+$ h.c.	$i\left(\widetilde{H}^{\dagger} D_{\mu} H\right)\left(\bar{u}_{p} \gamma^{\mu} d_{r}\right)$

Operator classification

class 8: w/ 4-fermion ope.

59 dim six operators in SMEFT

	$8:(\bar{L} L)(\bar{L} L)$	$8:(\bar{R} R)(\bar{R} R)$	$8:\left(\bar{L}^{2} L\right)(\bar{R} R)$		
$Q_{l l}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{s} \gamma^{\mu} l_{t}\right)$	$Q_{e e}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$	$Q_{l e}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{q q}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{u u}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{l u}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
$Q_{q q}^{(3)}$	$\left(\bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{d d}$	$\left(\bar{d}_{p} \gamma_{\mu} d_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{l d}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$
$Q_{l q}^{(1)}$	$\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} q_{t}\right)$	$Q_{e u}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$	$Q_{q e}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{e}_{s} \gamma^{\mu} e_{t}\right)$
$Q_{l q}^{(3)}$	$\left(\bar{l}_{p} \gamma_{\mu} \tau^{I} l_{r}\right)\left(\bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t}\right)$	$Q_{e d}$	$\left(\bar{e}_{p} \gamma_{\mu} e_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} u_{t}\right)$
	$Q_{u d}^{(1)}$	$\left(\bar{u}_{p} \gamma_{\mu} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	$Q_{q u}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{u}_{s} \gamma^{\mu} T^{A} u_{t}\right)$	
	$Q_{u d}^{(8)}$	$\left(\bar{u}_{p} \gamma_{\mu} T^{A} u_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	$Q_{q d}^{(1)}$	$\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} d_{t}\right)$	
			$Q_{q d}^{(8)}$	$\left(\bar{q}_{p} \gamma_{\mu} T^{A} q_{r}\right)\left(\bar{d}_{s} \gamma^{\mu} T^{A} d_{t}\right)$	

$8:(\bar{L} R)(\bar{R} L)+$ h.c.		$8:(\bar{L} R)(\bar{L} R)+$ h.c.	
$Q_{l e d q}$	$\left(\bar{l}_{p}^{j} e_{r}\right)\left(\bar{d}_{s} q_{t j}\right)$	$Q_{\text {quqd }}^{(1)}$	$\left(\bar{q}_{p}^{j} u_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} d_{t}\right)$
		$Q_{\text {quqd }}^{(8)}$	$\left(\bar{q}_{p}^{j} T^{A} u_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} T^{A} d_{t}\right)$
		$Q_{\text {lequ }}^{(1)}$	$\left(\bar{l}_{p}^{j} e_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} u_{t}\right)$
		$Q_{\text {lequ }}^{(3)}$	$\left(\bar{l}_{p}^{j} \sigma_{\mu \nu} e_{r}\right) \epsilon_{j k}\left(\bar{q}_{s}^{k} \sigma^{\mu \nu} u_{t}\right)$

I) $U(3)^{5}$ and MFV

e.g. class 5 : $(\bar{L} R)$ bilinear

No symmetry \rightarrow (\# parameters) $=($ flavor index)^2
non-hermitian ope. $\rightarrow \mathrm{Re}+\mathrm{Im}$
$(\bar{L} R)$ type ope. \rightarrow Х $(\bar{q} u),(\bar{q} d):$ not allowed in exact $U(3)^{5}$
$\rightarrow\left(\bar{q} Y_{u} u\right),\left(\bar{q} Y_{d} d\right)$: allowed w / Y_{u}
$\rightarrow\left(\bar{q}^{i}\left(Y_{u} Y_{u}^{\dagger}\right) Y_{d} d^{j}\right)$: allowed w/ more $Y_{u, e, d} \quad:$

5: $\psi^{2} H^{3}+$ h.c.	No sym. CP-ev CP-odd	exact $U(3)^{5}$	$\sim \mathcal{O}\left(Y_{u, d, e}\right)$	$\sim \mathcal{O}\left(Y_{d} Y_{u}^{2}\right)$
$Q_{e H} \quad\left(H^{\dagger} H\right)\left(\bar{\ell}_{p} e_{r} H\right)$	99	0	11	11
$Q_{u H} \quad\left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \tilde{H}\right)$	99	0	11	11
$Q_{d H} \quad\left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right)$	99	0	11	22
	2727	0	33	44

