Physics at Belle II

Akimasa Ishikawa (KEK)

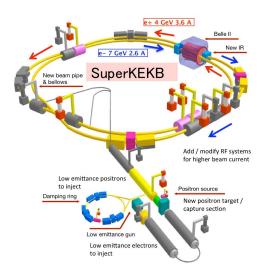
PPP2021 @ Imaginary YITP Kyoto University

Belle II Physics Book

- Published in Dec 2019
 - <u>https://arxiv.org/abs/1808.10567</u>
 - <u>https://doi.org/10.1093/ptep/ptz106</u>

Prog. Theor. Exp. Phys. 2019, 123C01 (654 pages) DOI: 10.1093/ptep/ptz106

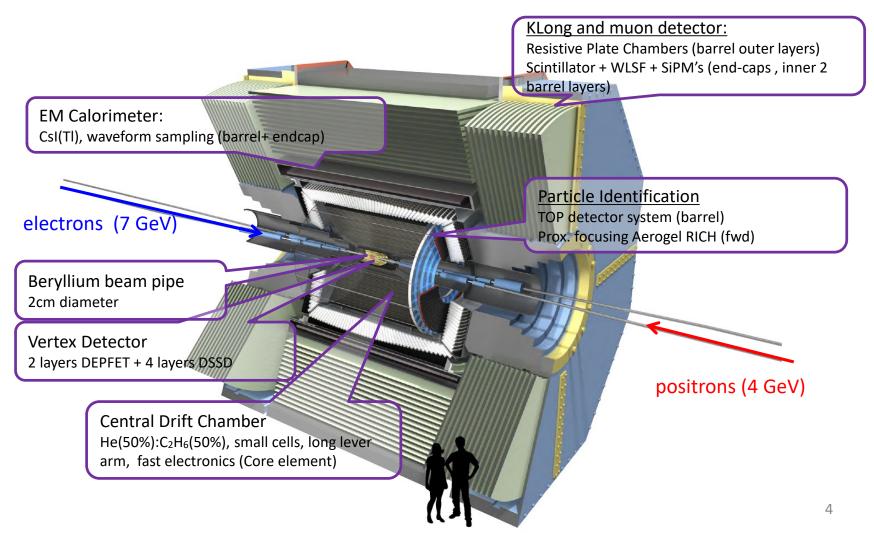
The Belle II Physics Book


E. Kou^{75,*,§,†}, P. Urquijo^{145,‡,†}, W. Altmannshofer^{135,§}, F. Beaujean^{79,§}, G. Bell^{122,§}, M. Beneke^{114,§}, I. I. Bigi^{148,§}, F. Bishara^{150,16,§}, M. Blanke^{49,51,§}, C. Bobeth^{113,114,§}, M. Bona^{152,§}, N. Brambilla^{114,§}, V. M. Braun^{50,§}, J. Brod^{112,135,§}, A. J. Buras^{115,§}, H. Y. Cheng^{43,§}, C. W. Chiang^{92,§}, M. Ciuchini^{59,§}, G. Colangelo^{128,§}, A. Crivellin^{102,§}, H. Czyz^{156,29,§}, A. Datta^{146,§}, F. De Fazio^{53,§}, T. Deppisch^{51,§}, M. J. Dolan^{145,§}, J. Evans^{135,§}, S. Fajfer^{109,141,§}, T. Feldmann^{122,§}, S. Godfrey^{7,§}, M. Gronau^{62,§}, Y. Grossman^{15,§}, F. K. Guo^{45,134,§}, U. Haisch^{150,11,§}, C. Hanhart^{21,§}, S. Hashimoto^{30,26,§}, S. Hirose^{89,§}, J. Hisano^{89,90,§}, L. Hofer^{127,§}, M. Hoferichter^{168,§}, W. S. Hou^{92,§}, T. Huber^{122,§}, T. Hurth

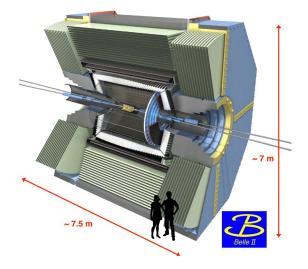
Joint effort of theorists and experimentalists. Some of you contributed to the book. Thank you!

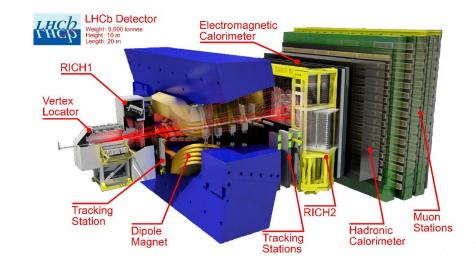
Belle II @ SuperKEKB

- Highest luminosity collider experiment
 - L=6.5x10³⁵ cm⁻²s⁻¹
 - E_{CM}=10.58GeV on Y(4S)
 - Just above the BB threshold to produce B meson pairs efficiently
 - Can go higher, Y(5S) and above
 - Energy-asymmetric collisions
 - 7.0GeV x 4.0GeV
 - To boost B mesons to measure time dependent CPV
 - 50ab⁻¹ will be accumulated around 2031
 - Containing 1x10¹¹ B mesons, 1.5x10¹¹ charm hadrons, and 0.9x10¹¹ τ
 - Processes with cross sections of O(1)ab are reachable
- Physics
 - Flavor physics : B, D and τ
 - Including HVP with radiative return for muon g-2
 - Light dark matter search
 - And more


Luminosity Projection LS1 LS2 cm⁻²s⁻¹] Int. L [>]eak Luminosity [x10³⁵ Int. . L [ab⁻¹] 10 2019 2021 2023 2025 2027 2029 2031

3


Belle II Detector


- Significant detector improvements
 - Better and Larger VXD → Time dependent CPV, especially with long lived Ks.
 - Trigger improvement \rightarrow single photon final state etc.

Belle II Cons and Pros (VS LHCb)

- Cons.
 - Statistics of b hadrons!! (1nb VS 144µb)
 - We will only have 10¹¹ B mesons with 50ab⁻¹ on Y(4S) and 5x10⁸ B_s with 5ab⁻¹ on Y(5S)
 - No large samples of b baryon and B_c
 - Production of these hadrons are not yet established around Y(nS).
 - Proper time resolution is worse and B meson is not so boosted.
 - Background suppression with B vertex is not so easy
 - Bs mixing (Δm_s) can not be measured (while $\Delta \Gamma_s$ can be measured).

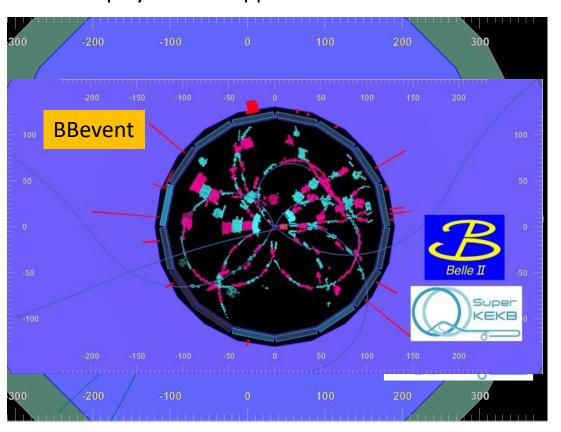
Belle II Cons and Pros (VS LHCb)

