# CMS の Bファクトリー化 プロジェクトとその成果

基研研究会素粒子物理学の進展2021

高橋悠太 (Zurich)

参考文献

http://cds.cern.ch/record/2704495?ln=en http://cds.cern.ch/record/002725233?ln=en

# CMSのBファクトリー化 プロジェクト<del>とその成果</del>

今年度の Moriond くらいにはお見せできると思います...

基研研究会素粒子物理学の進展2021

高橋悠太 (Zurich)

参考文献

http://cds.cern.ch/record/2704495?ln=en
http://cds.cern.ch/record/002725233?ln=en

## なぜ CMS で B ファクトリー化プロジェクト?

 $b \rightarrow c\tau v$ 

背景にあるのは、B中間子アノマリー





コヒーレント。特に b→cτv アノマリーは "数TeV" の比較的軽い新粒子を示唆 → ATLAS, CMS にとっては直接探索の格好の標的





















 $q^2 < m_{NP}^2$ 



B中間子アノマリー





オフシェル生成による探索







B中間子アノマリー







オフシェル生成による探索













オフシェル生成による探索









Q: いくつの B 中間子生成事象 (主に bb 対生成による) が必要?

Q: いくつの B 中間子生成事象 (主に bb 対生成による) が必要?

- ・ B→Keeを50イベント蓄えたい(統計誤差 √50/50~15%)
- ・ 事象選別効率を 5% とすると、B→Kee 事象を 1000 イベント捕まえる必要あり

## Q: いくつの B 中間子生成事象 (主に bb 対生成による) が必要?

- ・ B→Keeを50イベント蓄えたい (統計誤差 √50/50~15%)
- ・ 事象選別効率を 5% とすると、B→Kee 事象を 1000 イベント捕まえる必要あり
- ・ B→KeeのBr=4.5 x 10-7 なので、オーダーにして 10<sup>10</sup> の bb 事象が必要

## Q: いくつの B 中間子生成事象 (主に bb 対生成による) が必要?

- ・ B→Keeを50イベント蓄えたい(統計誤差 √50/50~15%)
- ・ 事象選別効率を 5% とすると、B→Kee 事象を 1000 イベント捕まえる必要あり
- ・ B→KeeのBr=4.5 x 10-7 なので、オーダーにして 10¹º の bb 事象が必要

これを1年間のデータテイクで実現する場合を考えます(実際、2018年にBファクトリー化プロジェクトが発足したのですが、2018年はラン2最後の一年だったので、1年間で実現する必要があった)

LHC の stable beam は年間 10<sup>7</sup> 秒程度なので O(1kHz) のペースで bb のデータをとる必要がある → "無茶な要求"

# CMSのトリガーシステム



簡易版 event reconstruction

# CMSのトリガーシステム



# CMSのトリガーシステム



bb 事象を 10<sup>10</sup> イベント蓄積するには、1 kHz でのデータ取得が必要 →1 kHz の全バンド幅を "独占" する必要がある→到底容認できない (他の物理プログラムを圧迫したくない)



(1)

生データのみ保存する

(翌年のシャットダウン中まで full event reco. を延期)



**1** 

生データのみ保存する

(翌年のシャットダウン中まで full event reco. を延期)



2

一般に、ビームフィルの後半は
ルミノシティーが低下し、それに伴って
通常の物理トリガーのレートが下がる。
この"空いた分"を使って
bb事象を捕まえる。



(1)

生データのみ保存する

(翌年のシャットダウン中まで full event reco. を延期)





一般に、ビームフィルの後半は
ルミノシティーが低下し、それに伴って
通常の物理トリガーのレートが下がる。
この"空いた分"を使って
bb事象を捕まえる。



- その他の物理を圧迫しない
- フィルの最後はパイルアップ

   (一回のバンチ交差における衝突数)が
   少ない→データサイズが小さい
   →より高いレートでトリガーできる

## 2018年、最大 5kHz でのデータ取得に成功



変位ミューオンを 含む終状態を トリガーすることで bb事象を効率的に集める (純度 75% 程度)

## 2018年、最大 5kHz でのデータ取得に成功





変位ミューオンを含む終状態をトリガーすることでbb事象を効率的に集める

(純度 75% 程度)

## 2018年、最大 5kHz でのデータ取得に成功



他の物理を圧迫することなく、 10<sup>10</sup> の B 中間子イベントを蓄積



変位ミューオンを 含む終状態を

トリガーすることで

bb事象を効率的に集める

(純度 75% 程度)

| Mode                 | $N_{2018}$          | $f_B$ | $\mathcal{B}$ |  |  |  |  |
|----------------------|---------------------|-------|---------------|--|--|--|--|
| Generic b hadrons    |                     |       |               |  |  |  |  |
| $B_{ m d}^0 \ B^\pm$ | $4.0 \times 10^9$   | 0.4   | 1.0           |  |  |  |  |
| $B^\pm$              | $4.0 \times 10^{9}$ | 0.4   | 1.0           |  |  |  |  |
| $B_{s}$              | $1.2 \times 10^9$   | 0.1   | 1.0           |  |  |  |  |
| b baryons            | $1.2 \times 10^9$   | 0.1   | 1.0           |  |  |  |  |
| $B_{ m c}$           | $1.0 \times 10^7$   | 0.001 | 1.0           |  |  |  |  |
| Total                | $1.0\times10^{10}$  | 1.0   | 1.0           |  |  |  |  |