I) $U(3)^{5}$ and MFV

Class	Operators	No symmetry				$U(3)^{5}$					
			Gen.		Gen.	Ex			$\left.Y_{e . d . u}^{1}\right)$	$\mathcal{O}\left(Y_{e}^{1}, Y_{d}^{1} Y_{u}^{2}\right)$	
1-4	$X^{3}, H^{6}, H^{4} D^{2}, X^{2} H^{2}$	9	6		6	9	6		6	9	6
5	$\psi^{2} H^{3}$	27	27	3	3	-	-	3	3	4	4
6	$\psi^{2} X H$	72	72	8	8	-	-	8	8	11	11
7	$\psi^{2} H^{2} D$	51	30	8		7		7		11	
	$(\bar{L} L)(\bar{L} L)$	171	126	5		8		8		1	
	$(\bar{R} R)(\bar{R} R)$	255	195	7		9				14	
8	$(\bar{L} L)(\bar{R} R)$	360	288	8		8		8		18	
	$(\bar{L} R)(\bar{R} L)$	81	81								
	$(\bar{L} R)(\bar{L} R)$	324			4					4	
	total:	1350	01149	53	23	41	6	52	17	85	26

I) $U(3)^{5}$ and MFV

II) Case for $U(2)^{5}$

Yukawa in $\mathrm{U}(2)$

$$
\begin{array}{cc}
Y_{e}=y_{\tau}\left(\begin{array}{cc}
\Delta_{e} & x_{\tau} V_{\ell} \\
0 & 1
\end{array}\right), \quad Y_{u}=y_{t}\left(\begin{array}{cc}
\Delta_{u} & x_{t} V_{q} \\
0 & 1
\end{array}\right), \quad Y_{d}=y_{b}\left(\begin{array}{cc}
\Delta_{d} & x_{b} V_{q} \\
0 & 1
\end{array}\right) \\
V_{q} \sim(2,1,1), \quad \Delta_{u} \sim(2, \overline{2}, 1), \Delta_{d} \sim(2,1, \overline{2}) \quad y_{\tau, t, b} \text { and } x_{\tau, t, b}: \mathcal{O}(1) \text { free complex parameters }
\end{array}
$$

Transformation for spurions

$$
V_{q(\ell)}=e^{i \bar{\phi}_{q(\ell)}}\binom{0}{\epsilon_{q(\ell)}}, \quad \Delta_{e}=O_{e}^{\top}\left(\begin{array}{cc}
\delta_{e}^{\prime} & 0 \\
0 & \delta_{e}
\end{array}\right), \quad \Delta_{u}=U_{u}^{\dagger}\left(\begin{array}{cc}
\delta_{u}^{\prime} & 0 \\
0 & \delta_{u}
\end{array}\right), \quad \Delta_{d}=U_{d}^{\dagger}\left(\begin{array}{cc}
\delta_{d}^{\prime} & 0 \\
0 & \delta_{d}
\end{array}\right)
$$

$$
\begin{aligned}
& \epsilon_{i}=\mathcal{O}\left(y_{t}\left|V_{t s}\right|\right)=\mathcal{O}\left(10^{-1}\right) \\
& \delta_{i}=\mathcal{O}\left(\frac{y_{c}}{y_{t}}, \frac{y_{s}}{y_{b}}, \frac{y_{\mu}}{y_{\tau}}\right)=\mathcal{O}\left(10^{-2}\right) \\
& \delta_{i}^{\prime}=\mathcal{O}\left(\frac{y_{u}}{y_{t}}, \frac{y_{d}}{y_{b}}, \frac{y_{e}}{y_{\tau}}\right)=\mathcal{O}\left(10^{-3}\right)
\end{aligned}
$$

$$
1 \gg \epsilon_{i} \gg \delta_{i} \gg \delta_{i}^{\prime}>0
$$

$$
O_{e}=\left(\begin{array}{cc}
c_{e} & s_{e} \\
-s_{e} & c_{e}
\end{array}\right), \quad U_{q}=\left(\begin{array}{cc}
c_{q} & s_{q} e^{i \alpha_{q}} \\
-s_{q} e^{-i \alpha_{q}} & c_{q}
\end{array}\right)
$$

