Quark and lepton mass matrices in modular symmetric vacuum

Shota Kikuchi (Hokkaido Univ.)

Tatsuo Kobayashi, Yuya Ogawa, Hikaru Uchida

HIGH ENERGY Superstring theory (10D) Effective theory (4D) Zero-modes Standard Model Flavor structure

Realize **flavor structure** from superstring theory.

1. Torus compactification

$$10D = \begin{pmatrix} 4D \\ \times & \times & \times \\ \end{pmatrix} \times \begin{pmatrix} \times & \times & \times \\ & \times & \times \\ \end{pmatrix}$$

2. Magnetic flux

Free fermion:

$$\Gamma^{\alpha}\partial_{\alpha}\psi(z,\bar{z})=0$$

+ background magnetic flux A_{α} :

$$\Gamma^{\alpha}(\partial_{\alpha} - i\underline{A}_{\alpha})\psi(z,\bar{z}) = 0$$

Magnetic flux A_{α} on torus

Flux compactification model (torus + flux)

► Solutions to EOM: $\Gamma^{\alpha}(\partial_{\alpha} - \underline{i}\underline{A}_{\alpha})\psi(z,\bar{z}) = 0$ $\left(\int_{T^2} \underline{d}\underline{A} = \underline{M} \ (\in \text{integer})\right)$

$$\psi = \begin{pmatrix} \psi_{+} \\ \psi_{-} \end{pmatrix}, \quad \psi_{+} = \sum_{j=0}^{|M|-1} \psi^{j,|M|}(z,\tau), \quad \psi_{-} = \psi_{+}(\bar{z},\bar{\tau})$$

$$\psi^{j,|M|}(z,\tau) = \mathcal{N}_j e^{i\pi|M|z\frac{\operatorname{Im} z}{\operatorname{Im} \tau}} \theta \begin{bmatrix} \frac{j}{|M|} \\ 0 \end{bmatrix} (|M|z,|M|\tau)$$
 Theta function

Property of theta function

	M>0	M<0
ψ_+	<i>M</i> gen.	×
ψ	×	<i>M</i> gen.

Chiral fermion + |M| generation

Gen. = Flux |M|

Flux compactification model (torus + flux)

Flux compactification model

$$\psi^{j,|M|}(z,\tau) = \mathcal{N}_{j}e^{i\pi|M|z\frac{\operatorname{Im}z}{\operatorname{Im}\tau}}\theta\begin{bmatrix}\frac{j}{|M|}\\0\end{bmatrix}(|M|z,|M|\tau)$$

Yukawa coupling

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \int d^2z \ \psi_L^{i,M_L} \psi_R^{j,M_R} \left(\psi_H^{k,M_H} \right)^* \cdot \left\langle \langle H_k \rangle \right) \quad \text{Higgs VEVs}$$

Flavor structures

Flavor structures strongly depend on Higgs VEVs.

The directions of the lightest Higgs

How find Higgs VEVs (the lightest Higgs direction)?

1 Higgs mass term (μ -term)

→ Find the lightest Higgs

2 Symmetry

Symmetry

If vacuum has a symmetry, VEVs are aligned in a symmetric direction.

Mass term

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \int d^2 z \ \psi_L^{i,M_L} \psi_R^{j,M_R} \left(\psi_H^{k,M_H} \right)^* \cdot \langle H_k \rangle$$

Can lead realistic flavor model?

Mass ratios, CKM matrix,...

2. Modular symmetry

Same size, different shape on lattice \rightarrow same torus

$$au o rac{a au + b}{c au + d}, \; z o rac{z}{c au + d}, \; egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) \;\; ext{generated by} \;\; egin{pmatrix} S \; ext{trans.} \;\; au o au' = -rac{1}{ au} \;\; ext{T trans.} \;\; au o au' = au + 1 \;\; ext{generated} \;\; ext{generated} \;\; ext{T trans.} \;\; au o au' = au + 1 \;\; ext{generated} \;\; ext{generated} \;\; ext{T trans.} \;\; au o au' = au + 1 \;\; ext{generated} \;\; ext{generated} \;\; ext{T trans.} \;\; au o au' = au + 1 \;\; ext{generated} \;\; ext{generated} \;\; ext{generated} \;\; ext{T trans.} \;\; au o au' = au o au' = au o au' o$$

S trans.
$$au o au' = -rac{1}{ au}$$
T trans. $au o au' = au + 1$

2. Modular symmetry

Modular transformation for wavefunctions

$$S: \psi^{j,M}(z,\tau) \to \psi^{j,M}\left(-\frac{z}{\tau}, -\frac{1}{\tau}\right) = (-\tau)^{\frac{1}{2}} e^{\frac{i\pi}{4}} \frac{1}{\sqrt{M}} e^{2\pi i \frac{jk}{M}} \psi^{k,M}(z,\tau) \equiv \rho(S)^{jk} \psi^{k,M}(z,\tau)$$

$$T: \psi^{j,M}(z,\tau) \to \psi^{j,M}(z,\tau+1) = e^{i\pi \frac{j^2}{M}} \psi^{j,M}(z,\tau) \equiv \rho(T)^{jk} \psi^{k,M}(z,\tau)$$
 Unitary

Yukawa coupling

$$Y^{ijk} \rightarrow \rho_L^{ii'} \rho_R^{jj'} \left(\rho_H^{kk'}\right)^* Y^{i'j'k'}$$

Modular symmetry restrict the forms of Yukawa matrices.

