
‣ レプトン加速器でヒッグスがたくさんできる 
‣ ヒッグスの性質の精密測定 

- 湯川結合 
- 自己相互作用 
- 知らない崩壊モード etc. 

‣ まず初めに、大量の背景事象の中からヒッグスの 
イベントを選び取らなくてはならない 
“Higgs Preselection”
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目的、やりたいこと、これまでにやられたこと

‣ いくつかのアプローチ 
- Cut and Count …… Ono+ ’12 
- BDT …… talk slide by Bai ’16 
- Deep Learning

ヒッグスイベントの特徴量を考える
‣ 考える終状態はダブルジェット ……   

‣ 結合定数の測定に感度の高い   に着目

H → jj (Br = 70%)

Z → νν̄ (Br = 20%)

①  Mmiss ≡ E2
miss − P2

T,miss ②  運動量のスカラー和  

　  トラック運動量の最大値 

pT, pL

pmax

③  荷電粒子トラックの数 Nchd
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Signal Background
Process HZ(! ⌫⌫̄) ⌫⌫̄H (WW fusion) ZZ W

+
W

�
qq̄ e

±
⌫W

⌥
e
+
e
�
Z

Cross section in pb 0.0469 0.00774 1.03 15.4 50.2 5.14 4.73
Number of events 11725 1942 257250 3.85⇥106 1.255⇥107 1.285⇥106 1.182⇥106

TABLE I. The cross section and number of events of each signal/background process for the e+e� collision with
p
s = 250GeV

and an integrated luminosity of L = 250 fb�1.

Signal Background
Process HZ(! ⌫⌫̄) ⌫⌫̄H (WW fusion) ZZ W

+
W

�
qq̄ e
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⌥
e
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�
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Before cut 11725 1942 275250 3.85⇥106 1.255⇥107 1.285 ⇥106 1.1825 ⇥106

80GeV < Mmiss < 140GeV 8854 1322 83565 409174 33876 242224 241020
20GeV < PT < 70GeV 8161 1072 49099 291164 4376 169402 144559

|PL| < 60GeV 7967 969 16086 145018 4043 83310 38178
Nchd � 10 7772 946 14072 53070 4009 4478 0

Pmax < 30GeV 6963 855 10951 27265 2619 447 0
Y23 < 0.02 4623 554 7546 4344 2193 109 0

0.2 < Y12 < 0.8 4535 500 4995 3385 2008 91 0
100GeV < Mjj < 130GeV 4331 475 856 1677 277 50 0

TABLE II. The cut-flow of the preselection using the variables presented in the main text.
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where Ei/j denotes the energy of a (pseudo)particle
labeled by i/j and ✓ij is the angle between the mo-
menta of i and j. Two (pseudo)particles are clus-
tered when the y-value satisfies yij < ycut. Then,
Y12 and Y23 are defined as the maximum and min-
imum values of ycut with which an event contains
exactly two jet in the final state, respectively. We
require Y23 < 0.02 and 0.2 < Y12 < 0.8 to further
reduce background events mainly from the W+

W
�

channel.

• Di-jet mass Mjj

We use the invariant mass of the two hardest jets
in the final state Mjj , which is ideally equal to the
Higgs mass for the signal events. Our requirement
is 100GeV < Mjj < 130GeV.

All of these variables are also used as inputs for the BDT
and FCNN presented below.

Table II shows the cut-flow. Compared with ref. [25],
we consider more general background processes including
e
+
e
� ! e

±
⌫W

⌥ and e
±
e
⌥
Z. The main background

events remaining after the cuts are e+e� ! W
+
W

� and
ZZ. They could be further reduced by a harder cut on
Yij . However, it also rejects a non-negligible fraction
of signal events, which degrades the performance of the
preselection.

BDT.– In order to take account of correlations among
the variables listed in the cut-based method, we utilize
a BDT algorithm whose inputs are those used in the
cut-based method. The BDT is implemented with the

scikit-learn library [37], and its outputs are used as
the unique variables for signal/background classification,
or as a variable with which we further reduce background
events on top of the cut-based preselection. The decision
tree classifier has a maximum depth of 25 and requires a
minimum of 30 samples for a leaf node. It is fitted by the
AdaBoost-SAMME [38] algorithm with a learning rate of
0.1 and the maximum number of estimators is set to 75.
These hyperparameters are manually chosen towards the
best Higgs signal significance.

FCNN.– We implement the FCNN algorithm by us-
ing the Keras 2.7.0 [39] application programming inter-
face (API) with the Tensorflow 2.7.0 [40] backend. We
utilize a simple neural network in which every neuron in
one layer connects to all neurons in the subsequent layer.
In principle, this fully-connected neural network with a
su�cient number of hidden layers has the ability to ap-
proximate any continuous function in a finite-dimensional
space [41] and has a potential to learn features indistin-
guishable by the BDT. In our study, the variables used
in the cut-based method are fed into the FCNN. We have
tested various architectures and found that the best per-
formance is achieved by a network with 9 hidden layers
where the first 2 layers contain 100 neurons and the rest
contain 90 neurons. We note that the performance of this
network is only improved marginally beyond a smaller
FCNN with 4 layers. We employ the Rectified Linear
Unit (ReLU) as the activation function for the hidden
layers and the softmax function for the output layer with
two neurons. The optimizer is taken to be ADAM with
the Keras default parameters and the loss function is
cross entropy. The network outputs a score of the likeli-
hood for an input event recognized as a H ! jj signal
event, which is used as the unique variable to classify
signal/background events, or as a cut variable to reduce