II) Case for $U(2)^{5}$

e.g.) leptonic ($\bar{L} L$) bilinear

$$
\psi=\frac{\left(\psi_{1}, \psi_{2}, \psi_{3}\right)}{L} \ell_{3}
$$

$$
\bar{\ell}_{p} \Gamma \Lambda_{L L}^{p r} \ell_{r}, \quad \Lambda_{L L}=\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{1}+c_{1} \epsilon_{\ell}^{2} & \beta_{1} \epsilon_{\ell} \\
0 & \beta_{1}^{*} \epsilon_{\ell} & a_{2}
\end{array}\right)+\mathcal{O}\left(\delta_{e}^{2}\right) \quad \begin{aligned}
& a: \mathcal{O}\left(V^{0}\right) \\
& \beta: \mathcal{O}(V) \\
& c: \mathcal{O}\left(V^{2}\right)
\end{aligned}
$$

※laten $(a, b, c,,$,$) : real, \operatorname{greek}(\alpha, \beta, \gamma,,$,$) : complex$

Spurions	Operator	Explicit expression in flavour components
V^{0}	$a_{1} \bar{L} L+a_{2} \bar{\ell}_{3} \ell_{3}$	$a_{1}\left(\bar{\ell}_{1} \ell_{1}+\bar{\ell}_{2} \ell_{2}\right)+a_{2}\left(\bar{\ell}_{3} \ell_{3}\right)$
V^{1}	$\beta_{1} \bar{L} V_{\ell} \ell_{3}+$ h.c.	$\beta_{1} \epsilon_{\ell}\left(\bar{\ell}_{2} \ell_{3}\right)+$ h.c.
V^{2}	$c_{1} \bar{L} V_{\ell} V_{\ell}^{\dagger} L$	$c_{1} \epsilon_{\ell}^{2}\left(\bar{\ell}_{2} \ell_{2}\right)$
$\Delta^{1}, \Delta^{1} V^{1}$	-	-
Δ^{2}	$h_{1} \bar{L} \Delta_{e} \Delta_{e}^{\dagger} L$	$\approx h_{1}\left[\delta_{e}^{2}\left(\bar{\ell}_{2} \ell_{2}\right)-s_{e} \delta_{e}^{2}\left(\bar{\ell}_{1} \ell_{2}+\bar{\ell}_{2} \ell_{1}\right)+\left(s_{e}^{2} \delta_{e}^{2}+\delta_{e}^{\prime 2}\right)\left(\bar{\ell}_{1} \ell_{1}\right)\right]$
$\Delta^{2} V^{1}$	$\lambda_{1} \bar{L} \Delta_{e} \Delta_{e}^{\dagger} V_{\ell} \ell_{3}+$ h.c.	$\approx \lambda_{1} \epsilon_{\ell} \delta_{e}^{2}\left(\bar{\ell}_{2} \ell_{3}-s_{e} \bar{\ell}_{1} \ell_{3}\right)+$ h.c.
$\Delta^{2} V^{2}$	$\mu_{1} \bar{L} \Delta_{e} \Delta_{e}^{\dagger} V_{\ell} V_{\ell}^{\dagger} L+$ h.c.	$\approx \mu_{1} \epsilon_{\ell} \delta_{e}^{2}\left(\bar{\ell}_{2} \ell_{2}-s_{e} \bar{\ell}_{1} \ell_{2}\right)+$ h.c..

II) Case for $U(2)^{5}$

e.g.) leptonic ($\bar{R} R$) bilinear

$$
\bar{e}_{p} \Gamma \Lambda_{R R}^{p r} e_{r}, \quad \Lambda_{R R}=\left(\begin{array}{ccc}
a_{1} & 0 & \sigma_{1}^{*} \epsilon_{\ell} s_{e} \delta_{e}^{\prime} \\
0 & a_{1} & \sigma_{1}^{*} \epsilon_{\ell} \delta_{e} \\
\sigma_{1} \epsilon_{\ell} s_{e} \delta_{e}^{\prime} & \sigma_{1} \epsilon_{\ell} \delta_{e} & a_{2}
\end{array}\right)+\mathcal{O}\left(\delta_{e}^{2}\right) \quad \begin{gathered}
\boldsymbol{O}\left(V^{0}\right) \\
\boldsymbol{\beta}: \mathcal{O}(V) \\
\mathcal{O}\left(V^{2}\right)
\end{gathered}
$$