- 1 S-symmetry at $\tau = i$
- 2 ST-symmetry at $\tau = e^{\pm 2\pi i/3}$
- 3 T-symmetry at Im $au = \infty$

1 S-symmetry at $\tau = i$

At $\tau = i$, Yukawa matrices are invariant as $S: \tau = -\frac{1}{\tau}$.

$$Y^{ijk} = \rho_L^{ii'}(S)\rho_R^{jj'}(S)\left(\rho_H^{kk'}(S)\right)^* Y^{i'j'k'} \quad at \ \tau = i$$

where $\rho(S)$ is given by

Unitary

$$S: \psi^{j,M}(z,\tau) \to \psi^{j,M}\left(-\frac{z}{\tau}, -\frac{1}{\tau}\right) = (-\tau)^{\frac{1}{2}} e^{\frac{i\pi}{4}} \frac{1}{\sqrt{M}} e^{2\pi i \frac{jk}{M}} \psi^{k,M}(z,\tau) \equiv \rho(S)^{jk} \psi^{k,M}(z,\tau)$$

1 S-symmetry at $\tau = i$

On T^2/\mathbb{Z}_2 orbifold, Yukawa matrices restricted to two types:

$$\begin{pmatrix} * & * \\ * & * \\ & * \end{pmatrix}, \qquad \begin{pmatrix} & & * \\ & & * \\ * & * \end{pmatrix},$$

and these matrices correspond to different S-eigenstates. Then,

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \sum_{m} \begin{pmatrix} * & * & \\ * & * & \\ \end{pmatrix}_{m}^{ij} \langle H_m \rangle + \sum_{n} \begin{pmatrix} & & * \\ * & * & \\ \end{pmatrix}_{n}^{ij} \langle H_n \rangle$$

2 ST-symmetry at $au = e^{\pm 2\pi i/3}$

On T^2/\mathbb{Z}_2 orbifold, Yukawa matrices restricted to three types:

$$\begin{pmatrix} * & & * \\ & * & * \end{pmatrix}$$
, $\begin{pmatrix} * & * \\ * & & * \end{pmatrix}$, $\begin{pmatrix} * & * \\ * & & * \end{pmatrix}$,

and these matrices correspond to different ST-eigenstates. Then,

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \sum_{\ell} \begin{pmatrix} * & * \\ * & * \end{pmatrix}_{\ell}^{ij} \langle H_n \rangle + \sum_{m} \begin{pmatrix} * & * \\ * & * \end{pmatrix}_{m}^{ij} \langle H_m \rangle + \sum_{n} \begin{pmatrix} * & * \\ * & * \end{pmatrix}_{n}^{ij} \langle H_n \rangle$$

3 T-symmetry at Im $\tau = \infty$

Non-realistic

On T^2/\mathbb{Z}_2 orbifold, almost elements of Yukawa matrices become zero.

For example,
$$\binom{*}{}$$
, $\binom{*}{}$, $\binom{*}{}$,

and these matrices correspond to different T-eigenstates. Then,

We have seen Yukawa matrices are restricted by modular symmetry. Hereafter, we focus on textures by *S*-symmetry.

S-symmetry

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \sum_{m} \begin{pmatrix} * & * \\ * & * \end{pmatrix}_{m}^{ij} \langle H_m \rangle + \sum_{n} \begin{pmatrix} & & * \\ * & * \end{pmatrix}_{n}^{ij} \langle H_n \rangle \qquad (*\tau = i)$$

From this mass matrix, we will see what vacuum $\langle H_k \rangle$ is favored for realistic quark mass matrix.

Quark has large hierarchy.

Quarks mass ratios	Experimental Values
$\overline{(m_u, m_c, m_t)/m_t}$	(0.0000126, 0.00738,1)
$(m_d, m_s, m_b)/m_b$	(0.00112, 0.0222, 1)

Quark mass matrix is approximately rank one matrix.

$$M^{ij} = Y^{ijk} \langle H_k \rangle \propto U_L \begin{pmatrix} 0.0000126 \\ 0.00738 \\ 1 \end{pmatrix} U_R^{\dagger} \sim U_L \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U_R^{\dagger}$$
 Rank one

Can rank one mass matrix be realized by textures?