- Pros.
 - Smaller background cross section (O(1)nb VS O(10)mb)
 - ~3.4nb for ee \rightarrow qq, ~1nb for ee \rightarrow Y(4S) \rightarrow BB
 - Almost 100% trigger efficiency for BB events.
 - Main trigger : 3-track-trigger || ECL energy sum trigger >1GeV || ECL nCluster >=4
 - Absolute BF measurement possible.
 - High hermeticity $4\pi \times 94\%$
 - High reconstruction efficiency of O(1)~O(10)%.
 - Full reconstruction possible (Reconstruction of the other B meson)
 - More than one missing neutrino modes \rightarrow B \rightarrow D(*) $\tau\nu$, B $\rightarrow\tau\nu$, B \rightarrow K^(*) $\nu\nu$, B \rightarrow K $\tau\tau$, B $\rightarrow\nu\nu$
 - Detection of electron
 - Detection efficiency of electron is almost the same as that of muon \rightarrow test of LFU
 - Easy to recover bremsstrahlung photon
 - Detection of neutrals
 - γ , π^0 and Ks can be reconstructed efficiently \rightarrow sum-of-exclusive approach $B \rightarrow Xsl^+l^-$, $B \rightarrow \pi^0 \pi^0$, $B_{(s)} \rightarrow \gamma \gamma$
 - Better energy resolution of hard $\gamma \rightarrow B \rightarrow \rho \gamma$ with good PID devise to suppress $B \rightarrow K^* \gamma$

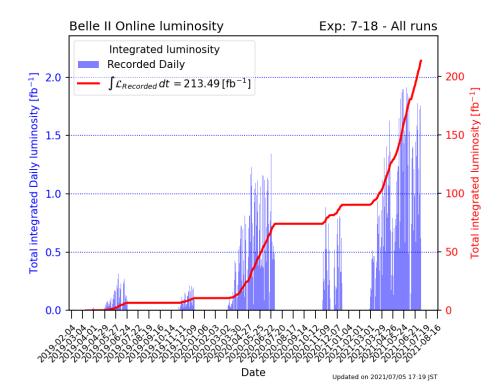
The First Collisions observed by Belle II

• 26th Apr 2018

People excited by the first collisions


SuperKEKB control room

Belle II control room



Event Display : e+e- → 🖗

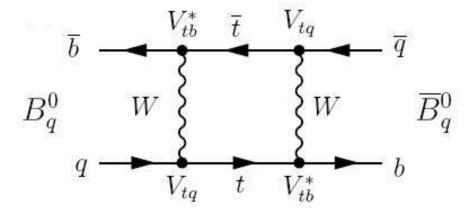
Belle II 2021

- Physics run since 2019
- World records
 - $L = 3.12 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} (31.2 \text{ nb}^{-1}/\text{s})$
 - L_{int} = 1.96 fb⁻¹/day
 - $L_{int} = 12.1 \text{ fb}^{-1}/\text{week}$
- 213fb⁻¹ has been accumulated so far (Belle 1040fb⁻¹).

Contents

- $\Delta B=2 \text{ loop process} : B^0 \overline{B}^0 \text{ mixing}$
- $\Delta B=1$ loop processes : Penguin B decays - 3^{rd} paper on $B \rightarrow K_{VV}$
- Lepton Flavor Universality violation in B decays
- Lepton Flavor Violating τ decays
- HVP in radiative return events for muon g-2
- Light new particle searches

 1st and 2nd papers on Z' in Lμ-Lτ and ALPs


Sorry if I miss your favorites

B⁰-B⁰ Mixing

- $B^0-\overline{B}^0$ mixing is proceed via loop diagrams in the SM.
 - The loop is dominated by top quark and W
- New particles, such as SUSY particles or charged Higgs, can enter in the loop
- Two approaches to search for NP in B⁰-B⁰ mixing (assuming no NP in tree level processes)
 - Unitarity Triangle
 - NP amplitude and phase (h and σ)

$$M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times \left(1 + h_{d,s} \, e^{2i\sigma_{d,s}}\right)$$

T. Goto et al, Phys.Rev. D53 (1996) 6662-6665

Unitarity Triangle

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

by Wolfenstein parameterization

Irreducible complex phase cause CP Violation!

- Comprehensive test; measure all the angles and sides.
- B system : very good place, all the angle are O(0.1)!

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$(\bar{\rho}, \bar{\eta})$$

$$V_{ud}V_{ub}^{*} \phi_{2/\alpha}$$

$$V_{td}V_{tb}^{*} V_{cd}V_{cb}^{*}$$

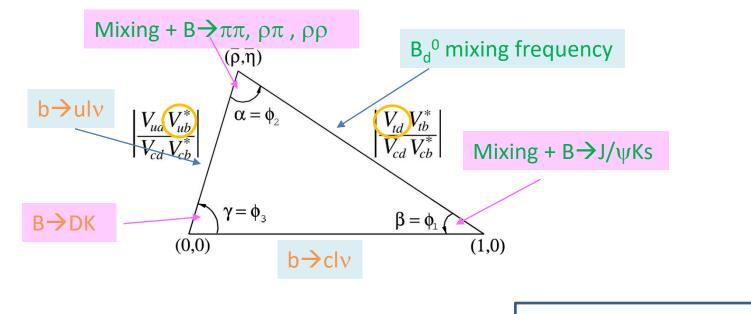
$$V_{cd}V_{cb}^{*} \phi_{3/\gamma}$$

$$V_{cd}V_{cb}^{*} \phi_{1/\beta} (1, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(1, 0)$$


$$(1, 0)$$

Unitarity Triangles : Tree VS Loop

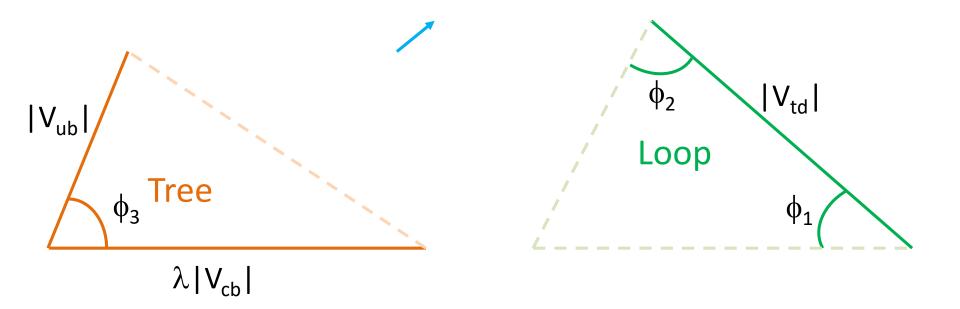
• We can measure six observables; three angles and three sides.

 $\overline{\rho}$

- Can make two triangles from the measurements
- If UT drawn with tree measurements is not consistent with the one with mixing measurements, it is clear NP signal

$$= \rho(1 - \lambda^2/2), \quad \overline{\eta} = \eta(1 - \lambda^2/2)$$
 Tree Loop

angle


side

phase

Consistency btw Two Triangles

NP contribution in B⁰ mixing can be measured (assuming no NP in tree). Both real and imaginary parts (h and σ) can be determined

 $M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$

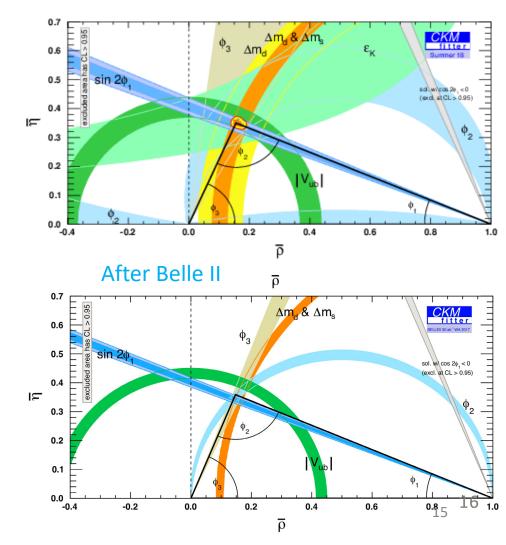
Precisions of the Angles and Sides

- Precision will be limited by theory or lattice QCD except for ϕ_3
 - Uncertainties of the sides ~1%

Including theory and LQCD uncertainties

- Uncertainties of the angles ~1deg
- We experimentalists should reduce QCD uncertainties together with theorists

