

cLFV相互作用を持った軽いゲージ粒子に対する electron beam dump 実験からの制限

という意味です

発 表 者:荒木威(奥羽大学)

共同研究者:浅井健人(埼玉大学),下村崇(宮崎大学)

based on arXiv:2107.07487 [hep-ph].

Introduction

☆背景

- 新粒子がなかなか見つからない。。。
- 視点を変えて、小質量(MeV-GeV)で 弱相互作用(<10⁻⁴)する中性粒子が 注目されている?

(Example)

- dark photon,
- dark higgs,
- $U(1)_{L_{\mu}-L_{\tau}}$,
- ALPs (axion like particles),
- etc.

> inelastic DM

➤ Muon g-2

> Hubble tension

[Escudero, et al, JHEP03(2019)]

☆ Minimal dark photon model

- 新たな *U*(1) ゲージ対称性を導入。
- 新しい粒子は新ゲージ粒子(X^μ)だけ。
- SM粒子は新しい U(1) の下で中性。
- 新ゲージ粒子は kinetic mixing を通じてSMの荷電レプトンと結合する。

$$\mathcal{L} = \mathcal{L}_{SM} + \dots - \frac{\varepsilon'}{2} F^{\rho\sigma} X_{\rho\sigma} + \frac{1}{2} M_X^2 X^2$$

$$X - \gamma \text{ mixing}$$

[Bauer, Foldenatuer, Jaeckel, JHEP07(2018)]

■ *X* は荷電レプトンと lepton flavor **conserving** かつ **universal** な結合。

$\not \simeq$ Minimal $L_{\mu} - L_{\tau}$ model

- 新たな U(1)ゲージ対称性を導入。
- 新しい粒子は新ゲージ粒子(X^μ)だけ。
- ミュー・レプトンとタウ・レプトンの みが charge を持つ。 $\ell_{\mu}, \nu_{\mu}: 1 \quad \ell_{\tau}, \nu_{\tau}: -1$

$$\mathcal{L} = \mathcal{L}_{SM} + \dots + g' \, \frac{X_{\rho}}{\rho} J_{\mu\tau}^{\rho} + \frac{1}{2} M_X^2 \, X^2$$

[Bauer, Foldenatuer, Jaeckel, JHEP07(2018)]

- Xは荷電レプトンと lepton flavor conserving かつ non-universal な結合。
- tree では電子との相互作用はないが 1-loop で存在する。

☆ beam dump experiment

■ 長寿命な中性粒子を探索するのに適した実験。

☆ 研究の動機と目的

- これまでの beam dump 実験からの制限は lepton flavor conserving な相互作用しか考えていない。
- 拡張された模型では lepton flavor violating な相互作用も生じうるのでは? (後述)。
- その場合 beam dump の制限はどうなるのか?
- $\mu \rightarrow e\gamma$ や $\mu \rightarrow eee$ の制限以下に新たな制限を(間接的に)設けられるのでは?

- 2つの簡単なラグランジアンを考え、E137 electron beam dump実験の制限を導く。
- 注目するパラメータ領域は、<u>O(MeV-GeV)</u>、<u>O(10⁻⁸ 10⁻⁴)</u>。 (質量) (結合定数)

Outline

- Introduction.
- cLFV in gauge sector.
- Interaction Lagrangian in this talk.
- Number of expected events.
- Results.
- Summary.

cLFV in gauge sector

 \blacksquare $U(1)_{L_{\mu}-L_{\tau}}$ が破れていないと Majorana neutrino 質量行列は

$$Q_{L_{\mu}-L_{\tau}}(\overline{\nu^{c}}\,\nu)_{ij} = \begin{pmatrix} 0 & 1 & -1\\ 1 & 2 & 0\\ -1 & 0 & -2 \end{pmatrix} \qquad \Longrightarrow M_{\nu} = \begin{pmatrix} \times & 0 & 0\\ 0 & 0 & \times\\ 0 & \times & 0 \end{pmatrix} \times \cdots \not = 0 \text{ Big}$$

荷電レプトン(Dirac)の質量行列は

$$Q_{L_{\mu}-L_{\tau}}(\overline{\ell_{L}}\,\ell_{R})_{\alpha\beta} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & -2 \\ 1 & 2 & 0 \end{pmatrix} \implies M_{\ell} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

しか許されない。

■ しかしこのままだと現実的な neutrino mass と MNS 行列が出ない。

$$m_2^{\nu} = m_3^{\nu}$$
 $\theta_{12} = \theta_{13} = 0$ $\theta_{23} = 45^{\circ}$

