Generalized global symmetry and its application

Outline

Generalized global symmetries

●通常の対称性

●高次対称性, 非可逆対称性

応用

●自発的対称性の破れ ●QCD相図への応用

まとめ

最近の我々の仕事(axion electrodynamics) ⇒横倉さんのトーク

通常の対称性 例) U(1) 対称性 U(1) 電荷 $Q = \int d^d x j^0 = \int_{M^d} j$ 時間に依存しない $\frac{d}{dt}Q = \int d^d x \partial_0 j^0 = - \int d^d x \nabla_i j^i = 0$ ユニタリー演算子 $U_g(M^d) = e^{i\alpha Q} \quad (g = e^{i\alpha})$ $\phi(x)$:荷電場 $U_g(M^d)\phi(x)U_g^{-1}(M^d) = e^{iq\alpha}\phi(x) = V_g\phi(x)$

通常の対称性 $U_g(M^d) = e^{i\alpha Q} (g = e^{i\alpha})$ は群をなす 積: $U_g U_{g'} = U_{gg'}$ **単位元:** $1 := U_{e=1}$ $U_g \times 1 = 1 \times U_g = U_g$ 逆元: $U_{\varrho}U_{\varrho^{-1}} = U_{\varrho^{-1}}U_{\varrho} = 1$ 結合則: $U_g(U_{g'}U_{g''}) = (U_gU_{g'})U_{gg''}$

一般の対称性とその群G についても同様

グラフィカル表現

時間に依存しない

グラフィカル表現

積: $U_g(M^d)U_{g'}(M^d) = U_{gg'}(M^d)$

逆元: $U_g(M^d)U_{g^{-1}}(M^d) = U_{gg^{-1}}(M^d) = 1$

グラフィカル表現

結合則: $(U_g U_{g'}) U_{g''} = U_g (U_{g'} U_{g''})$

グラフィカル表現

対称性演算子はトポロジカルである

グラフィカル表現

p-次対称性

Gaiotto, Kapustin, Seiberg, Willett, JHEP 02 (2015) 172

荷電物体: 群Gの元で変換するp 次元物体

対称性演算子:

群Gの元でラベルされた(d - p)次元トポロジカル物体

例) 2+1 次元

例) U(1) ゲージ理論 $S = -\left[d^4x \frac{1}{4\rho^2} f_{\mu\nu} f^{\mu\nu} = -\left[\frac{1}{2\rho^2} f \wedge \star f\right]$ Maxwell 方程式 $\partial_{\mu}f^{\mu\nu} = 0 \implies d \star f = 0$ $\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}f_{\nu\rho} = 0 \implies df = 0$ **電束と磁束の保存に対応する** $U(1)_{F}^{[1]} \times U(1)_{M}^{[1]}$ 対称性 $\bigcup U_F = e^{i\frac{\theta_E}{e^2}\int_S \star f} \qquad U_M = e^{i\frac{\theta_M}{2\pi}\int_S f}$ $H = e^{i \int_C \tilde{a}}$ $W = e^{i \int_C a}$

非可逆対称性(Non-invertible symmetry) 圈論的対称性(Categorical symmetry)

Bhardwaj, Tachikawa(2017), Chang, Lin, Shao, Wang, Yin (2018), Ji, Wen (2019), Komargodski, Ohmori, Roumpedakis, Seifnashri (2020), Nguyen, Tanizaki, Ünsal (2021), …

例) O(2)ゲージ理論

cf. Heidenreich, McNamara, Montero, Reece, Rudelius, Valenzuela, 2104.07036

$$O(2) \simeq U(1) \rtimes \mathbb{Z}_{2}$$
 $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
回転 荷電共役

3種類の群の表現: 1, det, 2q

対応するWilsonループ $W_{det}(C) = \operatorname{tr}_{det} e^{i\int_{C} a}$ $W_{2_q}(C) = e^{iq\int_{C} a} + e^{-iq\int_{C} a}$

対応する対称性演算子 $T_{\theta}(S) = e^{i\theta \frac{1}{e^2} \int_S \star f} + e^{-i\theta \frac{1}{e^2} \int_S \star f}$ $T_{\pi}(S) = e^{i\pi \frac{1}{e^2} \int_S \star f}$

これらはトポロジカルだが非可逆

 $T_{\theta}(S)T_{\theta'}(S) = T_{\theta+\theta'}(S) + T_{\theta-\theta'}(S)$ $T_{\theta}(S)T_{-\theta}(S) \approx 1 + T_{2\theta}(S)$ **融合則:** $T_{a}(S)T_{b}(S) = \sum_{c} N_{ab}^{c}T_{c}(S)$