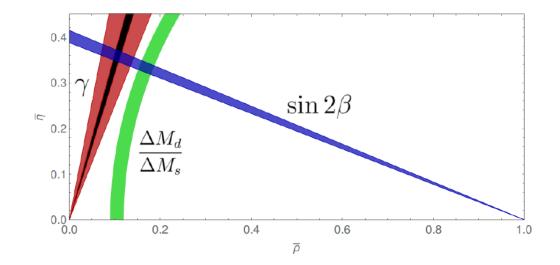
Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	-
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\sin 2\phi_1(B \to J/\psi K^0)$	$0.667 \pm 0.023 \pm 0.012$	0.012	0.005
ϕ_2 [°]	85 ± 4 (Belle+BaBar)	2	0.6
$\phi_3 \ GGSZ$	68 ± 13	4.7	1.5


Theory uncertainties not included for ϕ_1 and ϕ_2

UT Before/After Belle II

Before Belle II

Still uncertainties are large to conclude

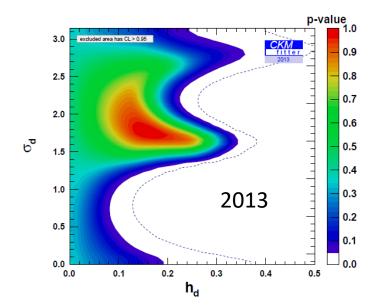

With current (in 2013) WA values, we see clear deviation of some observables

M. Blanke and A. J. Buras, Eur. Phys. J. C 79 (2019) 159

Current Situation

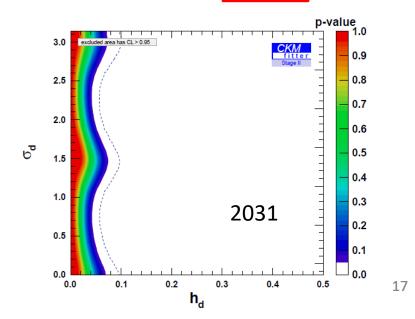
- See deviation?
- Hint for NP in mixing?

NP Interpretations

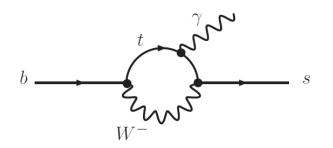

arXiv:1309.2293

 200TeV NP scale can be accessible with EFT analysis

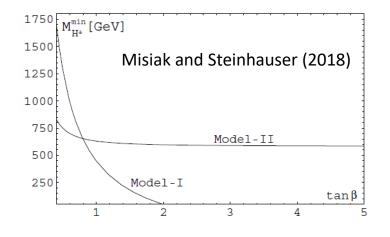
$$M_{12}^{d,s} = (M_{12}^{d,s})_{\rm SM} \times \left(1 + h_{d,s} \, e^{2i\sigma_{d,s}}\right)$$
$$\frac{C_{ij}^2}{\Lambda^2} \, (\bar{q}_{i,L} \gamma^{\mu} q_{j,L})^2$$

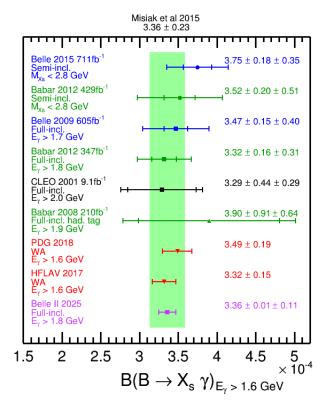

- 10(?) TeV in SUSY
 - Can see the deviations in loop (ϕ_1 and Δm_d)

Tanimoto and Yamamoto 2014, 2015


$$\lambda_{ij}^t = V_{ti}^* V_{tj}$$
$$h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \text{ TeV}}{\Lambda}\right), \quad \sigma = \arg(C_{ij} \lambda_{ij}^{t*}),$$

Couplings	NP loop	Scales (in TeV) probed by		
Couplings	order	B_d mixing	B_s mixing	
$ C_{ij} = V_{ti}V_{tj}^* $	tree level	17	19	
(CKM-like)	one loop	1.4	1.5	
$ C_{ij} = 1$	tree level	2×10^{3}	$5 imes 10^2$	
(no hierarchy)	one loop	2×10^2	40	

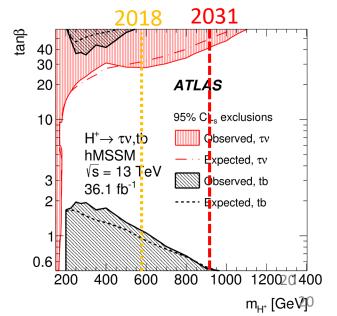

$\Delta B=1$ loop processes : Penguin Decays


- EW penguin
- 3^{rd} paper on $B \rightarrow K \vee V$


 $BF(B \rightarrow X_s \gamma)$

- Exp and theory are in good agreement
 - Exp ~5% (systematic dominant)
 - Thoery ~5% M. Misiak et al, 2002.01548
- Constraints
 - H+ in 2HDM type-II : M_H >600GeV
 - Stop in Natural SUSY

Baer, Bager and Nagata (2017)


BF(B \rightarrow X_s γ) in 2031

- Exp : Already systematic dominant
 - But large Belle II data can reduce the uncertainty to ~3%
- Theory
 - Part of Non-perturbative can be reduced by data driven way
 - Other uncertainties also reducible
 - 3.5% in 2025

Private communication with M.Misiak

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{lep-tag}}$	5.3%	3.9%	3.2%
$\operatorname{Br}(B \to X_s \gamma)_{\operatorname{inc}}^{\operatorname{had-tag}}$	13%	7.0%	4.2%
$\operatorname{Br}(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.4%	0.94%	0.69%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	9.0%	2.6%	0.85%

Belle II Physics book 1808.10567

Ishikawa's private estimation

$\Delta A_{CP}(B \rightarrow X_{s}\gamma)$

• $A_{CP}(B \rightarrow X_s \gamma)$ is sensitive to CPV in NP but theory uncertainty already dominant

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{X}_s \gamma) - \Gamma(B \to X_s \gamma)}{\Gamma(\bar{B} \to \bar{X}_s \gamma) + \Gamma(B \to X_s \gamma)}$$

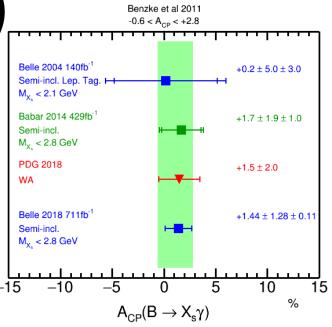
• New observable ΔA_{CP} is null in SM and sensitive to NP

$$\begin{split} \Delta A_{CP} &= A_{CP}(B^+ \to X_s^+ \gamma) - A_{CP}(B^0 \to X_s^0 \gamma) \\ &= 4\pi^2 \alpha_s \frac{\tilde{\Lambda}_{78}}{m_b} \mathrm{Im} \left(\frac{C_8}{C_7}\right), \\ &\approx 0.12 \left(\frac{\tilde{\Lambda}_{78}}{100 \text{ MeV}}\right) \mathrm{Im} \left(\frac{C_8}{C_7}\right), \end{split}$$
M. Benzke, S

M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda

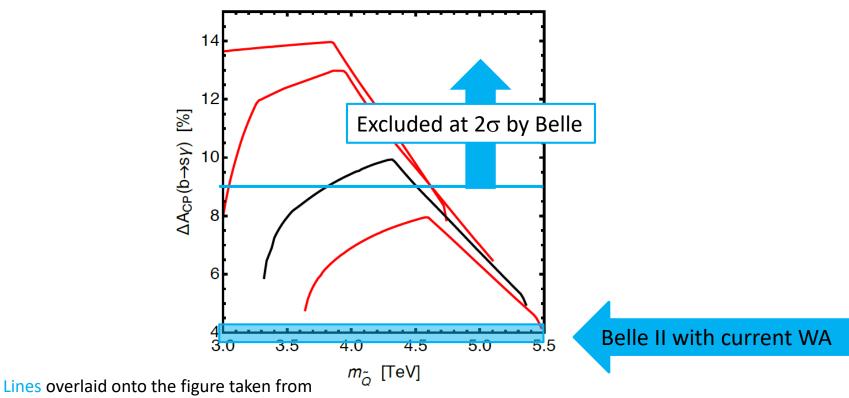
and K. Yamamoto, JHEP 04 (2018) 019.