Spurions	Operator ($\bar{e} e$ type)	Explicit expression in flavour components
V^{0}	$a_{1} \bar{E} E+a_{2} \bar{e}_{3} e_{3}$	$a_{1}\left(\bar{e}_{1} e_{1}+\bar{e}_{2} e_{2}\right)+a_{2}\left(\bar{e}_{3} e_{3}\right)$
V^{1}, V^{2}, Δ^{1}	-	
$\Delta^{1} V^{1}$	$\sigma_{1} \bar{e}_{3} V_{\ell}^{\dagger} \Delta_{e} E+$ h.c.	$\approx \sigma_{1} \epsilon_{\ell}\left[\delta_{e}\left(\bar{e}_{3} e_{2}\right)+s_{e} \delta_{e}^{\prime}\left(\bar{e}_{3} e_{1}\right)\right]+$ h.c.
Δ^{2}	$h_{1} \bar{E} \Delta_{e}^{\dagger} \Delta_{e} E$	$h_{1}\left[\delta_{e}^{2}\left(\bar{e}_{2} e_{2}\right)+\delta_{e}^{\prime 2}\left(\bar{e}_{1} e_{1}\right)\right]$
$\Delta^{2} V^{1}$	-	
$\Delta^{2} V^{2}$	$m_{1} \bar{E} \Delta_{e}^{\dagger} V_{\ell} V_{\ell}^{\dagger} \Delta_{e} E$	$\approx m_{1} \epsilon_{\ell}^{2}\left[\delta_{e}^{2}\left(\bar{e}_{2} e_{2}\right)+s_{e} \delta_{e}^{\prime} \delta_{e}\left(\bar{e}_{1} e_{2}+\bar{e}_{2} e_{1}\right)+s_{e}^{2} \delta_{e}^{\prime 2}\left(\bar{e}_{1} e_{1}\right)\right]$

II) Case for $U(2)^{5}$

Results for bilinear structure

Class	N . indep. structures	$U(2)^{5}$ breaking terms				
		V^{0}	V^{1}	V^{2}	Δ^{1}	$\Delta^{1} V^{1}$
5 \& 6: ($\bar{L} R$)	11	1111	$11 \quad 11$	- -	1111	$11 \quad 11$
7: $(\bar{L} L)$	4		4		- -	- -
7: $(\bar{R} R)$	3	6		- -	- -	33
7: $Q_{\text {Hud }}$	1	$1 \quad 1$	- -	- -	- -	$2 \quad 2$
total:	19	$26 \quad 12$	1515		1111	1616