 $2\cos(\theta)\cos(\theta') = \cos(\theta + \theta') + \cos(\theta - \theta')$

TとWのリンク $T_{\theta}(S) = e^{i\theta \frac{1}{e^2} \int_S \star f} + e^{-i\theta \frac{1}{e^2} \int_S \star f}$ $W_{2_a}(C) = e^{iq\int_C a} + e^{-iq\int_C a}$

 $e^{i\theta \frac{1}{e^2} \int_S \star f} e^{iq \int_C a} = e^{iq\theta} e^{iq \int_C a}$

・ $T_{\theta}(S)W_{2_q}(C) = (e^{iq\theta} + e^{-iq\theta})W_{2_q}(C)$ 位相じゃない

リンクすると: $T_{\theta}(S)W_{2_q}(C) = B_{2_q}(\theta)W_{2_q}(C)$ $B_{2_q}(\theta) = 2\cos q\theta$

何かでラベルされた (d-p)次元 トポロジカルな物体

(*d*+1)次元QFTの非可逆対称性:

融合則: $T_a(M)T_b(M) = \sum_{c} N_{ab}^{c}T_c(M)$ 結合則: $T_a(M)(T_b(M)T_c(M)) = (T_a(M)T_b(M))T_c(M)$

リンク: $T_a(M)W_\rho(C) = B_\rho(a)W_\rho(C)$

対称性の自発的破れ (SSB)

●光子は南部-Goldstoneボソン

●離散高次対称性の自発的破れはトポロジカル秩序

●アノマリーマッチングによる相の制限

例: $\theta = \pi$ における*SU*(2) Yang-Mills 理論は,

1次対称性と時間反転対称性の間に't Hooft anomaly

基底状態は非自明

対称性による相の分類

Nambu-Goldstone ボソン 自発的対称性の破れ

0次対称性 lim $\langle \phi^{\dagger}(x)\phi(0) \rangle \simeq \langle \phi^{\dagger}(x) \rangle \langle \phi(0) \rangle \neq 0$ $x \to \infty$

0次対称性の破れ lim $\langle \phi^{\dagger}(x)\phi(0) \rangle \neq 0$ •-----・ $x \to \infty$

1次対称性の破れ $\lim_{C \to \infty} \langle W(C) \rangle \neq 0$

p次対称性の破れ lim $\langle W(M^p) \rangle \neq 0$ $M^p \rightarrow \infty$

Gaiotto, Kapustin, Seiberg, Willett ('14), Lake ('18), Hofman, Iqbal ('18)

連続的*p*次対称性が自発的に 破れるとギャップレスモード(NGモード)が現れる

相対論的な場合は、NGモードの数は、 $N_{\rm NG} = \sum_{A} {}_{d-1}C_{p_A}$

例) U(1)ゲージ理論

$\lim_{C \to \infty} \langle e^{i \int_C a} \rangle \neq 0 \quad U(1)_E^{[1]} \text{ は自発的に破れている} \\ \mathbf{\mathcal{X}} \mathbf{\mathcal{X}} \mathbf{\mathcal{K}} \mathbf{\mathcal{K} \mathbf{\mathcal{K}} \mathbf{\mathcal{K} \mathbf{\mathcal{K}} \mathbf{\mathcal{K}} \mathbf{\mathcal{K}} \mathbf{\mathcal{K}} \mathbf{\mathcal{K}$

$$S = -\int \frac{1}{2e^2} f \wedge \star f$$

は低エネルギー有効ラグランジアン

f = daはMaurer-Cartan formの高次対称性バージョン)

Ex)
$$SU(N)$$
 ゲージ理論
 $S = -\int d^4x \frac{1}{2g^2} \operatorname{tr} f \wedge \star f \qquad f = da - ia \wedge a$

は \mathbb{Z}_N 1次対称性を持つ

秩序演算子 $\langle W \rangle = \langle \operatorname{tr} e^{i \int_{C} a} \rangle = \begin{cases} \ \mathrm{mathematical} & \ \mathrm{mathemath{\mathbb{H}}} \\ \ \mathrm{math{\mathbb{H}}} & \ \mathrm{math{\mathbb{H}}} \\ \ \mathrm{math{\mathbb{H}}} \\ \ \mathrm{math{\mathbb{H}}} & \ \mathrm{math{\mathbb{H}}} \\ \ \mathrm{math{\mathbb{H}}} \\ \ \mathrm{math{\mathbb{H}}} & \ \mathrm{math{\mathbb{H}}} \\ \ \mathrm{math{}} \\$