- Ex. SUSY with flavor violating trilinear couplings
- Belle measured the observable in 2018


۰

 Found dominant syst error can be reducible → Belle II further improve the measurement

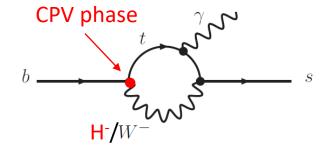
$$\Delta A_{CP} = \begin{bmatrix} +3.69 \pm 2.65 (\text{stat.}) \pm 0.76 (\text{syst.}) \end{bmatrix} \% \quad \text{Watanuki, Ishikawa et al, PRD 99, 032012 (2019)}$$

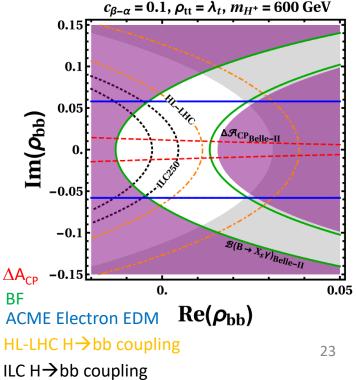

$$\boxed{\text{Observables}} \qquad \qquad \text{Belle } 0.71 \text{ ab}^{-1} \quad \text{Belle II } 5 \text{ ab}^{-1} \quad \text{Belle II } 50 \text{ ab}^{-1}$$

$$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}} \qquad 2.7\% \qquad 0.98\% \qquad 0.30\%$$

$\Delta A_{CP}(B \rightarrow X_s \gamma)$ and Constraint on SUSY

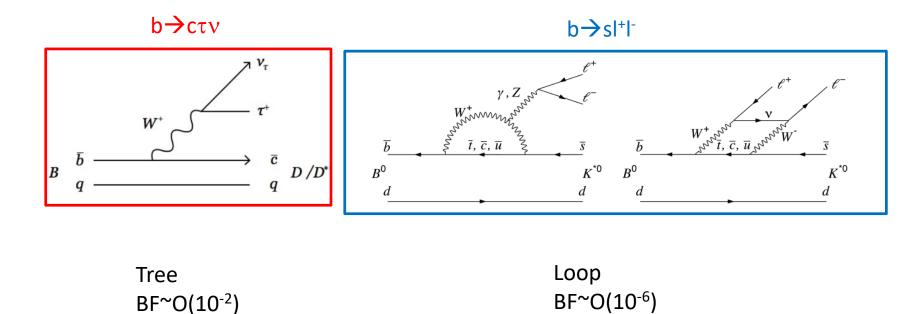
- Set a limit on parameter space in SUSY
 - Gluino mediated EWP which explains ϵ'/ϵ from CPV trilinear couplings

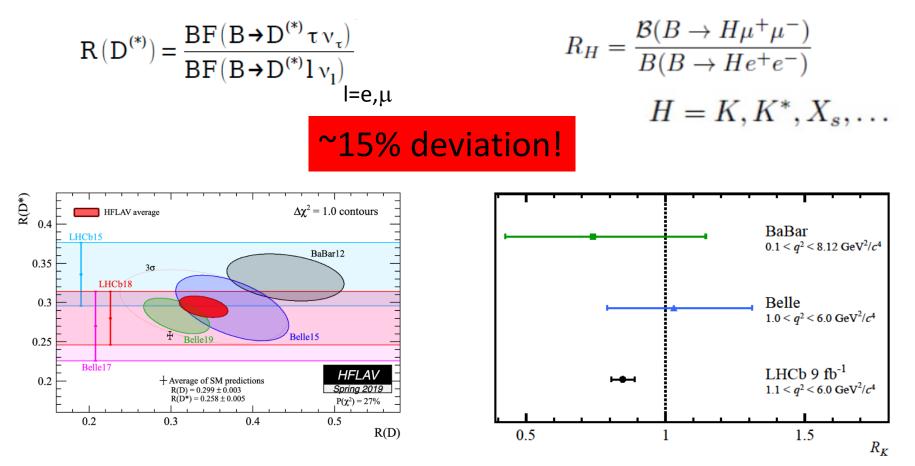

M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, JHEP 04 (2018) 019.


$\Delta A_{CP}(B \rightarrow Xs\gamma)$ and EW Baryogensis

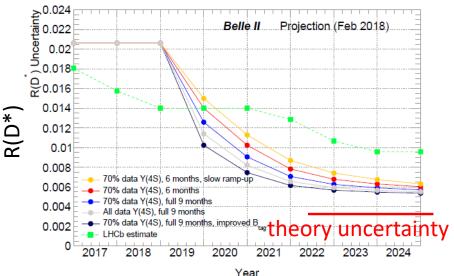
 Additional Yukawa coupling ρ appears in general 2HDM (no Z₂ symmetry)

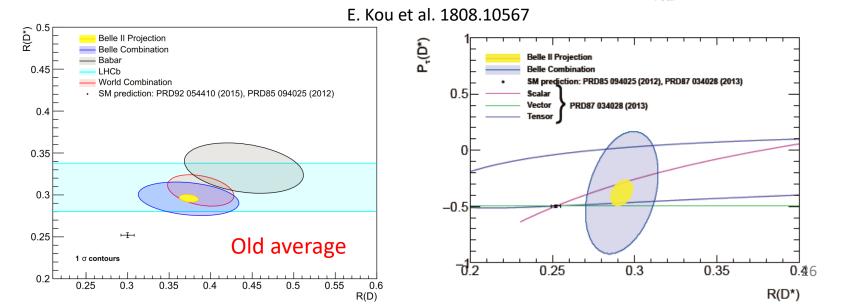
$$\begin{split} y_{hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} s_{\beta-\alpha} + \frac{\rho_{ij}^{f}}{\sqrt{2}} c_{\beta-\alpha}, \\ y_{Hij}^{f} &= \frac{\lambda_{i}^{f}}{\sqrt{2}} \delta_{ij} c_{\beta-\alpha} - \frac{\rho_{ij}^{f}}{\sqrt{2}} s_{\beta-\alpha}, \\ y_{Aij}^{f} &= \mp \frac{i \rho_{ij}^{f}}{\sqrt{2}}, \end{split}$$


- If p has complex phase, this could generate CPV and thus EW Baryogensis is possible
- ΔA_{CP} is sensitive to phase in ρ
- Combining H→bb coupling measurements at HL-LHC/ILC, additional bottom Yukawa and phase can be searched
 - If found it → Higgs self coupling measurments at ILC500 Δ


LFU violation in B decays

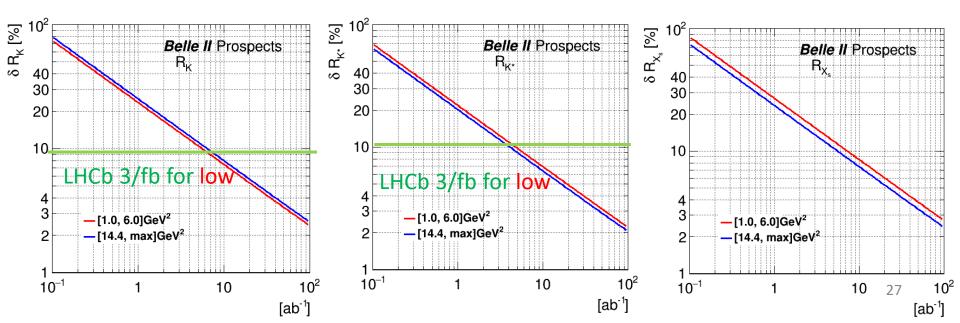
- Recently, two hints of LFUV are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^+l^-$
 - Anomaly in $b \rightarrow c \tau v$ driven by LHCb, Babar and Belle.
 - − Anomaly in $b \rightarrow sl^+l^-$ Driven by LHCb