II) Case for $U(2)^{5}$

4 fermion operator $(\bar{L} L)(\bar{L} L)$

$$
\psi=\frac{\left(\psi_{1}, \psi_{2}, \psi_{3}\right)}{L} \ell_{3}
$$

$Q_{\ell \ell}, Q_{q q}^{(1)}$ and $Q_{q q}^{(3)}$ case

$$
\begin{aligned}
V^{0}: & {\left[a_{1}\left(\bar{L}^{p} L^{p}\right)\left(\bar{L}^{r} L^{r}\right)+a_{2}\left(\bar{L}^{p} L^{r}\right)\left(\bar{L}^{r} L^{p}\right)+a_{3}(\bar{L} L)\left(\bar{\ell}_{3} \ell_{3}\right)\right.} \\
& +a_{4}\left(\bar{L} \ell_{3}\right)\left(\bar{\ell}_{3} L\right)+a_{5}\left(\bar{\ell}_{3} \ell_{3}\right)\left(\overline{\left.\ell_{\ell} \ell_{3}\right)}\right], \\
V^{1}: & {\left[\beta_{1}\left(\bar{L}^{p} V_{\ell}^{p} \ell_{3}\right)\left(\bar{L}^{r} L^{r}\right)+\beta_{2}\left(\bar{L} V_{\ell} \ell_{3}\right)\left(\overline{\ell_{3} \ell_{3}}\right)+\beta_{3}\left(\bar{L}^{p} V_{\ell}^{p} L^{r}\right)\left(\bar{L}^{r} \ell_{3}\right)+\text { h.c. }\right], } \\
V^{2}: & {\left[c_{1}\left(\bar{L}^{p} V_{\ell}^{p} V_{\ell}^{\dagger r} L^{r}\right)\left(\bar{L}^{s} L^{s}\right)+c_{2}\left(\bar{L}^{p} V_{\ell}^{p} V_{\ell}^{\dagger r} L^{r}\right)\left(\overline{\left.\ell_{3} \ell_{3}\right)+c_{3}\left(\bar{L}^{p} V_{\ell}^{p} \ell_{3}\right)\left(\bar{\ell}_{3} V_{\ell}^{\dagger} L^{r}\right)}\right.\right.} \\
& \left.+c_{4}\left(\bar{L}^{p} V_{\ell}^{p} L^{r}\right)\left(\bar{L}^{r} V_{\ell}^{\dagger s} L^{s}\right)+\left(\gamma_{1}\left(\bar{L}^{p} V_{\ell}^{p} \ell_{3}\right)\left(\bar{L}^{r} V_{\ell}^{r} \ell_{3}\right)+\text { h.c. }\right)\right], \\
V^{3}: & {\left[\xi_{1}\left(\bar{L}^{p} V_{\ell}^{p} V_{\ell}^{\dagger r} L^{r}\right)\left(\bar{L}^{s} V_{\ell}^{s} \ell_{3}\right)+\text { h.c. }\right] . }
\end{aligned}
$$

II) Case for $U(2)^{5}$

4 fermion operator $(\bar{L} L)(\bar{L} L)$

$Q_{\ell \ell}, Q_{q q}^{(1)}$ and $Q_{q q}^{(3)}$ case

	(11)	(12)	(13)	(21)	(22)	(23)	(31)	(32)	(33)
(11)	$\begin{aligned} & a_{1} \\ & a_{2} \end{aligned}$				$\begin{aligned} & 2 a_{1} \\ & c_{1} \epsilon_{\ell}^{2} \end{aligned}$	$\beta_{1} \epsilon_{\ell}$		$\beta_{1}^{*} \epsilon_{\ell}$	a_{3}
(12)				$\begin{aligned} & 2 a_{2} \\ & c_{4} \epsilon_{\ell}^{2} \end{aligned}$			$\beta_{3}^{*} \epsilon_{\ell}$		
(13)				$\beta_{3} \epsilon_{\ell}$			a_{4}		
(21)		$\begin{aligned} & 2 a_{2} \\ & c_{4} \epsilon_{\ell}^{2} \end{aligned}$	$\beta_{3} \epsilon_{\ell}$						
(22)	$\begin{aligned} & 2 a_{1} \\ & c_{1} \epsilon_{\ell}^{2} \end{aligned}$				$\begin{aligned} & a_{1} \\ & a_{2} c_{1} \epsilon_{\ell}^{2} \\ & c_{4} \epsilon_{\ell}^{2} \end{aligned}$	$\begin{aligned} & \beta_{1} \epsilon_{\ell} \\ & \beta_{3} \epsilon_{\ell} \\ & \xi_{1} \epsilon_{\ell}^{3} \end{aligned}$		$\begin{aligned} & \beta_{1}^{*} \epsilon_{\ell} \\ & \beta_{3}^{*} \epsilon_{\ell} \\ & \xi_{1}^{*} \epsilon_{\ell}^{3} \end{aligned}$	$\begin{aligned} & a_{3} \\ & c_{2} \epsilon_{\ell}^{2} \end{aligned}$
(23)	$\beta_{1} \epsilon_{\ell}$				$\begin{gathered} \beta_{1} \epsilon_{\ell} \\ \beta_{3} \epsilon_{\ell} \\ \xi_{1} \epsilon_{\ell}^{3} \end{gathered}$	$\gamma_{1} \epsilon_{\ell}^{2}$		$\begin{aligned} & a_{4} \\ & c_{3} \epsilon_{\ell}^{2} \end{aligned}$	$\beta_{2} \epsilon_{\ell}$
(31)		$\beta_{3}^{*} \epsilon_{\ell}$	a_{4}						
(32)	$\beta_{1}^{*} \epsilon_{\ell}$				$\begin{aligned} & \beta_{1}^{*} \epsilon_{\ell} \\ & \beta_{3}^{*} \epsilon_{\ell} \\ & \xi_{1}^{*} \epsilon_{\ell}^{3} \end{aligned}$	$\begin{aligned} & a_{4} \\ & c_{3} \epsilon_{\ell}^{2} \end{aligned}$		$\gamma_{1}^{*} \epsilon_{\ell}^{2}$	$\beta_{2}^{*} \epsilon_{\ell}$
(33)	a_{3}				$\begin{aligned} & a_{3} \\ & c_{2} \epsilon_{\ell}^{2} \end{aligned}$	$\beta_{2} \epsilon_{\ell}$		$\beta_{2}^{*} \epsilon_{\ell}$	

