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Realize flavor structure from superstring theory.
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1. Torus compactification

4D
10D = 

2. Magnetic flux

Γ𝛼𝜕𝛼𝜓 𝑧, ҧ𝑧 = 0
Free fermion:

+ background magnetic flux 𝐴𝛼 :

Γ𝛼 𝜕𝛼 − 𝑖𝐴𝛼 𝜓 𝑧, ҧ𝑧 = 0

Magnetic flux 𝐴𝛼
on torus
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Flux compactification model (torus + flux)

▶ Solutions to EOM:  Γ𝛼 𝜕𝛼 − 𝑖𝐴𝛼 𝜓 𝑧, ҧ𝑧 = 0

Property of theta function

Gen. = Flux 𝑴

Chiral fermion + 𝑀 generation

𝜓 =
𝜓+

𝜓−
, 𝜓+ = ෍

𝑗=0

𝑀 −1

𝜓𝑗, 𝑀 𝑧, 𝜏 , 𝜓− = 𝜓+ ҧ𝑧 , ത𝜏

𝜓𝑗, 𝑀 𝑧, 𝜏 = 𝒩𝑗𝑒
𝑖𝜋 𝑀 𝑧

Im 𝑧
Im 𝜏𝜃

𝑗

𝑀
0

𝑀 𝑧, 𝑀 𝜏

න
𝑇2
𝑑𝐴 = 𝑀 ∈ integer

Theta function
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Flux compactification model (torus + flux)

Similarly, multi-Higgs appears*. 

*In general, multi-Higgs appears

in the superstring theory.

Multi-Higgs

The lightest Higgs

= Higgs on the SM



Flux compactification model

１. Introduction

Yukawa coupling

Flavor structures

Flavor structures strongly depend on Higgs VEVs.

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 = න𝑑2𝑧 𝜓𝐿
𝑖,𝑀𝐿𝜓𝑅

𝑗,𝑀𝑅 𝜓𝐻
𝑘,𝑀𝐻

∗
∙ 𝐻𝑘

𝜓𝑗, 𝑀 𝑧, 𝜏 = 𝒩𝑗𝑒
𝑖𝜋 𝑀 𝑧

Im 𝑧
Im 𝜏𝜃

𝑗

𝑀
0

𝑀 𝑧, 𝑀 𝜏

Higgs VEVs

6

The directions of the lightest Higgs
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How find Higgs VEVs (the lightest Higgs direction)?

Higgs mass term (μ-term)

Symmetry

1

2

→ Find the lightest Higgs
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Symmetry2

If vacuum has a symmetry, VEVs are aligned in a symmetric direction.

𝐻𝑘 symmetric

Can lead realistic flavor model?

Mass ratios, CKM matrix,…

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 = න𝑑2𝑧 𝜓𝐿
𝑖,𝑀𝐿𝜓𝑅

𝑗,𝑀𝑅 𝜓𝐻
𝑘,𝑀𝐻

∗
∙ 𝐻𝑘

Mass term
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Same size, different shape on lattice → same torus

Modular transformation

0 𝒆𝟏

𝒆𝟐

generated by
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Modular transformation for wavefunctions

𝑆: 𝜓𝑗,𝑀 𝑧, 𝜏 → 𝜓𝑗,𝑀 −
𝑧

𝜏
,−

1

𝜏
= −𝜏

1
2𝑒

𝑖𝜋
4

1

𝑀
𝑒2𝜋𝑖

𝑗𝑘
𝑀𝜓𝑘,𝑀 𝑧, 𝜏 ≡ 𝜌 𝑆 𝑗𝑘𝜓𝑘,𝑀 𝑧, 𝜏

𝑇:𝜓𝑗,𝑀 𝑧, 𝜏 → 𝜓𝑗,𝑀 𝑧, 𝜏 + 1 = 𝑒𝑖𝜋
𝑗2

𝑀𝜓𝑗,𝑀 𝑧, 𝜏 ≡ 𝜌 𝑇 𝑗𝑘𝜓𝑘,𝑀 𝑧, 𝜏
Unitary

Yukawa coupling 𝑌𝑖𝑗𝑘 → 𝜌𝐿
𝑖𝑖′𝜌𝑅

𝑗𝑗′
𝜌𝐻
𝑘𝑘′

∗
𝑌𝑖

′𝑗′𝑘′
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Modular symmetry restrict the forms of Yukawa matrices. 

