タキオン不安定性による 非熱的インフレーション

中川 翔太 (東北大)

共同研究者:P. Agrawal, 北嶋直弥, M. Reece, 高橋史宜

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

弦理論

容易に宇宙のエネルギー密度の 支配的成分となる。

weak scale程度の質量であれば、 BBNの時期以降に崩壊する

低エネルギー有効理論

- ・軽元素量の観測量と矛盾
- ·X線/ア線観測による厳しい制限
- ・安定なら宇宙を支配してしまう

moduli 問題

moduli 問題の解決案

- ・ $m_{\chi} \gtrsim O(10)$ TeV 程度の重いmoduliとなるモデル ↔ $\tau < t_{BBN}$
- ·断熱抑制機構

A. D. Linde (1996) K. Nakayama, F. Takahashi, T. T. Yanagida (1999)

• 熱的インフレーション K. Yamamoto (1985), D. H. Lyth, E. D. Stewart (1996)

T. Asaka, M. Kawasaki (1999)

etc…

moduli 問題の解決案

- ・ $m_{\gamma} \gtrsim O(10)$ TeV 程度の重いmoduliとなるモデル
- ·断熱抑制機構

A. D. Linde (1996) K. Nakayama, F. Takahashi, T. T. Yanagida (1999)

・熱的インフレーション

T. Asaka, M. Kawasaki (1999)

etc…

熱的インフレーションの特質:

- 1.熱的な束縛効果
- 2. ポテンシャルがとても平坦

i.e. 非常に軽く、VEV が大きい

Reheatingに伴うエントロピー生成によりmoduliが薄められる

$\leftrightarrow \tau < t_{\rm BBN}$

moduli問題の解決案として、非熱的インフレーション模型を考案した。

- ・インフラトンは flaton
- ・プラズマによる熱的な束縛
- ・とても平坦なポテンシャルが必要

- ・格子シミュレーションによりインフレーションが起こるかどうか調べた。 ・moduli問題が解けるパラメータ領域とダークフォトン検出によるモデルの
- 検証可能性を調べた。

非熱的インフレーション ・インフラトンは dark Higgs ・ダークフォトンによる非熱的な束縛 ・ポテンシャルはそれほど平坦でなく ても良く、SM Higgsのようなワイン ボトル型でも可能

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

 $\mathcal{L} = (D_{\mu}\Psi)^{\dagger}D^{\mu}\Psi - V_{\Psi}(\Psi,\Psi^{\dagger}) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V_{\phi}(\phi) - \frac{\beta}{4f_{\phi}}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$ $\Psi: (ダーク) ヒッグス A_{\mu}: ダークフォトン$ where $D_{\mu} = \partial_{\mu} - ieA_{\mu}$ $\phi: \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P}$ ヒッグスポテンシャル $V_{\Psi}(\Psi,\Psi^{\dagger})=rac{\lambda}{4}(|\Psi|^2-v^2)^2$ $V(\phi)$ アクシオンポテンシャル $V_{\phi}(\phi) = m_{\phi}^2 f_{\phi}^2 \left[1 - \cos\left(\frac{\phi}{f_{\phi}}\right) \right]$

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

ダークフォトンと結合するアクシオン + Abelian Higgs model

2. Set up $\mathcal{L} = (D_{\mu}\Psi)^{\dagger}D^{\mu}\Psi - V_{\Psi}(\Psi,\Psi^{\dagger}) - \frac{1}{4}F_{\mu}$ wh $(D_{\mu}\Psi)^{\dagger}D^{\mu}\Psi = |\partial_{\mu}\Psi|^{2} + \underline{e}$ ダークフォトン生成 → ヒッ ヒッグスホテンンヤル $V_{\Psi}(\Psi, \Psi') =$

アクシオンポテンシャル $V_{\phi}(\phi) = m$

ダークフォトンと結合するアクシオン + Abelian Higgs model

P. Agrawal, G. Marques-Tavares, W. Xue (2018), N. Kitajima, T. Sekiguchi, F. Takahashi (2018), P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi, F. Takahashi (2020)

質量0ダークフォトンの運動方程式

宇宙論的シナリオ

1. タキオン不安定性によるダークフォトン生成 2. ヒッグスの真空エネルギーにより非熱的インフレーション開始 3. 束縛が宇宙膨張で弱まり、インフレーション終了 (Reheating) $e^2 \langle A^2
angle |\Psi|^2$ $\xi R |\Psi|^2 \sim H^2 |\Psi|^2$ Hubble mass タキオン生成