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \sum_{m} \begin{pmatrix} * & * & \\ * & * & \\ * & m \end{pmatrix}^{ij}_{m} \langle H_m \rangle + \sum_{n} \begin{pmatrix} & & * \\ * & * & \\ * & * & \end{pmatrix}^{ij}_{n} \langle H_n \rangle = \text{Rank one} \quad (*\tau = i)$$

Rank one is realized if mass matrix includes,

- 1. Three or more of $\begin{pmatrix} * & * \\ * & * \end{pmatrix}$. Higgs VEVs leading to rank one exist in S-eigenstates.
- 2. Besides 1, includes one or more of $\begin{pmatrix} * & * \\ * & * \end{pmatrix}$. Rank one exist in not *S*-eigenstates, too.
- 3. Three or more of non-symmetric $\begin{pmatrix} & * \\ * & * \end{pmatrix}$. Rank one exist in S-eigenstates.

Three-generation fermion models on T^2/\mathbb{Z}_2 orbifold	The directions of Higgs VEVs leading to rank one	
5 pair Higgs (M_H =8, even)	<i>S</i> -invariant, not <i>S</i> -eigenstate	
5 pair Higgs (M_H =9, even)	\emph{S} -invariant, not \emph{S} -eigenstate	
6 pair Higgs (M_H =10, even)	$\it S$ -invariant, not $\it S$ -eigenstate	JA .
5 pair Higgs (M_H =11, odd)	i eigenstate, not ${\it S}$ -eigenstate	
5 pair Higgs (M_H =12, odd)	i eigenstate, not S -eigenstate	Consistent with
6 pair Higgs (M_H =13, odd)	$\pm i$ eigenstate, not S-eigenstate	S-invariant vacuum
8 pair Higgs (M_H =14, even)	-1 eigenstate, not S -eigenstate	
8 pair Higgs (M_H =15, even)	S-invariant, -1 eigenstate, not S -eigenstat	e
9 pair Higgs (M_H =16, even)	-1 eigenstate, not S — eigenstate	

5. Numerical example: 5 pair Higgs $(M_H=8, \text{ even})$

Three-generation fermion models on T^2/\mathbb{Z}_2 orbifold	The directions of Higgs VEVs leading to rank one
5 pair Higgs (M_H =8, even)	${\it S-invariant}$, not ${\it S-eigenstate}$

If vacuum is S-invariant, quark mass matrix can be rank one.

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \begin{pmatrix} * & * & \\ * & * & \\ & * \end{pmatrix}^{ij} \langle H_0 \rangle + \begin{pmatrix} * & * & \\ * & * & \\ & * \end{pmatrix}^{ij} \langle H_1 \rangle + \begin{pmatrix} * & * & \\ * & * & \\ & * \end{pmatrix}^{ij} \langle H_2 \rangle$$
 (invariant)

$$+\begin{pmatrix} & * \\ * & * \end{pmatrix}^{ij} \langle H_3 \rangle + \begin{pmatrix} & * \\ * & * \end{pmatrix}^{ij} \langle H_4 \rangle$$
 S-odd

5. Numerical example: 5 pair Higgs $(M_H=8, \text{ even})$

Three-generation fermio	n
models on T^2/\mathbb{Z}_2 orbifold	
	$\overline{}$

The directions of Higgs VEVs leading to rank one

5 pair Higgs (M_H =8, even)

S-invariant, not **S**-eigenstate

If vacuum is S-invariant, quark mass matrix can be rank one.

$$\langle H_k \rangle \to U^{kk'} \langle H_{k'} \rangle = \langle H_k' \rangle$$

$$M^{ij} = Y^{ijk} \langle H_k \rangle =$$

$$M^{ij} = Y^{ijk} \langle H_k \rangle = \begin{pmatrix} * & * & \\ * & * & \\ & & 0 \end{pmatrix}^{ij} \langle H'_0 \rangle + \begin{pmatrix} * & * & \\ * & * & \\ & & * \end{pmatrix}^{ij} \langle H'_1 \rangle + \begin{pmatrix} * & * & \\ * & * & \\ & & * \end{pmatrix}^{ij} \langle H'_2 \rangle$$
 (invariant)

$$+\begin{pmatrix} & * \\ * & * \end{pmatrix}^{ij} \langle H_3 \rangle + \begin{pmatrix} & * \\ * & * \end{pmatrix}^{ij} \langle H_4 \rangle$$
 S-odd

5. Numerical example: 5 gen. Higgs $(M_H=8, even)$

<Best fit>

Up
$$\langle H_0' \rangle = 0.99995$$

Higgs
$$|\langle H_1' \rangle, \langle H_2' \rangle, \langle H_3 \rangle, \langle H_4 \rangle| = 0.0097539$$