𝑺-symmetry at 𝝉 = 𝒊1

2 𝑺𝑻-symmetry at 𝝉 = 𝒆±𝟐𝝅𝒊/𝟑

3 𝑻-symmetry at 𝐈𝐦𝝉 = ∞



Unitary

３. Texture structures

12

𝑺-symmetry at 𝝉 = 𝒊1

At 𝜏 = 𝑖, Yukawa matrices are invariant as 𝑆: 𝜏 = −
1

𝜏
.

𝑌𝑖𝑗𝑘 = 𝜌𝐿
𝑖𝑖′ 𝑆 𝜌𝑅

𝑗𝑗′
𝑆 𝜌𝐻

𝑘𝑘′ 𝑆
∗
𝑌𝑖

′𝑗′𝑘′ 𝑎𝑡 𝜏 = 𝑖

where 𝜌 𝑆 is given by

𝑆: 𝜓𝑗,𝑀 𝑧, 𝜏 → 𝜓𝑗,𝑀 −
𝑧

𝜏
, −

1

𝜏
= −𝜏

1
2𝑒

𝑖𝜋
4

1

𝑀
𝑒2𝜋𝑖

𝑗𝑘
𝑀𝜓𝑘,𝑀 𝑧, 𝜏 ≡ 𝜌 𝑆 𝑗𝑘𝜓𝑘,𝑀 𝑧, 𝜏



３. Texture structures

13

𝑺-symmetry at 𝝉 = 𝒊1

On 𝑇2/ℤ2 orbifold, Yukawa matrices restricted to two types:

∗ ∗
∗ ∗

∗
,

∗
∗

∗ ∗
,

and these matrices correspond to different 𝑆-eigenstates. Then, 

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 =෍

𝑚

∗ ∗
∗ ∗

∗ 𝑚

𝑖𝑗

𝐻𝑚 +෍

𝑛

∗
∗

∗ ∗ 𝑛

𝑖𝑗

𝐻𝑛
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𝑺𝑻-symmetry at 𝝉 = 𝒆±𝟐𝝅𝒊/𝟑2

On 𝑇2/ℤ2 orbifold, Yukawa matrices restricted to three types:

∗
∗

∗
,

∗
∗

∗
,

∗
∗

∗
,

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 =෍

ℓ

∗
∗

∗ ℓ

𝑖𝑗

𝐻𝑛 +෍

𝑚

∗
∗

∗ 𝑚

𝑖𝑗

𝐻𝑚 +෍

𝑛

∗
∗

∗ 𝑛

𝑖𝑗

𝐻𝑛

and these matrices correspond to different 𝑆𝑇-eigenstates. Then, 



∗
, ∗ ,

∗

,

３. Texture structures
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𝑻-symmetry at 𝐈𝐦𝝉 = ∞3

On 𝑇2/ℤ2 orbifold, almost elements of Yukawa matrices become zero.

For example,

and these matrices correspond to different 𝑇-eigenstates. Then, 

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 =෍

ℓ

∗

ℓ

𝑖𝑗

𝐻𝑛 +෍

𝑚

∗

𝑚

𝑖𝑗

𝐻𝑚 +෍

𝑛 ∗ 𝑛

𝑖𝑗

𝐻𝑛

Non-realistic
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We have seen Yukawa matrices are restricted by modular symmetry.

Hereafter, we focus on textures by 𝑺-symmetry.