LFUV in B decays


- Recently, two hints of LFUV are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^+l^-$
 - Anomaly in bightarrow cau v driven by LHCb, Babar and Belle. ~4 σ
 - − Anomaly in b→sl^{+l-} Driven by LHCb Naïve combination of R_{k} and $R_{k*} \sim 4\sigma$
- Leptoquark and flavorful W'/Z' models can explain the deviation

Future Prospects on R(D^(*)) at Belle II

- Tagging effciency improved about factor 2 $\frac{2}{6} 0.024$
- We could observe 5σ deviation of R(D) VS R(D*) in 2025 with 10ab⁻¹ or so if central value unchanged
 - Sensitivity of R(D*) is 0.006 in 2027.
- Then, model discrimination (Lorentz structure) with Polarization measurements
 - $P_{\tau}(D^*), P_{\tau}(D), P_{D^*}$

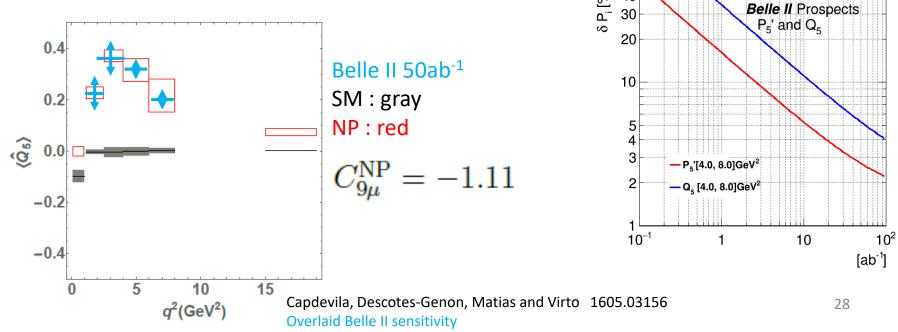

2year delay, Blue one is nominal scenario

Prospects on R_{K} , R_{K*} and R_{Xs} at Belle II

- Ideal place to measure R_H
 - bremsstrahlung photon can be recovered easily, is problematic at LHCb
 - Both high and low q² accessible
 - Dominant systematics due to lepton ID ~0.4% is smaller than stat one even with 50ab⁻¹

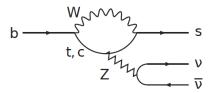
High q²>14.4GeV²

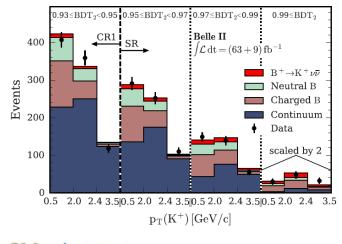
- We can observe NP using R_{κ} and $R_{\kappa*}$ with ~20ab⁻¹ data in 2028
 - if central values unchanged
- About 3% uncertainty for both high and low q² with 50/ab Low 1<q²<6GeV²
 - Assuming SM predictions for R_X

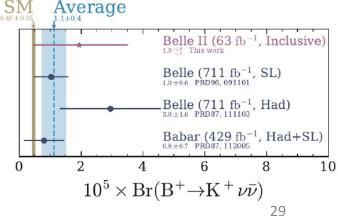


Q

- Angular observable P_5' in $B \rightarrow K^* \mu \mu$ is also deviated from theoretical prediction but this is dirty observable in terms of QCD uncertainty.
- $Q_5 = P_5'^e P_5'^{\mu}$ is also LFU observable and thus clean.
 - first measured by Belle.

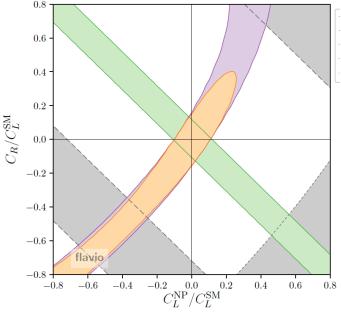

https://arxiv.org/abs/1612.05014


- 5.3% for q²=[1,6]GeV² with 50/ab
- This will be important discriminator for NP in P_5' at $_{\mathbb{R}}$ 40



Result on $B^+ \rightarrow K_{VV}$ with 63fb⁻¹

- Theoretically cleaner than $B \rightarrow K^*I+I-$
- Related to
 - LFU anomaly
 - $\quad \mathsf{DM} \text{ if } \nu \text{ is replaced with } \chi \\$
 - DM if $\nu\nu$ are replaced with ϕ
- Efficiency of the other B meson tagging is low.
- We tried to inclusive tagging.
 - O(0.1)% → 4%
- The background is huge.
 - Use BDT with 51 variables
- Almost the same sensitivity as Hadronic tagging $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (1.9 \pm 1.3 (\text{stat.})^{+0.8}_{-0.7} (\text{syst.})) \times 10^{-5}$ $< (4.1 \pm 0.5) \times 10^{-5}$ (90% C.L.)
- This technique can be used for other analysis



Measurements of $B \rightarrow K^{(*)}vv$

- We can observe the B→K^(*)vv at early stage (several ab⁻¹) of Belle II, and the sensitivity of the BF is 10% level with 50ab⁻¹.
- We can measure the F_L(K*), which is less sensitive to form factor uncertainty than BF, with 20% precision

$$\mathcal{O}_L = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\nu}\gamma^\mu (1-\gamma_5)\nu)$$
$$\mathcal{O}_R = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_R b) (\bar{\nu}\gamma^\mu (1-\gamma_5)\nu)$$

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${\rm Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
$\operatorname{Br}(B^0 \to K^{*0} \nu \bar{\nu})$	< 180%	26%	9.6%
$\operatorname{Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${\rm Br}(B^0\to\nu\bar\nu)\times 10^6$	< 14	< 5.0	< 1.5
$\operatorname{Br}(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	-

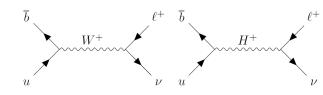
 Belle + BaBar $B \to K \nu \nu$ 90% CL excluded
 Belle + BaBar $B \to K^* \nu \nu$ 90% CL excluded
 Belle II $B \to K \nu \nu$ 68% CL allowed
 Belle II ${\rm BR}(B\to K^*\nu\nu)$ 68% CL allowed
 Belle II $B \to K^* \nu \nu$ 68% CL allowed

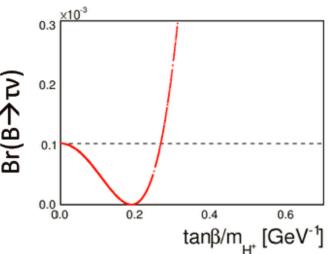
$B \rightarrow \tau \nu, \mu \nu$ in SM and 2HDM

• BF(B $\rightarrow \tau v$) in SM

۲

- Helicity suppression : Amp $\propto m_{\tau}$


$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$


- $m_B^2 = m_B^2$ BF(B $\rightarrow \tau \nu$) in 2HDM type-II
 - No helicity suppression with Higgs exchange
 - Higgs coupling $\propto m_{\tau}$

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H$$
$$r_H = (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)$$