■ 対称性を自発的に破るスカラーを導入し、質量行列の非0成分を増やす必要がある。

(つづき)

■ ここでは荷電レプトンの質量行列に非対角項が出たとする。

$$\bar{L}H_{SM}\ell_R \qquad \bar{L}H_1\ell_R \qquad \bar{L}H_2\ell_R
M_{\ell} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} + \begin{pmatrix} 0 & 0 & \times \\ \times & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \times \\ 0 & 0 & 0 \end{pmatrix} + \cdots \qquad \times \cdots 非 0 成分$$

■ 荷電レプトンの質量行列が非対角的になると mixing が生まれ、gauge sector に LFV な項(非対角成分)が現れる。

$$g'\overline{\ell_{i}}\,\gamma^{\rho}\begin{pmatrix}0&0&0\\0&1&0\\0&0&-1\end{pmatrix}\ell_{j}\,X_{\rho}\qquad g'\overline{\ell_{\alpha}}\,\gamma^{\rho}\,V_{\alpha i}^{+}\begin{pmatrix}0&0&0\\0&1&0\\0&0&-1\end{pmatrix}V_{j\beta}\,\ell_{\beta}X_{\rho}$$

$$\ell_{i}\to V_{i\alpha}\,\ell_{\alpha}\qquad \qquad [\text{Foot, et al, PRD50(1994)}]$$

- このシナリオは lepton flavor non-universal な場合のみ可能。
- universal な場合でも loop で生じることが考えられる。

※ 1-loop induced diploe operator [Nomura, Okada, Uesaka, JHEP01(2021)]

Int. Lagrangian in this talk

- このトークでは以下の2つの相互作用ラグラジアンを考える。
- 1. $U(1)_{L_{\mu}-L_{\tau}}$ type

$$\mathcal{L}_{int} = g' \overline{\ell_{\alpha}} \begin{pmatrix} s^{2} & sc & 0 \\ sc & c^{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \gamma^{\rho} \ell_{\beta} X_{\rho}$$

$$(s = \sin \theta)$$

$$(\alpha, \beta = e, \mu, \tau)$$

2. dark photon type

$$\mathcal{L}_{int} = e \,\overline{\ell_{\alpha}} \begin{pmatrix} \varepsilon & \varepsilon' & 0 \\ \varepsilon' & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{pmatrix} \gamma^{\rho} \ell_{\beta} \, X_{\rho}$$

$$(\alpha, \beta = e, \mu, \tau) \begin{pmatrix} \mathcal{N} \ni \mathcal{X} - \mathcal{P} \\ \varepsilon, \varepsilon', M_{X} \end{pmatrix}$$

■ ともに新粒子は X のみでパラメータは3つ。

Number of expected events

■ イベント数の計算は以下の式を用いる。

$$N = N_e \frac{N_{\text{avo}} X_0}{A} \sum_{\ell = e, \mu} \int_{m_X}^{E_0 - m_{\ell}} dE_X \int_{E_X + m_{\ell}}^{E_0} dE_e \int_0^{T_{\text{sh}}} dt$$

$$\times \left[I_e(E_0, E_e, t) \frac{1}{E_e} \underbrace{\frac{d\sigma_{\text{brems}}}{dx}}_{x = \frac{E_X}{E_e}} e^{-L_{\text{sh}}} \underbrace{L_X} (1 - e^{-L_{\text{dec}}} \underbrace{L_X}) \right] \underbrace{\text{Br}(X \to e^+ e^-)}$$

■ 生成断面積は Weizäcker-Williams 近似を用いる。

(つづき)

■ E137 electron beam dump実験を考える。

	target	E_0 [GeV]	No.		$L_{\rm sh}$ [m]		$N_{ m obs}$	$N_{95\%\mathrm{up}}$
KEK	^{183.84} W	2.5	1.69×10^{17}	27 mC	2.4	2.2	0	3
E141	$^{183.84}_{74} m W$	9	2×10^{15}	$0.32~\mathrm{mC}$	0.12	35	1126^{+1312}_{-1126}	3419
E137	$^{26.98}_{\ 13}\mathrm{Al}$	20	1.87×10^{20}	30 C	179	204	0	3
Orsay	$^{183.84}_{74}\mathrm{W}$	1.6	2×10^{16}	$3.2~\mathrm{mC}$	1	2	0	3
E774	$^{183.84}_{74}\mathrm{W}$	275	5.2×10^{9}	$0.83~\mathrm{nC}$	0.3	2	0^{-0}_{+9}	18