From this mass matrix, we will see what vacuum 𝑯𝒌 is favored 

for realistic quark mass matrix.

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 = σ𝑚

∗ ∗
∗ ∗

∗ 𝑚

𝑖𝑗

𝐻𝑚 + σ𝑛

∗
∗

∗ ∗ 𝑛

𝑖𝑗

𝐻𝑛 ⋇ 𝜏 = 𝑖

𝑺-symmetry
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Quarks mass ratios Experimental Values

𝑚𝑢, 𝑚𝑐 , 𝑚𝑡 /𝑚𝑡 0.0000126, 0.00738,1

𝑚𝑑 , 𝑚𝑠, 𝑚𝑏 /𝑚𝑏 0.00112, 0.0222,1

Quark has large hierarchy.

Quark mass matrix is approximately rank one matrix.

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 ∝ 𝑈𝐿

0.0000126
0.00738

1
𝑈𝑅
†~𝑈𝐿

0
0

1
𝑈𝑅
†

Rank one
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Can rank one mass matrix be realized by textures?

Rank one is realized if mass matrix includes,

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 =෍

𝑚

∗ ∗
∗ ∗

∗ 𝑚

𝑖𝑗

𝐻𝑚 +෍

𝑛

∗
∗

∗ ∗ 𝑛

𝑖𝑗

𝐻𝑛 = Rank one ⋇ 𝜏 = 𝑖

1. Three or more of 
∗ ∗
∗ ∗

∗
. Higgs VEVs leading to rank one exist in 𝑆-eigenstates.

2. Besides 1, includes one or more of 
∗
∗

∗ ∗
. Rank one exist in not 𝑆-eigenstates, too.

3. Three or more of non-symmetric 
∗
∗

∗ ∗
. Rank one exist in 𝑆-eigenstates.



Consistent with

𝑺-invariant vacuum

Three-generation fermion
models on 𝑇2/ℤ2 orbifold

The directions of Higgs VEVs 
leading to rank one

5 pair Higgs (𝑀𝐻=8, even) 𝑺-invariant, not 𝑆-eigenstate

5 pair Higgs (𝑀𝐻=9, even) 𝑺-invariant, not 𝑆-eigenstate

6 pair Higgs (𝑀𝐻=10, even) 𝑺-invariant, not 𝑆-eigenstate

5 pair Higgs (𝑀𝐻=11, odd) 𝑖 eigenstate, not 𝑆-eigenstate

5 pair Higgs (𝑀𝐻=12, odd) 𝑖 eigenstate, not 𝑆-eigenstate

6 pair Higgs (𝑀𝐻=13, odd) ±𝑖 eigenstate, not 𝑆-eigenstate

8 pair Higgs (𝑀𝐻=14, even) −1 eigenstate, not 𝑆-eigenstate

8 pair Higgs (𝑀𝐻=15, even) 𝑺-invariant, −1 eigenstate, not 𝑆-eigenstate

9 pair Higgs (𝑀𝐻=16, even) −1 eigenstate, not 𝑆−eigenstate

４. Rank one mass matrix
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５. Numerical example: 5 pair Higgs (𝑴𝑯=8, even)

20

Three-generation fermion
models on 𝑇2/ℤ2 orbifold

The directions of Higgs VEVs 
leading to rank one

5 pair Higgs (𝑀𝐻=8, even) 𝑺-invariant, not 𝑆-eigenstate

If vacuum is 𝑺-invariant, quark mass matrix can be rank one.

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 =
∗ ∗
∗ ∗

∗

𝑖𝑗

𝐻0 +
∗ ∗
∗ ∗

∗

𝑖𝑗

𝐻1 +
∗ ∗
∗ ∗

∗

𝑖𝑗

𝐻2

+
∗
∗

∗ ∗

𝑖𝑗

𝐻3 +
∗
∗

∗ ∗

𝑖𝑗

𝐻4

𝑺-even
(invariant)

𝑺-odd

5 pair = 3 (S-even) 

+ 2 (S-odd)
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If vacuum is 𝑺-invariant, quark mass matrix can be rank one.

