

Sharpening the Boundaries Between Flux Landscape and Swampland by Tadpole Charge

- タドポール電荷によるフラックスランドスケープ/スワンプランドの境界の特徴づけ -

Keiya Ishiguro (SOKEIDAI, Tsukuba) in collaboration with Hajime Otsuka (KEK IPNS) based on arXiv:2104.15030 [hep-th]

Main purpose of the talk (in short)

What quantity does characterize

the boundary between Landscape/Swampland

in the 4-dimensional EFT?

Compactifications and Moduli Fields

Compactifications of Type IIB superstring theory

- 10-dimensional (10d) theory
 - Compactify 6d space \rightarrow 4d effective field theory (EFT)

Moduli fields

- Massless scalar fields = deformations of the internal 6d manifold
 - Complex-structure (cs) moduli … "shape"
 - Kähler moduli … "volume"
- Many moduli appear in the EFT

Flux compactifications

- Non-trivial three-form fluxes … RR, NS-NS (NS) fluxes
- Generate a scalar potential for moduli fields
 - Obtain VEVs ··· Moduli stabilization

Formulation of the Moduli Stabilization

• Flux compactification \rightarrow Scalar potential of moduli

Scalar potential

$$V = e^{K} \begin{bmatrix} K^{i\overline{j}} D_{i} W \overline{D}_{\overline{j}} \overline{W} - 3|W|^{2} \end{bmatrix} \qquad \qquad K_{i\overline{j}} = \partial_{i} \partial_{\overline{j}} K \\ D_{i} = \partial_{i} + K_{i}$$

Gukov-Vafa-Witten (GVW) type super potential

$$W_{\rm GVW} = \int_{\rm CY} G_3 \wedge \Omega = \int F_3 \wedge \Omega - S \int H_3 \wedge \Omega \quad (G_3 = F_3 - SH_3)$$
$$\overline{W_{\rm RR}} \quad \overline{W_{\rm NS}}$$

• <u>Kähler potential</u> $K = -4 \log \left[-i(S - \overline{S}) \right] - \log \left[-i \int_{CY} \Omega \wedge \overline{\Omega} \right]$ $\overline{\chi}$ Spacific property of our manifold (in

specific property of our manifold (introduce later) -1: usual case (No-scale type)

Tadpole Cancellation Condition (TCC)

The three-form fluxes are quantized:

$$\int_{\Sigma} F_3 = N_F \in \mathbb{Z}, \quad \int_{\Sigma} H_3 = N_H \in \mathbb{Z}.$$

• These numbers discretize vacua.

Tadpole cancellation condition (TCC) : consistency

• Fluxes cannot be arbitrary numbers

Problems and Difficulties

Only a part of the moduli are stabilized by the fluxes.

- No-scale structure … Kähler moduli are flat directions
 - Non-perturbative effects

No principle for flux choices

• TCC constrains it but still many degrees of freedom remain

Flux Landscape (flux vacua) Denef, F. and Douglas, M. R., JHEP 0405, 072 (2004).

- Set of whole vacua in flux compactifications
- Estimation: $\sim \mathcal{O}(10^{272000})$ vacua W. Taylor and Y. N. Wang, JHEP 12, 164 (2015).
- SM-like models? Statistical approach?

Difficulties in building Standard Model-like models

Cosmological constant, CP violation, flavor and inflation etc.

Understanding Landscape properties is still challenging!

Swampland Conjectures

- Low energy EFT inconsistent with UV theory
 - In this talk, we call outside of the Landscape the **Swampland**.
- Many Swampland conjectures are proposed;
 - de Sitter (dS) conjecture G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, arXiv:1806.08362 [hep-th].
 - Absence of stable dS vacua with all moduli stabilized

 $\operatorname{Min}(\nabla_i \nabla_j V) \leq -c \cdot V$ $c: \mathcal{O}(1)$ positive constant

- AdS/moduli separation conjecture F. Gautason, V. Van Hemelryck, and T. Van Riet, Fortsch. Phys.67, 1800091 (2019).
 - Limitation on the size of the Moduli mass and AdS radius
 - $m_{\text{light}}R_{\text{AdS}} \leq c$

 m_{light} : lightest moduli mass, R_{AdS} : AdS size c: $\mathcal{O}(1)$ positive constant

- AdS distance conjecture D. Lüst, E. Palti, and C. Vafa, Phys. Lett. B 797, 134867 (2019).
 - Infinite tower of light KK states appear in the limit $\Lambda \ll 1$.