- BF only dependent on r_H (function of $tan\beta/m_H$)
- The same can be applied to $B \rightarrow \mu v$
 - LFU (or 2HDM type-II) can be tested with a ratio of BFs

$$\begin{aligned} R_{\rm pl} &= \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_\tau)}{\mathcal{B}(B^- \to \mu^- \bar{\nu}_\mu)} \\ &= \frac{m_\tau^2}{m_\mu^2} \frac{(1 - m_\tau^2 / m_B^2)^2}{(1 - m_\mu^2 / m_B^2)^2} \big| 1 + r_{\rm NP}^\tau \big|^2 \simeq 222.37 \, \big| 1 + r_{\rm NP}^\tau \big|^2 \end{aligned}$$

BF(B $\rightarrow \tau v$) and R_{pl}

- Precision of BF($B \rightarrow \tau \nu$) at Belle II
 - 2x better tagging efficiency (the other B recon)

	Integrated Luminosity (ab^{-1})	1	5	50
	statistical uncertainty (%)	29	13	4
hadronic tag	systematic uncertainty $(\%)$	13	7	5
	total uncertainty (%)	32	15	6
semileptonic tag	statistical uncertainty (%)	19	8	3
	systematic uncertainty $(\%)$	18	9	5
	total uncertainty (%)	26	12	5

- → charged Higgs search in next page
- The ratio R_{pl}
 - 35% with 5ab⁻¹

$$R_{\rm pl}^{\rm NP} = \frac{m_\tau^2}{m_\mu^2} \frac{(1 - m_\tau^2/m_B^2)^2}{(1 - m_\mu^2/m_B^2)^2} \big| 1 + r_{\rm NP}^\tau \big|^2 \simeq 222.37 \, \big| 1 + r_{\rm NP}^\tau \big|^2$$

tag-side

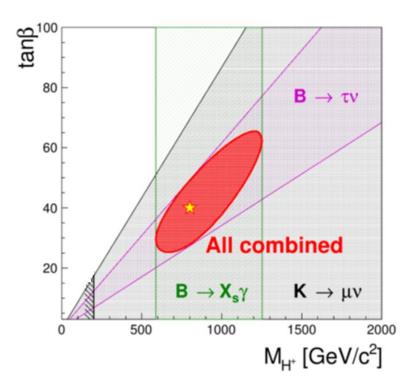
 $\Upsilon(4S)$

 B_{sig}^+

 B^{-}_{tag}

– 13% with 50ab⁻¹

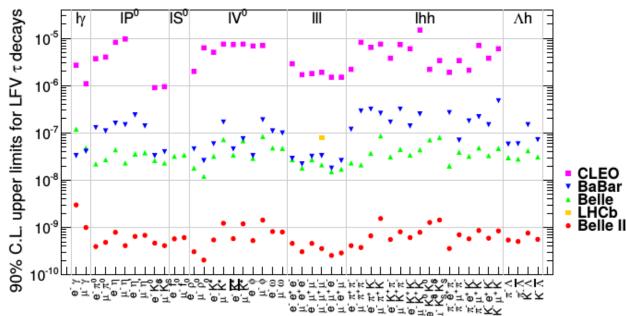
$$R_{\rm pl}^{5\,{\rm ab}^{-1}} = 222 \pm 76$$
, $R_{\rm pl}^{50\,{\rm ab}^{-1}} = 222 \pm 26$.


• Interval on r_{NP}^{τ}

Luminosity	$R_{ m ps}$	$R_{ m pl}$
$5\mathrm{ab}^{-1}$	[-0.22, 0.20]	[-0.42, 0.29]
$50\mathrm{ab}^{-1}$	[-0.11, 0.12]	[-0.12, 0.11]

signal-side

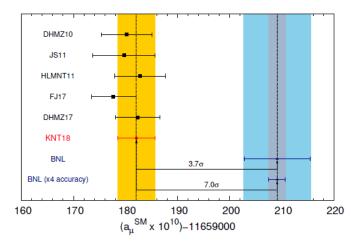
A Scenario of Evidence for Charged Higgs

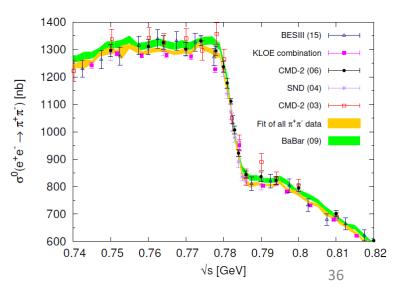

- $B \rightarrow X_s \gamma$: tan β independent
- $B \rightarrow \tau v$: tan β/m_{H} = const.
- With 50/ab, M_{H+} =800GeV and tan β =40 can be found.

Belle II Physics book 1808.10567

Lepton Flavor Violating τ Decays

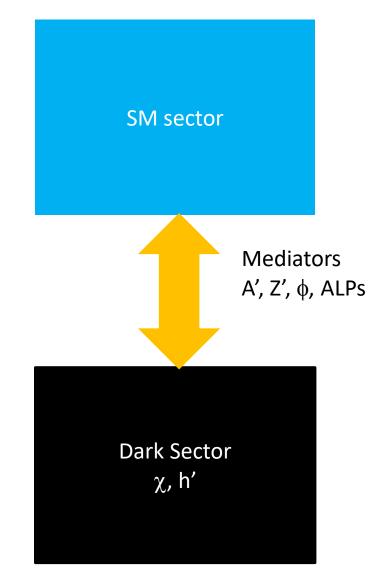
- Forbidden in the SM
 - Even with neutrino oscillation, the BF is tiny <O(10⁻⁵⁴)
 - If we find the decays at Belle II, these are clear NP signals
- Unique at Belle II.
 - LHC can only search for $\tau \rightarrow 3\mu$ and $\tau \rightarrow p\mu\mu$ but worse than Belle II.
 - Muon case, three experiments search for $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, and μ -e conv. while Belle II can do the three for τ case, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow \mu I+I$ -, and $\tau \rightarrow \mu hh$.
- Upper limits of O(10⁻⁹) or less are possible

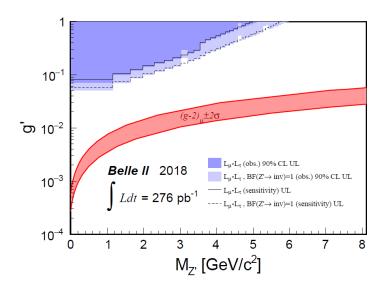

Single Photon Trigger

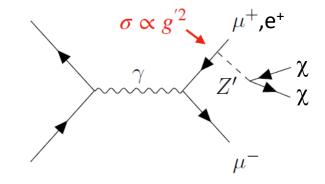

- At Belle, single photon trigger was not implemented
 - Large trigger rate due to large background events
 - So $e^+e^- \rightarrow \pi^+\pi^-\gamma$ and $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow$ invisible could not be studied
- At Belle II, trigger and DAQ system has been upgraded and the trigger was implemented
 - Radiative return measurement and Dark Sector search are possible!