## Full event reconstruction を後回しにしたので...



## Full event reconstruction を後回しにしたので...



2018年にデータテイキング→2019年春から事象再構成→2020年から本格的な解析開始

2020年からデータ解析が始まったかというと、そうではないです。

CMS は high-p<sub>T</sub> physics に特化した実験なので、B 中間子から出てくるの low-p<sub>T</sub> の粒子を識別するのが苦手 → 低運動量粒子識別の開発が必要

#### 低運動量 electron の識別



CMS-DP-2019-043

2020年からデータ解析が始まったかというと、そうではないです。

CMS は high-p<sub>T</sub> physics に特化した実験なので、B 中間子から出てくるの low-p<sub>T</sub> の粒子を識別するのが苦手 → 低運動量粒子識別の開発が必要

#### 低運動量 electron の識別



CMS-DP-2019-043

2020年からデータ解析が始まったかというと、そうではないです。

CMS は high-p⊤ physics に特化した実験なので、B 中間子から出てくるの low-p⊤の粒子を識別するのが苦手→低運動量粒子識別の開発が必要

#### 低運動量 electron の識別



低運動量 τ の識別

手法を開発 (通常は jet をシードとして 再構成するが、 $low p_T$  になると娘粒子が広がり すぎて1つのジェットに収まらない)



τ→ππνに特化した

## Standard Candle

B  $\rightarrow$  J/ $\psi$  ( $\rightarrow$  ee) K\* ( $\rightarrow$  Kπ)



 $B \rightarrow J/\psi (\rightarrow ee) K$ 



R(K\*) の normalisation channel

R(K) の normalisation channel

CMS で初めての観測。電子は極めて低運動量なので、従来のデータテイキング手法では観測できなかった過程

## Standard Candle

B  $\rightarrow$  J/ $\psi$  ( $\rightarrow$  ee) K\* ( $\rightarrow$  Kπ)



 $B \rightarrow J/\psi (\rightarrow ee) K$ 



R(K\*) の normalisation channel

R(K) の normalisation channel

CMS で初めての観測。電子は極めて低運動量なので、従来のデータテイキング手法では観測できなかった過程

 $B \rightarrow D^*(\rightarrow D^0 (\rightarrow K\pi) \pi) \mu \nu$ 



R(D\*) の分母

蓄積した 10<sup>10</sup> イベントの bb purity を評価するのにも使われた

# 様々な解析が進行中

### LFU の検証

FCNC 
$$R = \frac{\mathscr{B}(b \to s\mu^+\mu^-)}{\mathscr{B}(b \to se^+e^-)}$$

- $\bar{q}$   $\bar{q}$
- b  $V_{tb}$   $V_{ts}$   $V_{ts}$   $V_{ts}$   $\mu^{-}$
- R(φ)

 $R(K^*)$ 

• R(K)

R(Λ<sub>b</sub>)

FCCC 
$$R = \frac{\mathscr{B}(b \to c\tau\nu_{\tau})}{\mathscr{B}(b \to c\mu\nu_{\mu})}$$



- R(D\*)
- R(D)

### Direct LFV の探索

- B  $\rightarrow \mu \tau$ ,  $\mu e$ ;
- B → φτμ
- $B \rightarrow K\tau\mu$
- Using charm decays
- •

### Br の測定

- Bs  $\rightarrow \tau \tau$
- Bs → φττ
- Bs  $\rightarrow$  KTT
- •



### **Other topics**

- Fragmentation function ratio measurements (fs/fu, fs/fd, fd/fu)
- CPV measurement using D-mesons
- Exotic searches

   (e.g. QCD inflatons, Heavy neutrino searches
   using Ds mesons)
- $\tau \rightarrow \phi K$
- LLP searches

•

•

## 結局、CMSで取得した 10¹º の B 中間子サンプルはどれくらい強力なのか?

A: 観測したい過程 (あるいは測定量) による



## 結局、CMSで取得した 1010の B 中間子サンプルはどれくらい強力なのか?

### A: 観測したい過程 (あるいは測定量) による



- LHCb はこれまでに 10<sup>11</sup> のデータを 蓄積しているが、ミューオンを 終状態にもつ事象はそのうちの 10%
   (トリガーのため) = CMS の数とコンパラ
- CMS detector は 4π coverage をもつため LHCb に比べて粒子識別性能がいい

## 結局、CMSで取得した 10¹ºの B 中間子サンプルはどれくらい強力なのか?

### A: 観測したい過程 (あるいは測定量) による



→ つまり、 10<sup>10</sup> イベント

全てを解析に使える。

- LHCb はこれまでに 10<sup>11</sup> のデータを 蓄積しているが、ミューオンを 終状態にもつ事象はそのうちの 10% (トリガーのため) = CMS の数とコンパラ
- CMS detector は 4π coverage をもつため LHCb に比べて粒子識別性能がいい

$$R_K = \frac{\mathscr{B}(B \to Ke^+e^-)}{\mathscr{B}(B \to K\mu^+\mu^-)}$$
 Tag-side Probe-side