\mathbb{Z}_N は離散対称性なので,

 \mathbb{Z}_N が自発的に破れてもNGモードはでない SU(N) ゲージ理論にクーロン相がない事と無矛盾

非相対論的な場合

0次対称性の対称性の破れとNGモードの関係

Watanabe, Murayama ('12), YH ('12)

$$N_{\rm NG} = N_{\rm BS} - \frac{1}{2} \operatorname{rank} \left\langle [iQ_a, Q_b] \right\rangle$$

高次対称性の破れに拡張可能

Hidaka, Hirono, Yokokura ('20)

$$N_{\rm NG} = \sum_{A} {}_{d-1}C_{p_A} - \frac{1}{2} \operatorname{rank} \langle [iQ_a, Q_b] \rangle$$

(対称性)が異なっている相の間には

相転移が存在

QCDへの応用を考えてみる

QCD相図(予想)

Fukushima, Hatsuda, Rept. Prog. Phys. 74 (2011) 014001

高密度相はよくわかっていない

何がわかっているか? 簡単のため3フレーバQCDについて

超高密度 フレーバとカラーがロックした カラー超伝導相(CFL相)

原子核超流動相

 $(\Phi_L)^i_{a} = \epsilon^{ijk} \epsilon_{abc} \langle (q_L)^b_j (Cq_L)^c_k \rangle \quad (\Phi_R)^i_{a} = \epsilon^{ijk} \epsilon_{abc} \langle (q_R)^b_j (Cq_R)^c_k \rangle$

$$\Phi := \Phi_L = -\Phi_R = \begin{pmatrix} \Delta_{\text{CFL}} & 0 & 0 \\ 0 & \Delta_{\text{CFL}} & 0 \\ 0 & 0 & \Delta_{\text{CFL}} \end{pmatrix}$$

カイラル対称性も破れている 大域対称性の破れのパターン

 $SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_V$

CFL相は何が特徴づけるか?

Fradkin-Shenker定理: 閉じ込め相とHiggs相は同じ相

Schafer and Wilczek, PRL 82, 3956(1999) Hatsuda, Tachibana, Yamamoto, Baym, PRL 97 122001 (2006)

$\mathbf{CFL} = \mathbb{Z}_3 - 2$ 次対称性が創発

Hirono, Tanizaki, Phys. Rev. Lett. 122, 212001 (2019) cf. Cherman, Sen, Yaffe, Phys. Rev. D 100, 034015 (2019)

対応して、非可換渦が存在する U(1) 渦 $\Phi := \Delta_{CFL} \begin{pmatrix} e^{i\theta}f(r) & 0 & 0 \\ 0 & e^{i\theta}f(r) & 0 \\ 0 & 0 & e^{i\theta}f(r) \end{pmatrix}$ 非可換渦 Balachandran, Digal, Matsuura, PRD73, 074009 (2006) $\Phi := \Delta_{CFL} \begin{pmatrix} e^{i\theta}f(r) & 0 & 0 \\ 0 & g(r) & 0 \\ 0 & 0 & g(r) \end{pmatrix} = \Delta_{CFL}e^{i\frac{\theta}{3}} \begin{pmatrix} e^{i\frac{2\theta}{3}}f(r) & 0 & 0 \\ 0 & e^{-i\frac{\theta}{3}}g(r) & 0 \\ 0 & 0 & e^{-i\frac{\theta}{3}}g(r) \end{pmatrix}$

ハドロン相にこの対称性がなければ相転移があるはず

cf. Boojumシナリオ: Chatterjee, Nitta, Yasui Cherman, Jacobson, Sen, Yaffe, Phys. Rev. D 102, 105021 (2020)

cf. 谷崎-広野の議論: ℤ₃ -2 次対称性は破れていない のでトポロジカル秩序ではない

2フレーバQCDの場合

ハドロン相: ${}^{3}P_{2}$ 超流動

高密度相: 1 重項 (ud) + ${}^{3}P_{2}$ (dd)のダイクォーク凝縮相

Fujimoto, Fukushima, Weise Phys. Rev. D 101 (2020) 094009

量子渦として "Alice string"が存在

Fujimoto, Nitta, Phys. Rev.D 103 (2021), 114003; 054002; 2103.15185

⇒非可逆対称性が創発(?)