 $m_{\rm tower} = c |\Lambda|^{\alpha}$

 m_{tower} : mass scale of the light states Λ : cosmological constant c, α : $\mathcal{O}(1)$ positive constant

Today's

talk

Purposes of the Study

- Understanding structure of the Landscape is still important.
 - e.g., Classification by their cosmological constants

Swampland conjectures were proposed.

- may explain what does not occur in the Landscape.
- Proof valid only in some special cases
- Properties of vacua with all moduli stabilized

Inspection of the Swampland conjectures

- A background with no Kähler moduli exists: Mirror dual of $T^6/(Z_3 \times Z_3)$
- All the moduli are stabilized only with fluxes.
 P. Candelas, E. Derrick and L. Parkes, Nucl. Phys. B 407 (1993) 115.
 O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, JHEP 0507 (2005) 066
 K. Becker, M. Becker and J. Walcher, Phys. Rev. D 76 (2007) 106002.

What does support the conjectures? (if they hold)

Sharpen the boundary between Landscape/Swampland

Result: N_{flux} (tadpole charge of fluxes) controls the boundary!

Inspection of the dS conjecture

The dS conjecture … No stable dS vacua

Sign of the scalar potential at minima

We factorize $V = e^{K} \left(K^{i\bar{j}} D_{i} W D_{j} \bar{W} - 3|W|^{2} \right) \equiv e^{K} \tilde{V}$

$$\partial_i V = K_i V + e^K \partial_i \tilde{V} = 0 \longrightarrow V = -e^K \frac{\partial_i \tilde{V}}{K_i}$$
 (at minima

 \rightarrow determined by the Kähler potential (known) and $\partial_i \tilde{V}$

- Function form of the scalar potential (generality)
 quadratic in the dilaton S
 - $K_{\mathrm{Im}S} < 0, K_{\mathrm{Re}S} = 0$

→ We focus on
$$i = ImS$$
 case

$N_{\rm flux}$ appears in the scalar potential

• Expand \tilde{V} with ImS

$$\tilde{V} = \frac{1}{2} \partial_{\mathrm{ImS}}^2 \tilde{V} (\mathrm{Im}S)^2 - e^{-K_{\mathrm{cs}}} N_{\mathrm{flux}} \mathrm{Im}S + C, \quad C \equiv \tilde{V} \Big|_{\mathrm{Im}S=0} \ge 0$$

- Coefficient of the linear term is N_{flux} !
 - 10d consistency appears in the 4d potential in the nontrivial way
 The structure remains even in the negative scale type potential
 - The structure remains even in the no-scale type potential
- Implication of N_{flux} for resulting vacua
 - Restricted by the TCC condition
- $N_{\rm flux}$ can be a messenger of the consistency

Implication of N_{flux} for resulting vacua

Example: existence of a stable Minkowski vacuum
If exists,

$$\langle \text{Im}S \rangle = \frac{N_{\text{flux}}}{e^{K_{\text{cs}}} \partial_{\text{Im}S}^2 \tilde{V}}$$
 with $\partial_{\text{Im}S}^2 V > 0 \Leftrightarrow \partial_{\text{Im}S}^2 \tilde{V} > 0$ (stability condition)

 \longrightarrow Since Im $S = g_s^{-1}$, $N_{\text{flux}} > 0$ is required.

- Stable dS vacuum?
 - Again, N_{flux} is constrained (by a complicated relation).

TCC should be linked to the dS conjecture.

• Numerical calculation would show the relation explicitly.