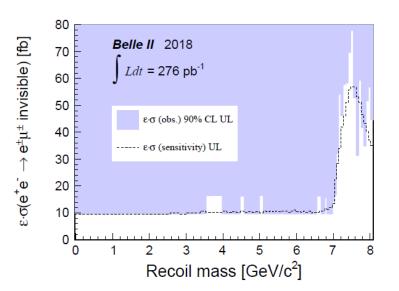
Radiative Return : $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$

- If current muon g-2 anomaly is true, this suggests NP in EW scale.
 - Need to improve both exp and theory
- Radiative return is important for SM calculation for muon g-2
- There is a tension between KLOE and Babar around ρ peak
- We can measure $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$ at least with a similar sensitivity as Babar (which is already systematic dominant).
 - Larger data set might allow to reduce the systematic uncertainties
 - Dominant ones
 - Luminosity 0.34%
 - Pion-ID 0.24%
 - It takes a few years to reach such small systematics


A. Keshavarzi, D. Nomura, T. Teubner 1802.02995

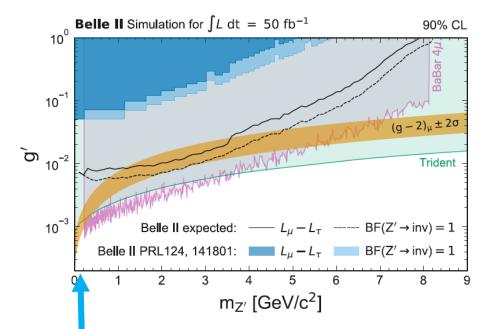

Dark Sector Searches


- Very Rich program
 - Unique E_{CM} ~ 10GeV
 - − Highest Luminosity \rightarrow low cross section
- Trigger is the key
 - We implemented single photon trigger!
- Many NP models
 - − Lµ-Lτ gauged Z' in ee \rightarrow μμμμ, μμνν
 - − ALPs in ee \rightarrow aγ (a \rightarrow γγ)
 - Extra U(1) Model
 - Dark photon A'
 - kinetic mixing with SM photon $\epsilon^2 {=} \alpha / \alpha_{\text{EM}}$
 - Dark Higgs h'
 - Inelastic dark matter $\chi_1\,\chi_2$
 - − dark scalar in Y(nS) \rightarrow γ ϕ and B \rightarrow K ϕ
 - Long lived also possible
 - And your models



The First Physics Paper

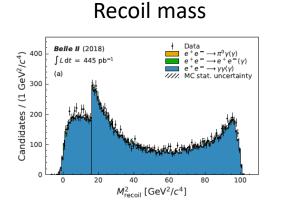
- Dark Z' search paper
 - e^+e^- → μμZ' or eμZ', Z' → invisible
 - Z' in L μ -L τ model
 - LFV Z'
 - Both are the first searches
 - With 276 pb⁻¹



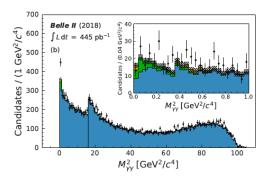
With 50fb⁻¹

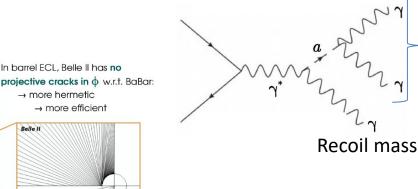
We already have 213fb⁻¹

• $e^+e^- \rightarrow \mu\mu Z'$, $Z' \rightarrow invisible$ - $g' < 10^{-2}$ for $m_{Z'} < 2m_{\mu}$

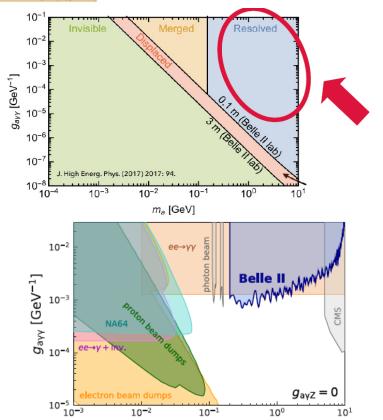

Invisible mode is accessible to $m_{Z'} < 2m_{\mu}$ region to which is not possible with $Z' \rightarrow \mu\mu$

Invariant mass


Phys. Rev. Lett. 125, 161806 (2020) https://arxiv.org/abs/2007.13071

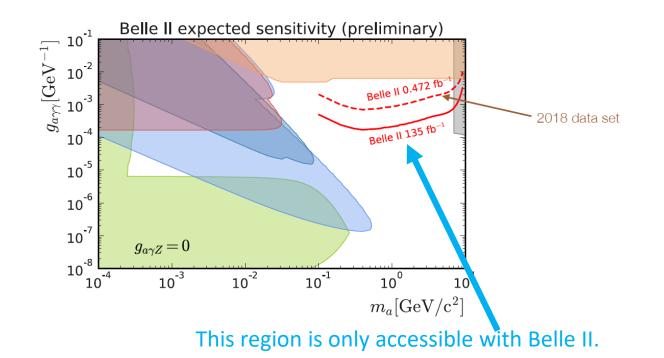

The Second Paper

- ALPs : $e^+e^- \rightarrow \gamma a$, $a \rightarrow \gamma \gamma$ ۲
 - With 445pb⁻¹
- No proximity ECL
- Two technique used in terms of mass resolut
 - Invariant mass for mA<16GeV
 - Recoil mass for mA>16GeV
- Best limits around 500MeV
- This region is only accessible with Belle II.


Invariant mass

→ more hermetic → more efficient

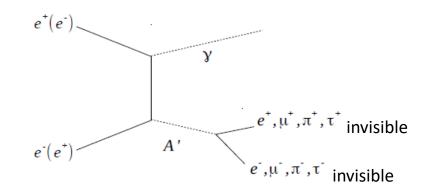
Belle II

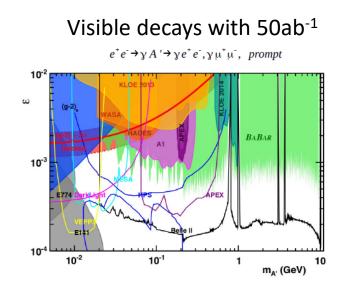


 m_a [GeV/ c^2]

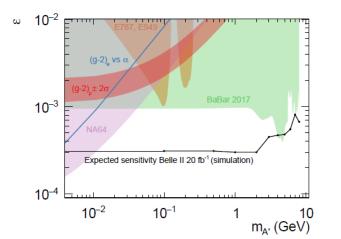
With 135fb⁻¹

We already have 213fb⁻¹

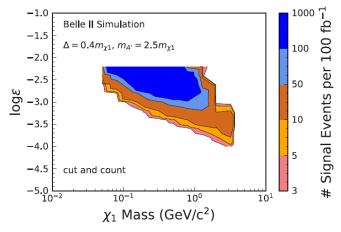

- ALPs : $e^+e^- \rightarrow \gamma a$, $a \rightarrow \gamma \gamma$
 - $g_{a\gamma\gamma}^{2} 10^{-4}$

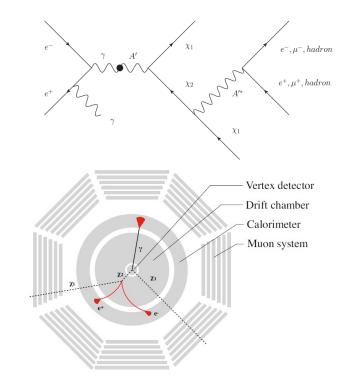


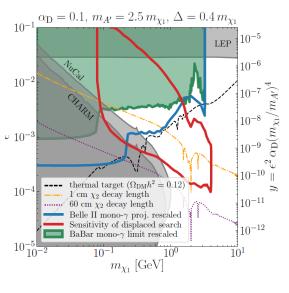
41


Dark Photon A'

- Extra U(1) model
 - Kinetic mixing with SM photon
 - Both visible and invisible decays


42


Inelastic Dark Matter


 Dark photon and two dark matter χ₁ and χ₂ with small mass splitting → can be long lived

 $\begin{array}{c} 5 \text{ parameter model:} \\ m_{A'} \text{ (fixed relative to } m_{\chi 1} \text{)} \\ m_{\chi 1} \text{ (scan)} \\ \text{mass difference } \Delta = m_{\chi 2} \text{-} m_{\chi 1} \text{ (categorical)} \\ \text{dark coupling } a_D \text{ (fixed to benchmarks)} \\ \text{kinetic mixing parameter } \epsilon \text{ (limit)} \end{array}$

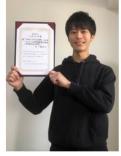
• The event tagged with photon but we are developing the dedicated trigger for displaced tracks.