𝑀𝑖𝑗 = 𝑌𝑖𝑗𝑘 𝐻𝑘 =
∗ ∗
∗ ∗

∗

𝑖𝑗

𝐻0
′ +

∗ ∗
∗ ∗

∗

𝑖𝑗

𝐻1
′ +

∗ ∗
∗ ∗

∗

𝑖𝑗

𝐻2
′

+
∗
∗

∗ ∗

𝑖𝑗

𝐻3 +
∗
∗

∗ ∗

𝑖𝑗

𝐻4

𝑺-even
(invariant)

𝑺-odd

Rank one𝐻𝑘 → 𝑈𝑘𝑘′ 𝐻𝑘′ = 𝐻𝑘
′

0

Three-generation fermion
models on 𝑇2/ℤ2 orbifold

The directions of Higgs VEVs 
leading to rank one

5 pair Higgs (𝑀𝐻=8, even) 𝑺-invariant, not 𝑆-eigenstate

5 pair = 3 (S-even) 

+ 2 (S-odd)

５. Numerical example: 5 pair Higgs (𝑴𝑯=8, even)
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Theoretical value Experimental value

𝑚𝑢, 𝑚𝑐 , 𝑚𝑡 /𝑚𝑡 6.84 × 10−6, 7.86 × 10−3, 1 5.58 × 10−6, 2.69 × 10−3, 1

𝑚𝑑, 𝑚𝑠, 𝑚𝑏 /𝑚𝑏 1.84 × 10−3, 4.08 × 10−2, 1 6.86 × 10−4, 1.37 × 10−2, 1

0.975 0.223 0.00211
0.223 0.975 0.0230
0.0719 0.0220 1.00

0.974 0.227 0.00361
0.226 0.973 0.0405
0.00854 0.0398 0.999

𝑉CKM

<Best fit>

５. Numerical example: 5 gen. Higgs (𝑴𝑯=8, even)

𝐻1
′ , 𝐻2

′ , 𝐻3 , 𝐻4 = 0.0097539

𝐻0
′ = 0.99995

𝐻1
′ , 𝐻2

′ , 𝐻3 , 𝐻4 = 0.049086

𝐻0
′ = 0.99879

Up

Higgs

Down

Higgs
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６. Conclusion

・We could evaluate three-generation models by finding 

the directions of Higgs VEVs leading to rank one mass matrix.

・𝑆-invariant vacuum is preferred for several models.

Conclusion

Future work

・Realization of lepton flavors 

→ Neutrino mass can be induced by D-brane instanton effects.

Then, what vacuum is favored?

・Other orbifold models



𝑺-symmetry at 𝝉 = 𝒊1

𝑌𝑖𝑗𝑘 =
1

1
−1

𝑖𝑖′ 1
1

−1

𝑗𝑗′

1
−1

𝑘𝑘′

𝑌𝑖
′𝑗′𝑘′

𝑌𝑖𝑗0 =
∗ ∗
∗ ∗

∗
𝑌𝑖𝑗1 =

∗
∗

∗ ∗

𝑌𝑖𝑗0 =
1

1
−1

𝑌𝑖𝑗0
1

1
−1

Eigenvalue 1 Higgs 𝒌 = 𝟎

𝑌𝑖𝑗1 = −
1

1
−1

𝑌𝑖𝑗1
1

1
−1

Eigenvalue -1 Higgs 𝒌 = 𝟏

Ex)

７. Appendix: How to restrict Yukawa matrices



７. Appendix: Rank one condition at 𝝉 = 𝒊

Proof:

𝑌𝑖𝑗0 → 𝑈0𝑘′𝑌𝑖𝑗𝑘
′
= 𝑈00

∗ ∗
∗ ∗

∗ 0

𝑖𝑗

+𝑈01
∗ ∗
∗ ∗

∗ 1

𝑖𝑗

+𝑈02
∗ ∗
∗ ∗

∗ 2

𝑖𝑗

=
𝐴 𝐵
𝐶 𝐷

0
(rank one).