Probe side には

電子が常に存在している

訳ではないので、

Br(B  $\rightarrow$  Kee) ~ 4.5 x 10<sup>-7</sup>

による影響をもろに受ける

## 結局、CMSで取得した 10¹ºの B 中間子サンプルはどれくらい強力なのか?

### A: 観測したい過程 (あるいは測定量) による



→ つまり、 10<sup>10</sup> イベント

全てを解析に使える。

- LHCb はこれまでに 10<sup>11</sup> のデータを 蓄積しているが、ミューオンを 終状態にもつ事象はそのうちの 10% (トリガーのため) = CMS の数とコンパラ
- CMS detector は 4π coverage をもつため LHCb に比べて粒子識別性能がいい

$$R_K = \frac{\mathscr{B}(B \to Ke^+e^-)}{\mathscr{B}(B \to K\mu^+\mu^-)}$$
 Tag-side Probe-side

Probe side には

電子が常に存在している 訳ではないので、

Br(B → Kee) ~ 4.5 x 10<sup>-7</sup> による影響をもろに受ける

- 5%の事象選別効率を仮定しても50イベント程度
- LHCb は電子の終状態でもトリガー をかけているので B → Kee の潤沢な統計がある (Run-1 で 200, Run2 で 1600 イベント程度)

# ラン3 (2023-2025) に向けて

2018年に蓄積したノウハウを生かし、さらなるB中間子データの取得を予定

- 統計的に脆弱な B→ Xee (e.g. Kee) 過程を劇的に増やし R(X)
   測定の感度を向上させるため、電子の終状態を積極的に捕まえるためのトリガーを開発中
  - 低運動量電子をトリガーするには、技術的に多くの困難を克服する必要があるが、見通しは立っている

# まとめ

- ・CMS 実験では B 中間子アノマリーを受けて, 2018年、野心的な「Bファクトリー化プロジェクト」を敢行した
- ・<u>他の物理プログラムを圧迫することなく、ミュー粒子を終状態に含む 10½ 個の</u> bb 事象を蓄積することに成功
  - **これらのデータを十分堪能するため、低運動量粒子に対する識別手法を開発**
  - 様々な物理解析(<u>スライド12</u>)にチャレンジしています
  - ミュー粒子を含む B 中間子の統計数では、LHCb とコンパラ。 $\tau o \mu$  を使った R(D\*) の解析では十分な精度が出せそう
- ・Run-3ではさらに多くのB中間子イベントを蓄積する予定

これと並行して、アノマリーに触発された直接探索の方も抜かりなく行っています

## L1 µ trigger

More aggressive evolution of p<sub>T</sub> thresholds in 2018 η-restricted trigger:

Controls rate

Improves signal-side acceptance

L1 single µ trigger peaks at ~50 kHz (~90 kHz total)

| Settings | Peak <i>£</i> <sub>inst</sub> [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | L1 seed   |  |
|----------|------------------------------------------------------------------------------------|-----------|--|
| 1        | 1.7                                                                                | Mu12er1p5 |  |
| 2        | 1.5                                                                                | Mu10er1p5 |  |
| 3        | 1.3                                                                                | Mu9er1p5  |  |
| 4        | 1.1                                                                                | Mu8er1p5  |  |
| 5        | 0.9                                                                                | Mu7er1p5  |  |



## High Level Trigger

Aggressive reduction in muon  $p_T$  threshold Requirement on muon impact parameter significance Purities of 60–90% depending on thresholds Peak rate as high as ~5 kHz

| Settings | Peak £ <sub>inst</sub> [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | L1 seed   | HLT path | Peak rate<br>[kHz] |
|----------|-----------------------------------------------------------------------------|-----------|----------|--------------------|
| 1        | 1.7                                                                         | Mu12er1p5 | Mu12_IP6 | 1.5                |
| 2        | 1.5                                                                         | Mu10er1p5 | Mu9_IP6  | 2.8                |
| 3        | 1.3                                                                         | Mu9er1p5  | Mu9_IP6  | 3.0                |
| 4        | 1.1                                                                         | Mu8er1p5  | Mu9_IP5  | 3.7                |
| 5        | 0.9                                                                         | Mu7er1p5  | Mu7_IP4  | 5.4                |





#### CMS Average Pileup (pp, $\sqrt{s}$ =13 TeV)



低い運動量領域における p<sub>T</sub> resolution (σ(p<sub>T</sub>)/p<sub>T</sub> ~ 0.5% @ CMS, LHCb, 1% @ ATLAS)







### 低い運動量領域における pт resolution (σ(pт)/pт ~ 0.5% @ CMS, LHCb, 1% @ ATLAS)



### 低い運動量領域における p<sub>T</sub> resolution (σ(p<sub>T</sub>)/p<sub>T</sub> ~ 0.5% @ CMS, LHCb, 1% @ ATLAS)