$$
\begin{aligned}
& a: \mathcal{O}\left(V^{0}\right) \\
& \beta: \mathcal{O}(V) \\
& c: \mathcal{O}\left(V^{2}\right)
\end{aligned}
$$

Table 12: The $\Sigma_{\ell \ell}^{i j, n m}$ tensor in the interaction basis as defined in Eq. (27): the entries are as indicated in rows $(i j)$ and columns $(n m)$, respectively. All terms in each cell should be added.

II) Case for $U(2)^{5}$

Normal
-2500 U(2)^5

II) Case for $U(2)^{5}$

e.g. relevant operators for semileptonic B decays

$$
\begin{aligned}
\mathcal{O}_{\ell q}^{(1)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right) \\
\mathcal{O}_{\ell q}^{(3)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}\right) \\
\mathcal{O}_{\ell d} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right) \\
\mathcal{O}_{q e} & =\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{e d} & =\left(\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right) \\
\mathcal{O}_{\ell e d q} & =\left(\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} q_{L}^{j}\right) \\
\mathcal{O}_{\ell e q u}^{(1)} & =\left(\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{a, i} u_{R}^{j}\right) \\
\mathcal{O}_{\ell e q u}^{(3)} & =\left(\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu \nu} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{b, i} \sigma^{\mu \nu} u_{R}^{j}\right)
\end{aligned}
$$

II) Case for $U(2)^{5}$

e.g. relevant operators for semileptonic B decays
only few yield sizable effects if we impose a minimally broken $U(2)^{5}$ symmetry $\sim \mathcal{O}\left(V^{2}\right)$

$$
\begin{array}{rlrl}
\mathcal{O}_{\ell q}^{(1)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right), & \mathcal{O}_{\ell d} & =\left(\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{3}\right), \\
\mathcal{O}_{\ell q}^{(3)} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}\right)\left(\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}\right), & \mathcal{O}_{\ell e d q} & =\left(\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}\right)\left(\bar{d}_{R}^{i} q_{L}^{j}\right), \\
\mathcal{O}_{\ell d} & =\left(\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}\right)\left(\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}\right), & \mathcal{O}_{1 / q u}=\left(\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{a, i} u_{R}^{j}\right), \\
\mathcal{O}_{q e} & =\left(\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}\right)\left(\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}\right), & \mathcal{O}_{\text {lequ }}^{(3)} & =\left(\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu \nu} e_{R}^{\beta}\right) \epsilon_{a b}\left(\bar{q}_{L}^{b, i} \sigma^{\mu \nu} u_{R}^{j}\right)
\end{array}
$$

Summary

- NP may have a highly non-generic flavor structure
\rightarrow Flavor symmetry MFV and $U(2)$ flavor symmetry
- We analyze how $U(3)^{5}$ and $U(2)^{5}$ flavor symmetries act on SMEFT

2499 in SMEFT flavor symmetry \quad| reduce number of |
| :--- |
| huge number of |
| independent parameters |

$U(3)^{5}$ and MFV drastic reduction : ~ 25 times smaller
$U(2)^{5} \quad$ drastic reduction : ~ one order smaller

- This classification can be a useful first step toward a systematic analysis in motivated flavor versions of the SMEFT