Rank one is realized if mass matrix includes,

1. Three or more of 
∗ ∗
∗ ∗

∗
. Higgs VEVs leading to rank one exist in 𝑆-eigenstates.

“Higgs VEVs leading to rank one exist in 𝑆-eigenstates.”

“Unitary transformation for Higgs leading to rank one matrix exists.”

We should find the transformation 𝐻𝑘 → 𝑈𝑘𝑘′ 𝐻𝑘′ = 𝐻𝑘
′ such that



７. Appendix: Rank one condition at 𝝉 = 𝒊

1
cos𝜃 sin𝜃 0

−sin𝜃 cos𝜃 0

0 0 1

∗ ∗
∗ ∗

∗ 0
∗ ∗
∗ ∗

∗ 1
∗ ∗
∗ ∗

∗ 2

=

𝑎 𝑏
𝑐 𝑑

0 0′

∗ ∗
∗ ∗

∗ 1′

∗ ∗
∗ ∗

∗ 2

1 0 0

0 cos𝜙 sin𝜙

0 −sin𝜙 cos𝜙

𝑎 𝑏
𝑐 𝑑

0 0′

∗ ∗
∗ ∗

∗ 1′

∗ ∗
∗ ∗

∗ 2

=

𝑎 𝑏
𝑐 𝑑

0 0′

𝑒 𝑓
𝑔 ℎ

0 1′′

∗ ∗
∗ ∗

∗ 2′

2

3 cos𝜔 𝑒𝑖𝛽 sin𝜔

−sin𝜔 𝑒𝑖𝛽 cos𝜔

𝑎 𝑏
𝑐 𝑑

0 0′

𝑒 𝑓
𝑔 ℎ

0 1′′

=

𝐴 𝐵
𝐶 𝐷

0 0′′

∗ ∗
∗ ∗

0 1′′′

such that 𝐴𝐷−𝐵𝐶 = 0.

det cos𝜔
𝑎 𝑏
𝑐 𝑑

+𝑒𝑖𝛽 sin𝜔
𝑒 𝑓
𝑔 ℎ

= cos2𝜔det
𝑎 𝑏
𝑐 𝑑

+𝑒𝑖𝛽 tan𝜔
𝑒 𝑓
𝑔 ℎ

= 0

𝑥 ∈ ℂ≡

This is a quadratic equation for 𝑥. Thus, the transformation such that 𝐴𝐷−𝐵𝐶 = 0exists.



７. Appendix: Rank one condition at 𝝉 = 𝒊

𝑌𝑖𝑗0 → 𝑈0𝑘′𝑌𝑖𝑗𝑘
′
= 𝑈00

∗ ∗
∗ ∗

∗ 0

𝑖𝑗

+𝑈01
∗ ∗
∗ ∗

∗ 1

𝑖𝑗

+𝑈02
∗ ∗
∗ ∗

∗ 2

𝑖𝑗

=
𝐴 𝐵
𝐶 𝐷

0
(rank one).

Now, we obtain the unitary transformation,

𝑈3𝑈2𝑈1

∗ ∗
∗ ∗

∗ 0
∗ ∗
∗ ∗

∗ 1
∗ ∗
∗ ∗

∗ 2

=

𝐴 𝐵
𝐶 𝐷

0 0′′

∗ ∗
∗ ∗

0 1′′′

∗ ∗
∗ ∗

∗ 2′

such that 𝐴𝐷−𝐵𝐶 = 0.

When 𝐴𝐷−𝐵𝐶 = 0, 
𝐴 𝐵
𝐶 𝐷

0
is rank one. Therefore, we could find 𝑈 ≡ 𝑈3𝑈2𝑈1 such that 

QED.