ハドロン相にこの対称性がなければ相転移があるはず

まとめ

対称性: 何かでラベルされたトポロジカルな物体

通常の対称性と同様に便利 対称性の破れ、't Hooftアノマリー,相の分類 通常の対称性と同じように便利 _{対称性の破れ、アノマリー、相の分類など}

対称性演算のなす代数= 高次群

⇒横倉さんのトーク

おまけ

トポロジカル秩序

トポロジカル秩序 トポロジカル秩序の特徴づけ-

- 基底状態の縮退
- エニオン統計
- •長距離の量子相関(エンタングルメント)
- 局所的な摂動に対する安定性

低エネルギーの有効理論

= BF理論のようなトポロジカルな場の理論 $S = \frac{k}{2\pi} \int b \wedge da$ 典型的なトポロジカル秩序は高次対称性の

自発的破れとして解釈可能

例: 分数量子ホール系

$$S_{\text{eff}} = -\frac{k}{4\pi} \int a \wedge da + \frac{1}{2\pi} \int A \wedge da$$

a: ダイナミカルゲージ場
A: 外場としてのU(1)ゲージ場
k: 整数

Figure from Nobelprize.org

運動方程式:
$$-\frac{k}{2\pi}da + \frac{dA}{2\pi} = 0$$

カレント: $J = \frac{\delta S_{\text{eff}}}{\delta A} = \frac{1}{2\pi}da = \frac{1}{k}\frac{dA}{2\pi}$ 分数ホール効果

例: 分数ホール効果 有効理論: Cherns-Simons $S = -\frac{k}{4\pi} \int a \wedge da$ $a \to a + \frac{\lambda}{k}$ $d\lambda = 0$ $\int \lambda \in 2\pi \mathbb{Z}$ \mathbb{Z}_k 1次対称性 荷電物体: $W_q = e^{iq\int a}$ 対称性演算子: $U_n = e^{in\int a}$ $\int \int u_n = e^{2\pi i \frac{nq}{k}} \left(\int u_n \right)$ W_q

$e^{\frac{\pi}{k}i}$ が入れ替えたときの位相を表す

例: 分数量子ホール系

基底状態の縮退

非自明になりうる

$U_1 U_2 U_1^{-1} | \Omega \rangle = e^{i \frac{2\pi}{k}} U_2 | \Omega \rangle$ は基底状態の縮退を意味する $U_1^{-1} | \Omega \rangle = e^{i\theta} | \Omega \rangle \forall \mathbf{J} \mathbf{J},$ $\langle \Omega | U_2 | \Omega \rangle = \langle \Omega | U_1 U_2 U_1^{-1} | \Omega \rangle = e^{i \frac{2\pi}{k}} \langle \Omega | U_2 | \Omega \rangle$ $(\Omega | U_2 | \Omega) = 0$ $|\Omega\rangle と U_2 |\Omega\rangle$ は異なる状態 (基底状態は k^g 重縮退)

例: 超伝導

$$S_{\text{eff}} = v^2 \int (d\varphi - ka) \wedge \star (d\varphi - ka)$$

k = 2: クーパーペアの電荷

低エネルギーの有効理論は \mathbb{Z}_k ゲージ理論 $v^2 \rightarrow \infty \quad \clubsuit \quad d\varphi - ka = 0$

$$S_{\rm eff} = \frac{1}{2\pi} \int c \wedge (d\varphi - ka)$$

$$\varphi$$
の運動方程式 $dc = 0$ $rightarrow c = db$
 $S_{\text{eff}} = \frac{-k}{2\pi} \int db \wedge a = \frac{k}{2\pi} \int b \wedge da$

アノマリー

対称性を背景ゲージ場と結合させると

カレントが保存しなくなる.

=対称性演算子の ネットワーク

背景ゲージ場との結合 格子ゲージ理論ではゲージ場は, *G*値のリンク変数 $U = e^{i \int a}$ 背景ゲージ場 と結合 U_{g_2} U_{g_4} *8*₄- U_{g} g_1 対称性演算子のネットワーク と等価 (Poincare 双対)

離散対称性の場合は,連続極限を取れるためには

 $U_{g_1}U_{g_2}U_{g_3}^{-1}U_{g_4}^{-1} = 1$ を要請 (平坦接続), i.e., $g_1g_2g_3^{-1}g_4^{-1} = 1$

ネットワークの変形(ゲージ変換)を誘発

平坦じゃない(曲率がある)場合は, ジャンクションはトポロジカルではない

 g_3

't Hooft アノマリー

分配関数 $Z[A] = D\phi e^{iS[A]}$

はゲージ変換の元で不変でない $Z[A] \rightarrow Z[A + d\lambda] = Z[A]e^{i\omega(\lambda,A)} \neq Z[A]$