Moduli or inflaton

優勢宇宙

Tight trapping

非熱的インフレーション

Reheating

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

3. シミュレーション結果

ように選んでいる

<u>e-folding number N</u>

Parameters

$$f_{\phi} = 10^{17} \text{GeV}$$

$$\beta = 30$$

$$\lambda = 1$$

$$e = 0.1$$

$$\xi = 1$$

The number of e-folds : $N \equiv \log \frac{a_{end}}{a_{begin}}$

e-folding number N

Parameters

$$f_{\phi} = 10^{17} \text{GeV}$$

$$\beta = 30$$

$$\lambda = 1$$

$$e = 0.1$$

$$\xi = 1$$

The number of e-folds : $N \equiv \log \frac{a_{\text{end}}}{a_{\text{end}}}$ a_{begin}

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

<u>e-folding number N</u>

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

4. Reheatingと検証可能性

Reheating process

・主な崩壊過程:

• Reheating temperature:

$$T_{\rm reh} \simeq \begin{cases} 0.17 \ {\rm GeV} \left(\frac{g_*(T_{\rm reh})}{40}\right)^{-1/4} \left(\frac{\epsilon}{10^{-8}}\right) \left(\frac{m_{\gamma'}}{100 \ {\rm MeV}}\right)^{1/2} & (\Gamma_{\gamma' \to e^+e^-} < H_{\rm end}) \\ 0.26 \ {\rm GeV} \lambda^{1/4} \left(\frac{g_*(T_{\rm reh})}{40}\right)^{-1/4} \left(\frac{e}{0.1}\right)^{-1} \left(\frac{m_{\gamma'}}{100 \ {\rm MeV}}\right) & (\Gamma_{\gamma' \to e^+e^-} > H_{\rm end}), \end{cases}$$

$$T_{\rm reh} \simeq \begin{cases} 0.17 \ {\rm GeV} \left(\frac{g_*(T_{\rm reh})}{40}\right)^{-1/4} \left(\frac{\epsilon}{10^{-8}}\right) \left(\frac{m_{\gamma'}}{100 \ {\rm MeV}}\right)^{1/2} & (\Gamma_{\gamma' \to 4}) \\ 0.26 \ {\rm GeV} \lambda^{1/4} \left(\frac{g_*(T_{\rm reh})}{40}\right)^{-1/4} \left(\frac{e}{0.1}\right)^{-1} \left(\frac{m_{\gamma'}}{100 \ {\rm MeV}}\right) & (\Gamma_{\gamma' \to 4}) \end{cases}$$

素粒子物理学の進展2021 9/7 パラレルセッション2A 中川翔太 (東北大)

まとめ

・アクシオンを含んだHidden Abelian Higgs modelに基づき、非熱 的インフレーションによるmoduli問題の解決可能性を探った。

・ダークフォトンによる非熱的な束縛効果が非常に強いため、あまり平 坦でないポテンシャルでインフレーションが起こり得る。

・格子シミュレーションでインフレーションが起こる可能性を確かめた。

・ダークフォトン検出を目的とした将来の地上実験によって、パラメータ 領域の大部分が検証可能である。

Parameters

- $f_{\phi} = 5 \times 10^{17} \text{GeV}$ $m_{\phi} = 5 \times 10^8 \text{GeV}$ $v = f_{\phi}$
- $\beta = 30$ $e = 2m_{\phi}/f_{\phi}$ $\lambda = 10^{-4}m_{\phi}^2/f_{\phi}^2$

Grid number: $N_{\text{grid}} = 256^3$

Comoving box size: $N_{\rm box} = 0.5\pi m_{\phi}^{-1}$

Time stepsize: $0.1m_{\phi}^{-1}$

- The Higgs is slowly rolling at the initial stage since we choose small λ and thus we do not consider the Hubble mass in lattice simulation.
- and thus the numerical results can be extrapolated even to $\lambda \simeq 1$.

Lattice simulation

Initial values: $\theta_i \equiv \phi_i / f_{\phi} = 1$ $\Psi_{i} = 0.01v$

• Although this simulation can be applied for small λ due to the computational

resources, we have confirmed qualitatively that the analytical results are valid

Results by lattice simulation

Experimental constraints

Beam dump includes E141, E137, E774, KEK, Orsay, NA64, CHARM. ν -Cal I, and U70.

Upper bound by collider or fixed target exp. includes KLOE, NA48/2, HADES, PHENIX, A1, BaBar, and engineering runs for Apex and HPS,

Supernova constraints are imposed by the observation of SN1987a.