Numerical search of stable dS vacua

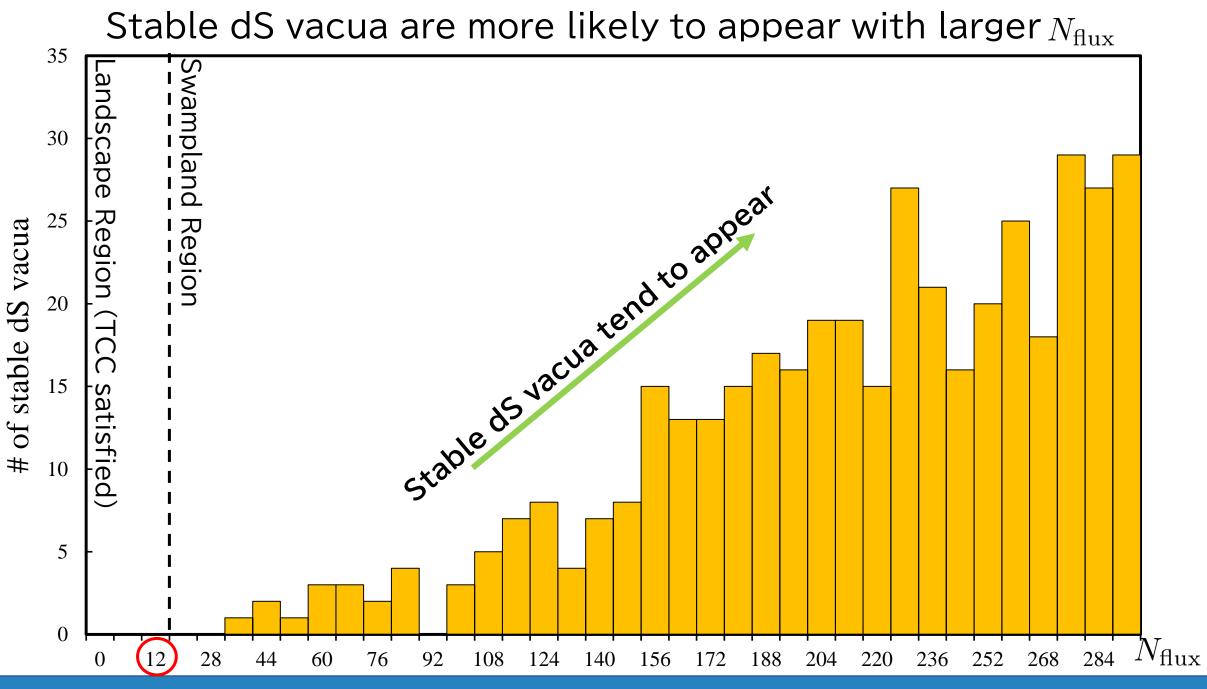
- Search configurations
 - Fluxes: $-20 \le \#(\text{flux}) \le 20$ with $0 \le N_{\text{flux}} \le 300$
 - Tadpole cancellation condition (TCC): $N_{\text{flux}} \leq 12$
 - Vacua with $N_{\text{flux}} > 12$ should fall into the Swampland

(from 10d viewpoint)

- # of flux patterns: 7.9×10^9
- # of minima found: 6.7×10^8
- The dS conjecture holds no dS vacua exist in the Landscape
 - <u>However, the dS vacua appear in the region N_{flux} > 12.
 The number of them increases as N_{flux} becomes larger.
 </u>

→ Quantity characterizing the bound<u>ary between Landsc</u>ape/Swampland in the 4d EFT is...

 N_{flux} (or TCC)



2021/9/9

PPP 2021 | 石黒 奎弥 (総研大) | 2104.15030

N_{flux} and AdS/moduli scale separation

• N_{flux} is also related to moduli masses and Λ ;

• Moduli mass matrix in SUSY AdS vacua (isotropic tori)