JHEP 02 (2020) 039

Summary

- Belle II started physics run in 2019 with almost full detector
- We have accumulated 213fb⁻¹ so far
- Wide physics coverage
 - B physics
 - Charm physics
 - Tau physics
 - Radiative return
 - Dark sector searches
- The 1st and 2nd paper on dark sector published.
- The 3rd paper on $B \rightarrow Kvv$ submitted to PRL.

https://confluence.desy.de/display/BI/Public+Belle+II+Publications


- We are resuming the operation from Oct 2021 aiming to accumulate ~700fb⁻¹ by next summer.
- Stay tuned.

Flavor Physics Workshop 2021

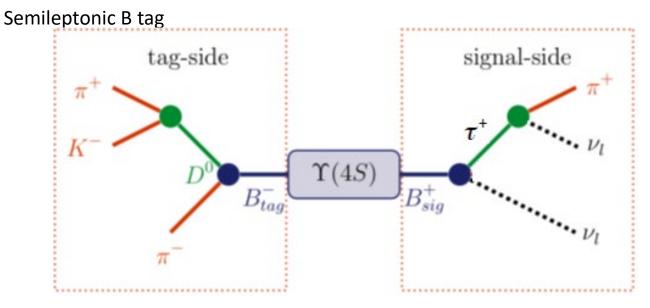
- 今年も FPWS を開催します。
- 学生の発表には Best Talk Awards の表彰もありますので、よろしければ 参加して下さい。テーマは Flavor じゃなくても、皆が楽しければOKです。

ベストトーク賞 浅井 健人 (東京大) "Search for U(1)_{mu-tau} charged Dark Matter with neutrino telescope"


乃一 雄也 (大阪大) [™]J-PARC KOTO実験におけるハローKL→2γ背景事象数の評価と削減方法の研究"

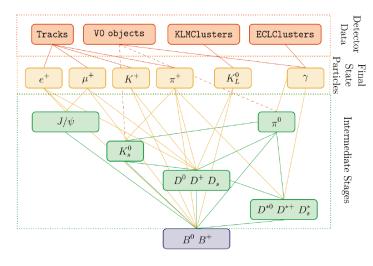
篇見 ─路 (名古屋大) "KEKテストビームライン建設に向けたビーム輸送シミュレーション"

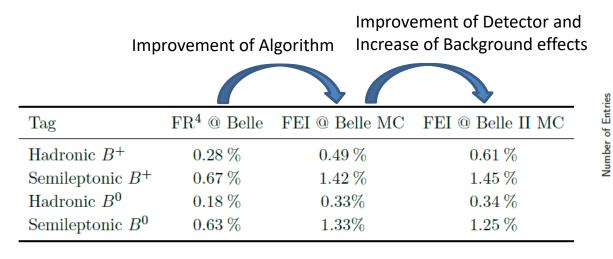
小川 真治 (東京大) "MEGII実験にむけた液体キセノンガンマ線検出器の開発"

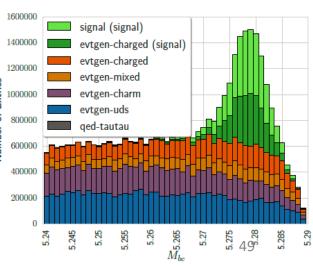


Thank you for your attention

backup

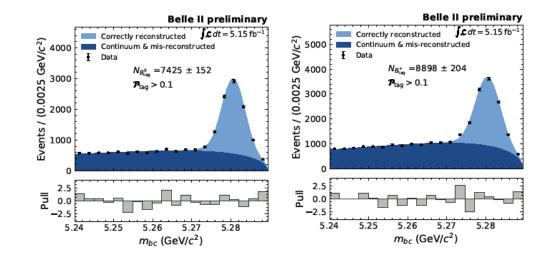

B Decays with Multiple $\boldsymbol{\nu}$

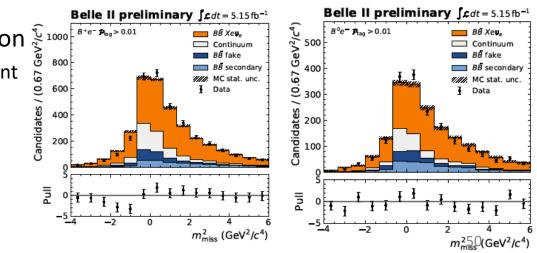

- We need to tag the other B meson which is not so easy at LHCb.
 - Can go to rest frame of the other B meson thanks to 4-momentum conservation
 - $B \rightarrow D\tau v, B \rightarrow \tau v, b \rightarrow s v v, b \rightarrow s \tau \tau$
- Three tagging methods
 - Inclusive tag
 - Hadronic B tag



Improvement of Tagging

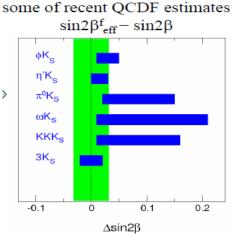
- Full Event Interpretation (FEI)
 - Tagging method using multivariate technique
 - Hierarchical reconstruction
 - More tagging modes than Belle 1
 - Both hadronic decays and semileptonic decays can be used
- About 2 times better tagging efficiency than Belle 1 (FR).



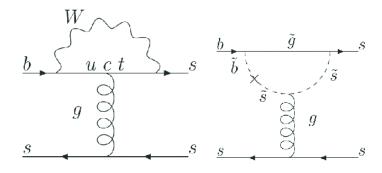


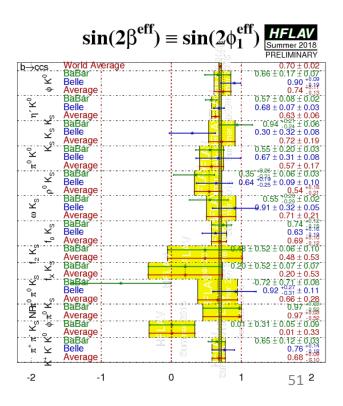
FEI with real data

• FEI successfully reconstructed hadronic B decays



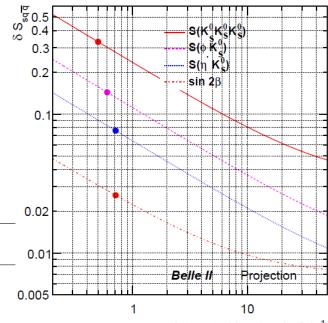
- Missing mass distributions for
 B→Xe⁺v with the tagged B meson
 - Can be used for |Vcb| measurement and extraction of HQE parameters



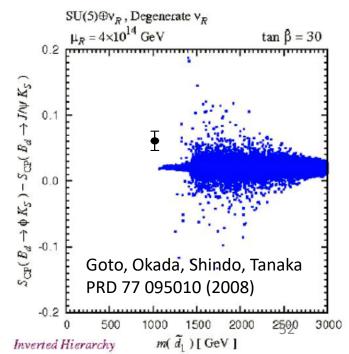

Time dependent CPV in $b \rightarrow sq\bar{q}$ decays

- $b \rightarrow s$ QCD penguin
 - − In the SM, the CPV parameter sin2 ϕ_1^{eff} should be consistent with sin2 ϕ_1 with B→J/ψK⁰
 - New particles with new source of CPV phases can enter in the loop
 - If deviated from $sin2\phi_1$, observation of NP
- Goldedn modes
 - B→ ∳Ks
 - B→η'Ks
 - B→KsKsKs
 - ~2% theoretical error

 Current measurements are consistent with B→J/ψK⁰ with large errors



TDCPV in $b \rightarrow sq\overline{q}$


• The error is comparable to theoretical uncertainty of 0.02

Observables	Belle	Belle II		
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$	
$\sin 2\phi_1(B \to J/\psi K^0)$	$0.667 \pm 0.023 \pm 0.012$	0.012	0.005	
$S(B \to \phi K^0)$	$0.90^{+0.09}_{-0.19}$	0.048	0.020	
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.032	0.015	

Integrated Luminosity [ab-1]

- Constraints on NP models
 - SU(5) SUSY GUT + degenerate v_R with inverted hierarchy