Down
$$\langle H_0' \rangle = 0.99879$$

Higgs
$$|\langle H_1' \rangle, \langle H_2' \rangle, \langle H_3 \rangle, \langle H_4 \rangle| = 0.049086$$

	Theoretical value	Experimental value
$(m_u, m_c, m_t)/m_t$	$(6.84 \times 10^{-6}, 7.86 \times 10^{-3}, 1)$	$(5.58 \times 10^{-6}, 2.69 \times 10^{-3}, 1)$
$(m_d, m_s, m_b)/m_b$	$(1.84 \times 10^{-3}, 4.08 \times 10^{-2}, 1)$	$(6.86 \times 10^{-4}, 1.37 \times 10^{-2}, 1)$
$ V_{CKM} $	$\begin{pmatrix} 0.975 & 0.223 & 0.00211 \\ 0.223 & 0.975 & 0.0230 \\ 0.0719 & 0.0220 & 1.00 \end{pmatrix}$	$\begin{pmatrix} 0.974 & 0.227 & 0.00361 \\ 0.226 & 0.973 & 0.0405 \\ 0.00854 & 0.0398 & 0.999 \end{pmatrix}$

6. Conclusion

Conclusion

- We could evaluate three-generation models by finding the directions of Higgs VEVs leading to rank one mass matrix.
 - S-invariant vacuum is preferred for several models.

Future work

- Realization of lepton flavors
 - → Neutrino mass can be induced by D-brane instanton effects.
 Then, what vacuum is favored?
- Other orbifold models

7. Appendix: How to restrict Yukawa matrices

S-symmetry at $\tau = i$

Ex)

$$Y^{ijk} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}^{ii'} \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}^{jj'} \begin{pmatrix} 1 & \\ & 1 \end{pmatrix}^{kk'} Y^{i'j'k'}$$

Eigenvalue 1 Higgs (k = 0)

$$\begin{pmatrix} & y^{ij0} & \\ & 1 & \\ & & -1 \end{pmatrix} \begin{pmatrix} & y^{ij0} & \\ & & & -1 \end{pmatrix}$$

$$Y^{ij0} = \begin{pmatrix} * & * \\ * & * \\ & * \end{pmatrix}$$

Eigenvalue -1 Higgs (k = 1)

$$\begin{pmatrix} & & \\ & & 1 & \\ & & & -1 \end{pmatrix} \begin{pmatrix} & & \\ & & 1 & \\ & & & -1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & & & 1 \\ & & & -1 \end{pmatrix}$$

$$Y^{ij1} = \begin{pmatrix} & & * \\ & & * \\ * & * \end{pmatrix}$$

7. Appendix: Rank one condition at $\tau = i$

Rank one is realized if mass matrix includes,

1. Three or more of $\begin{pmatrix} * & * \\ * & * \end{pmatrix}$. Higgs VEVs leading to rank one exist in S-eigenstates.

Proof: "Higgs VEVs leading to rank one exist in *S*-eigenstates."

"Unitary transformation for Higgs leading to rank one matrix exists."

We should find the transformation $\langle H_k \rangle \to U^{kk'} \langle H_{k'} \rangle = \langle H_k' \rangle$ such that

$$Y^{ij0} \to U^{0k'}Y^{ijk'} = U^{00} \begin{pmatrix} * & * & \\ * & * & \\ * & * & \\ 0 & * & * \end{pmatrix}_{0}^{ij} + U^{01} \begin{pmatrix} * & * & \\ * & * & \\ * & * & \\ 1 & * & * \end{pmatrix}_{1}^{ij} + U^{02} \begin{pmatrix} * & * & \\ * & * & \\ * & * & \\ 2 & * & * \end{pmatrix}_{2}^{ij} = \begin{pmatrix} A & B & \\ C & D & \\ & & * & \\ 0 \end{pmatrix} \text{ (rank one).}$$

7. Appendix: Rank one condition at $\tau = i$

$$\left(\begin{array}{ccc} \cos\omega & e^{i\beta}\sin\omega \\ -\sin\omega & e^{i\beta}\cos\omega \end{array}\right) \left(\begin{array}{ccc} \begin{pmatrix} a & b \\ c & d \\ \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \\ \end{pmatrix} & \begin{pmatrix} * & * \\ * & * \\ \end{pmatrix} & \begin{pmatrix} * & * \\$$

This is a quadratic equation for x. Thus, the transformation such that AD - BC = 0 exists.

7. Appendix: Rank one condition at $\tau = i$

Now, we obtain the unitary transformation,

When AD - BC = 0, $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is rank one. Therefore, we could find $U \equiv U_3U_2U_1$ such that