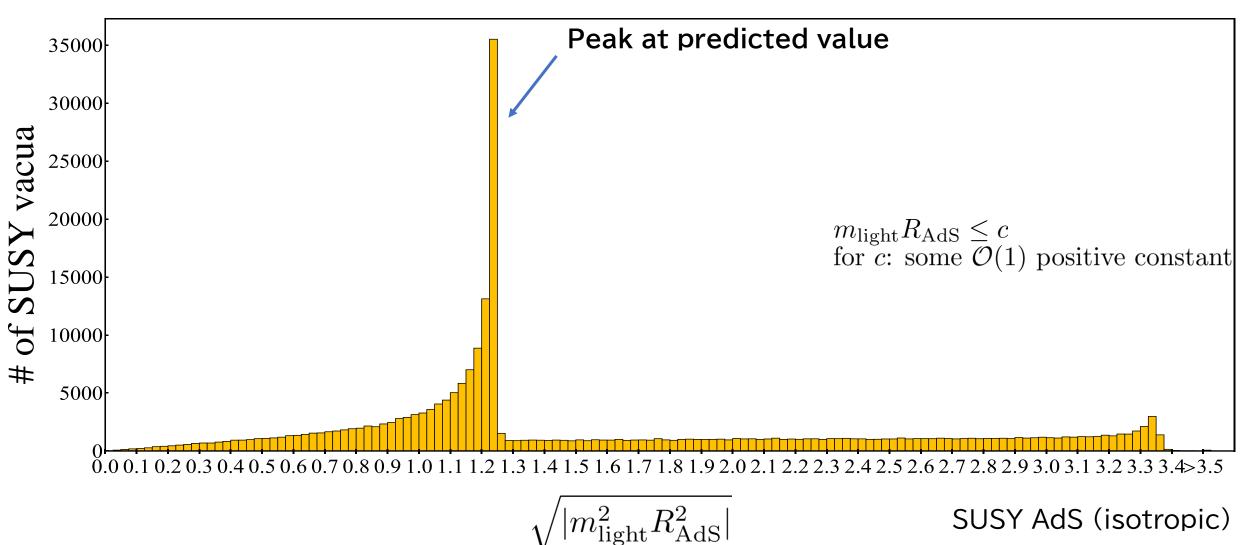
$$\frac{M_{\rm phys,AdS}^2}{\Lambda_{\rm AdS}} = \begin{pmatrix} \frac{2}{3} - \frac{19}{108} |x|^2 & \frac{2}{9} \bar{y} & -\frac{x}{2\sqrt{3}} - \frac{x\bar{y}}{9\sqrt{3}} & \frac{\bar{x}}{6\sqrt{3}} \\ \frac{2}{9}y & \frac{2}{3} - \frac{19}{108} |x|^2 & \frac{x}{6\sqrt{3}} & -\frac{x}{2\sqrt{3}} - \frac{\bar{x}y}{9\sqrt{3}} \\ -\frac{x}{2\sqrt{3}} - \frac{\bar{x}y}{9\sqrt{3}} & \frac{\bar{x}}{6\sqrt{3}} & -\frac{7}{3} - \frac{1}{36} |x|^2 & 1 \\ \frac{x}{6\sqrt{3}} & -\frac{\bar{x}}{2\sqrt{3}} - \frac{x\bar{y}}{9\sqrt{3}} & 1 & -\frac{7}{3} - \frac{1}{36} |x|^2 \end{pmatrix}, \\ \text{with } x \equiv (S - \bar{S})(\tau - \bar{\tau}) \frac{D_{\tau} W_{\rm NS}}{W}, y \equiv (S - \bar{S})(\tau - \bar{\tau}) \frac{\overline{D_{\tau} W_{\rm NS}}}{W}.$$

$$\bullet N_{\rm flux} \text{ in the SUSY AdS vacua}$$

$$\frac{N_{\text{flux}}}{\Lambda_{\text{AdS}}} = \frac{8(\text{Im}S)^3}{3} \left(8 - \frac{|x|^2}{3} \right) \quad \longrightarrow \text{These are linked via } x$$

$$m_{
m light}R_{
m AdS}| \simeq \frac{\sqrt{6}}{2} \simeq 1.22$$
 with $8({
m Im}S)^2\Lambda_{
m AdS} \gg 9N_{
m flux}, {
m Arg}x = {
m Arg}y$

$N_{\rm flux}$ supports the AdS/moduli scale separation conjecture



2021/9/9

Summary and Conclusions

 \diamond $N_{\rm flux}$ is a parameter restricted by the 10d consistency (TCC).

In this talk, we pointed out;

- Appearing in the 4d EFT in the nontrivial way
- The Swampland conjectures are related to $N_{\rm flux}$.
 - $N_{\rm flux}$ as a messenger; resulting vacua notice its inconsistency via $N_{\rm flux}$.
 - Landscape/Swampland boundary in the 4d EFT is controlled by N_{flux} .
- Implying the importance of TCC in proving conjectures

Thank you all for your attention! More details in 2104.15030