Backup

$U(2)^{5}$ flavor symmetry

Yukawa after removing unphysical parameters

$$
\begin{array}{ll}
Y_{u}=\left|y_{t}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} O_{u}^{\top} \hat{\Delta}_{u} & \left|V_{q}\right|\left|x_{t}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) & \hat{\Delta}_{u, d, e}: 2 \times 2 \text { diagonal positive matrix } \\
Y_{d}=\left|y_{b}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} \hat{\Delta}_{d} & \left|V_{q}\right|\left|x_{b}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) & O_{u, e}: 2 \times 2 \text { orthogonal matrix } \\
Y_{e}=\left|y_{\tau}\right|\left(\begin{array}{cc}
O_{e}^{\top} \hat{\Delta}_{e} & \left|V_{e}\right|\left|x_{\tau}\right| \vec{n} \\
0 & 1
\end{array}\right) & U_{q}=\left(\begin{array}{cc}
c_{d} & s_{d} e^{i \alpha_{d}} \\
-s_{d} e^{-i \alpha_{d}} & c_{d}
\end{array}\right), \vec{n}=\binom{0}{1}
\end{array}
$$

Structure of Yukawa is fixed under $U(2)$ symmetry
\rightarrow elements in diagonal matrixes are described by CKM elements \& fermions masses

$$
Y_{f} \frac{Q_{L} \rightarrow L_{d}^{\dagger} Q_{L} \quad d_{R} \rightarrow R_{d} \dagger d_{R}}{\left.\left.\operatorname{diag}\left(Y_{f}\right)=L_{f}^{\dagger} Y_{f} R_{f} \quad(f=u, d)\right) \text { }\right) \quad(f)}
$$

where

$$
\begin{aligned}
& L_{d} \approx\left(\begin{array}{ccc}
c_{d} & -s_{d} e^{i \alpha_{d}} & 0 \\
s_{d} e^{-i \alpha_{d}} & c_{d} & s_{b} \\
-s_{d} s_{b} e^{-i\left(\alpha_{d}+\phi_{q}\right)} & -c_{d} s_{b} e^{-i \phi_{q}} & e^{-i \phi_{q}}
\end{array}\right) \quad R_{d} \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{m_{s}}{m_{b}} s_{b} \\
0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i \phi_{q}} & e^{-i \phi_{q}}
\end{array}\right) \\
& s_{d} / c_{d}=\left|V_{t d} / V_{t s}\right|, \alpha_{d}=-\operatorname{Arg}\left(V_{t d} / V_{t s}\right), s_{t}=s_{b}-V_{c b}, s_{u}
\end{aligned}
$$

$U(2)^{5}$ flavor symmetry

Yukawa after removing unphysical parameters

$$
\begin{array}{ll}
Y_{u} & =\left|y_{t}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} O_{u}^{\top} \hat{\Delta}_{u} & \left|V_{q}\right|\left|x_{t}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) \\
Y_{d}=\left|y_{b}\right|\left(\begin{array}{cc}
U_{q}^{\dagger} \hat{\Delta}_{d} & \left|V_{q}\right|\left|x_{b}\right| e^{i \phi_{q}} \vec{n} \\
0 & 1
\end{array}\right) & O_{u, e, e}: 2 \times 2 \text { diagonal positive matrix } \\
Y_{e}=\left|y_{\tau}\right|\left(\begin{array}{cc}
O_{e}^{\top} \hat{\Delta}_{e} & \left|V_{e}\right|\left|x_{\tau}\right| \vec{n} \\
0 & 1
\end{array}\right) & U_{q}=\left(\begin{array}{cc}
c_{d} & s_{d} e^{i \alpha_{d}} \\
-s_{d} e^{-i \alpha_{d}} & c_{d}
\end{array}\right), \vec{n}=\binom{0}{1}
\end{array}
$$

Structure of Yukawa is fixed under $U(2)$ symmetry
\rightarrow elements in diagonal matrixes are described by CKM elements \& fermions masses

Parameters constrained
quark

$$
\begin{array}{ll}
\text { quark } & s_{d} / c_{d}=\left|V_{t d} / V_{t s}\right|, \alpha_{d}=-\operatorname{Arg}\left(V_{t d} / V_{t s}\right), s_{t}=s_{b}-V_{c b}, s_{u} \quad s_{b} / c_{b}=\left|x_{b}\right|\left|V_{q}\right|, \phi_{q} \\
\text { lepton } & s_{\tau} / c_{\tau}=\left|x_{\tau}\right|\left|V_{\ell}\right|, s_{e}
\end{array}
$$