差は位相 $e^{i\omega(\lambda,A)}$

 $U_{g_1}U_{g_2} = e^{i\omega(g_1,g_2)}U_{g_1g_2}$ $U_{g_1g_2}$ 結合則を満たす: $(U_{g_1}U_{g_2})U_{g_3} = U_{g_1}(U_{g_2}U_{g_3})$ $e^{i\omega(g_1g_2,g_3)+i\omega(g_1,g_2)} = e^{i\omega(g_1,g_2g_3)+i\omega(g_2,g_3)}$ $\bullet \delta^{(3)} \omega(g_1, g_2, g_3) := \omega(g_2, g_3) - \omega(g_1g_2, g_3) + \omega(g_1, g_2g_3) - \omega(g_1, g_2) = 0$ $U_g \to e^{i\omega(g)}U_g \quad \mathcal{O} \overline{\mathcal{T}} \stackrel{\bullet}{\frown} \quad \mathbf{\omega}(g_1, g_2) \to \omega(g_1, g_2) - \delta^{(2)}\omega(g_1, g_2)$ ここで, $\delta^{(2)}\omega(g_2, g_1) := \omega(g_2) - \omega(g_1g_2) + \omega(g_1)$ $\delta^{(3)} \circ \delta^{(2)} = 0$ を満たす $\delta^{(3)}\omega(g_1, g_2, g_3) = 0 \quad \succeq \quad \omega(g_1, g_2) \sim \omega(g_1, g_2) - \delta^{(2)}\omega(g_1, g_2)$

射影表現は非自明な基底状態を意味する

$$\begin{split} U_{g_1}U_{g_2} &= e^{i\omega(g_1,g_2)}U_{g_1g_2}$$
とし,
基底状態 | Ω 〉に縮退がないとする
 Ω 〉は U_g の固有状態に取れる: $U_g | \Omega \rangle = e^{i\omega(g)} | \Omega \rangle$
 $U_{g_1}U_{g_2} | \Omega \rangle = e^{i\omega(g_1)+i\omega(g_2)} | \Omega \rangle$
 $e^{i\omega(g_1,g_2)}U_{g_2g_1} | \Omega \rangle = e^{i\omega(g_1,g_2)+i\omega(g_1g_2)} | \Omega \rangle$
 $\phi | \Omega \rangle = e^{i\omega(g_1,g_2)-i\delta^{(2)}\omega(g_1,g_2)} | \Omega \rangle$
射影表現は,
 $\omega(g_1,g_2) - \delta^{(2)}\omega(g_1,g_2)$ が非自明
これは仮定に反する⇒基底状態が縮退

より一般に,'t Hooftがあると 基底状態は非自明

- •対称性の自発的破れ
 •トポロジカル秩序
 •CFT
- •....

例) U(1)ゲージ理論 $S = - \left| \frac{1}{2e^2} f \wedge \star f \right|$ 背景ゲージ場を結合 $S[B_E, B_M] = -\left[\frac{1}{2e^2}(f - B_E) \wedge \star (f - B_E)\right]$ $+\frac{1}{2\pi}\left[(f-B_E)\wedge B_M\right]$ 作用は $B_M \rightarrow B_M + d\lambda$ の元で不変でない: $S[B_E, B_M] \to S[B_E, B_M] - \frac{1}{2\pi} \left[B_E \wedge d\lambda \right]$

対称性で保護されたトポロジカル相 縮退のないギャップを持った基底状態 しかし境界を持つ場合, 境界理論にアノマリー

全系の分配関数 $Z[A]_{total} = Z[A]_{bulk}Z[A]_{boundary}$ ゲージ不変: $Z[A + d\lambda]_{total} = Z[A]_{total}$

バルクと境界それぞれは、不変でない: $Z[A + d\lambda]_{boundary} = e^{i\omega(A,\lambda)}Z[A]_{boundary}$ $Z[A + d\lambda]_{bulk} = e^{-i\omega(A,\lambda)}Z[A]_{bulk}$

アノマリー流入

例: U(1) ゲージ理論

$$Z_{\text{boundary}}[B_E, B_M] = \int \oslash a e^{iS[a, B_E, B_M]}$$

 $Z_{\text{bulk}}[B_E, B_M] = e^{\frac{i}{2\pi}\int_X dB_E \wedge B_M}$
ゲージ変換の元で,
 $Z_{\text{boundary}}[B_E, B_M + d\lambda] = Z_{\text{boundary}}[B_E, B_M]e^{\frac{-i}{2\pi}\int_M B_E d\lambda}$
 $Z_{\text{bulk}}[B_E, B_M + d\lambda] = Z_{\text{bulk}}[B_E, B_M]e^{\frac{i}{2\pi}\int_{\partial X} B_E \wedge d\lambda}$

 $Z_{\text{boundary}}[B_E, B_M]Z_{\text{bulk}}[B_E, B_M]$ は不変.