[Andreas, Ph.D. thesis (2013)]

[Batell, Essig, Surujon, PRL113 (2014)]

- Electron energy > 3 GeV, $\theta < \tan^{-1}(^{1.5}/_{383})$.
- 3イベント以上のパラメータ領域を 95% C.L. の exclusion region とする。

Results

$\stackrel{\text{red}}{\simeq} L_{\mu} - L_{\tau}$ type

$$\mathcal{L}_{int} = g' \overline{\ell_{\alpha}} \begin{pmatrix} s^2 & sc & 0 \\ sc & c^2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \gamma^{\rho} \ell_{\beta} X_{\rho}$$

$$(s = \sin \theta)$$

- mixingが増大 ⇒ ēe 成分が増大。
- 生成断面積もシグナル($X \rightarrow \bar{e}e$)も増大し制限領域が拡大する。
- $\blacksquare \theta > 0.4 \text{ rad }$ くらいで未制限領域を exclude できるようになる。
 - % しかも $\mu \rightarrow 3e$ の制限より下!!

☆ dark photon type

$$\mathcal{L}_{int} = e \, \overline{\ell_{\alpha}} \begin{pmatrix} \varepsilon & \varepsilon' & 0 \\ \varepsilon' & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{pmatrix} \gamma^{\rho} \ell_{\beta} X_{\rho}$$

$$(\alpha, \beta = e, \mu, \tau)$$

- LFVを大きくしても生成断面積は増えない($L_{\mu}-L_{\tau}$ も同様)。
- LFVが大きくなると $Br(X \rightarrow ee)$ が減少してしまい、制限領域が狭くなってしまう。

☆ 生成断面積

■ x=1 ($E_{A'}=E_e$)、LFCとLFVの結合定数が等しい($g=10^{-6}$ とする)として比較。

LFC

$$\frac{d\sigma_{brems}}{dx} \sim \frac{\alpha g^2}{2\pi} \xi \beta \times \frac{1}{m_e^2}$$

LFV

$$\frac{d\sigma_{brems}}{dx} \sim \frac{\alpha g^2}{2\pi} \xi \beta \times \theta_{\text{max}}^2 \frac{E_e^2}{M_X m_\mu^2}$$

※ 実線 … LFC 破線 … LFV

■ LFVの生成はあまり効かない。。。

☆ その他の軽い粒子

■ Vector with dipole int.

$$\mathcal{L}_{int} = \frac{1}{2} \overline{\ell_{\alpha}} \begin{pmatrix} \mu & \mu' & 0 \\ \mu' & \mu & 0 \\ 0 & 0 & \mu \end{pmatrix} \sigma^{\mu\nu} \ell_{\beta} X'_{\mu\nu}$$

$$(\alpha, \beta = e, \mu, \tau)$$

ALPs

$$\mathcal{L}_{int} = \frac{\partial_{\rho} X}{\Lambda} \overline{\ell_{\alpha}} \begin{pmatrix} c & c' & 0 \\ c' & c & 0 \\ 0 & 0 & c \end{pmatrix} \gamma^{\rho} \gamma_{5} \ell_{\beta}$$

$$(\alpha, \beta = e, \mu, \tau)$$

Summary

- 質量が小さく、SM粒子と弱く相互作用する中性粒子に対して、古くから electron beam dump 実験の制限が考えられてきた。
- dark photon model と $U(1)_{L_{\mu}-L_{\tau}}$ model に cLFV (e_{μ}) 相互作用を加え、 electron beam dump の制限にどのような寄与をもたらすか調べた。
- \blacksquare $U(1)_{L_{\mu}-L_{\tau}}$ type の場合は cLFV の寄与が大きくなるにつれ制限領域が拡大し、未制限領域に新たな制限が設けることも可能。
- dark photon type の場合は LFV の寄与が大きくなると $\mu \to eX$ の制限 に埋もれてしまう。
- このトークでは $e\mu$ 成分しか考えなかったが、 $e\tau$, $\mu\tau$ 成分を入れて基本的な振る舞いは変わらないと思われる。生成数は増えないし tau decayの閾値まで制限が届かない。

backup slides

☆ もし $X \rightarrow \mu e$ も検出できたなら

$\stackrel{\triangle}{\sim} L_{\mu} - L_{\tau}$, 縦軸 mixing

Production cross section

■ vectorial int.