④  ダブルジェットイベントっぽさ 

      (2-jettiness,  & )Y12 Y23

⑤  ジェットの不変質量 Mjj

アプローチ、結果、考察
‣ 比較のため Cut and Count と BDT の解析 

‣ Fully-connected neural network (FCNN) 

‣ Significance  を最大化してみる S/ S + B

特徴量 100×2層 90×(2~7)層
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Signal Background Significance
Process HZ(! ⌫⌫̄) ⌫⌫̄H (WW fusion) W

+
W

�
qq̄ ZZ e

±
⌫W

⌥
e
+
e
�
Z

Cut-based 4331 475 1677 277 856 50 0 54.9�
BDT-only 6721 1047 61 195 399 9 0 84.6�
FCNN-only 9562 1427 754 1101 419 109 1 95.0�
CNN-only 4776 749 6337 5407 432 1237 552 39.6�
Cut+BDT 3744 403 10 129 57 1 0 62.9�
Cut+FCNN 3941 409 95 145 170 0 0 63.1�
Cut+CNN 3733 409 289 219 486 0 0 57.8�

TABLE III. The number of signal/background events and signal significance after each preselection method. BDT-only denotes
the method that the output of the BDT is used as a unique variable to classify signal/background events. The same applies
to FCNN-only and CNN-only. In Cut+BDT, the output of the BDT is used as a cut variable to reduce background events on
top of the cut-based preselection. The same applies to Cut+FCNN and Cut+CNN.

background events on top of the cut-based preselection
as in the case of the BDT.

CNN.– In addition to the BDT and FCNN, we test
the CNN algorithm whose inputs are 2D event images.
The image of an event has 3 “colors” [42] : particle mo-
menta, particle charges and jet momenta. All the mo-
menta are normalized by multiplying 1/

p
s for the sta-

bility of the network. 2D images are expanded in terms
of the ⌘⇥� coordinate system. The number of pixels for
each channel is 33⇥36 where the size of a pixel is given
by �⌘ = 0.1 (0.4) for |⌘| < 1.0 (1.0 < |⌘| < 3.4) and
�� = 2⇡/36. For the particle (jet) momentum color,
a pixel value is defined as the vectorial summation of
particle (jet) momenta inside the pixel, normalized by
the collision energy. For the jet momentum color, the
jet clustering is conducted by the anti-kT algorithm [43].
We have also tested the b-tagging label as the fourth color
but the performance is similar for 3 and 4 colors. The
b-tagging pixel value is defined as the number of tight
b-jets recognised by the anti-kT algorithm. The CNN
is implemented with the TensorFlow [40] framework and
the Keras [39] API. The network architecture we utilize
is summarized as follows. An input image with 3 or 4
colors for an event enters three convolutional layers each
of which has 200 filters with 4⇥4 kernel. A max-pooling
layer with 2⇥2 reduction follows. The generated feature
maps are coupled to the fourth convolutional layer of
200 filters with 4⇥ 4 kernel. The 2D image is then flat-
tened and coupled through fully-connected layers with
100, 100, 80, 80, 60 and 60 neurons respectively. The ac-
tivation function is the ReLU for the hidden layers and
the softmax function for the output layer with two neu-
rons. The optimizer is Adadelta and the loss function
is cross entropy. The optimizer is ADADELTA [44] with
an initial learning rate of 0.3 and other parameters are
set as the Keras default. As in the case of the BDT and
FCNN, the network output is used as the unique variable
to classify signal/background events, or as a cut variable
on top of the cut-based selection.

Results.– Table III shows the number of signal (Nsig)
and background (Nbkg) events remaining after each pre-

FIG. 1. The number of signal (Nsig) and background (Nbkg)
events that passes the preselection using the BDT (red solid)
and FCNN (blue solid). The triangle marker on the curve
represents the number of events obtained by the classification
threshold utilized in Table III. The black dashed curves denote
contours of the signal significance.

selection method. We also estimate the signal signifi-
cance Nsig/

p
Nbkg +Nsig for comparison. The classifi-

cation threshold of the BDT/FCNN/CNN output is cho-
sen to obtain a large signal significance. The most suit-
able choice of the threshold depends on a physics variable
that we would like to extract, e.g., the Yukawa coupling,
because sensitivities to di↵erent variables are generally
given by di↵erent combinations of Nsig and Nbkg.

We can see from Table III that the BDT-only method
outperforms the cut-based method in terms of the signal
significance, with more signal events and less background
events after the preselection in each channel. We also find
that the significance of the Cut+BDT method is worse
than that of the BDT-only because the cut conditions are
so strict that the number of signal events is excessively re-
duced. In fact, Table II shows that the significance could

‣ 閾値の選び方と  vs  の関係図 

‣ 最大化したい  毎に閾値を選ぶ

S B

f(S, B)
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Cut-based BDT-only FCNN-only Cut+BDT Cut+FCNN
µbb 1± 0.021 1± 0.016 1± 0.013 1± 0.021 1± 0.021
µcc 1± 0.34 1± 0.16 1± 0.16 1± 0.21 1± 0.22
µss 70 36 35 47 48

TABLE IV. The expected 1� errors of the signal strength for the bottom (µbb) and charm (µcc) Yukawa couplings and the
95% C.L. upper limits on that of the strange quark (µss) with various preselection methods presented in Table III, assuming
statistical uncertainty only.

be no longer larger than 70� after the cut-based preselec-
tion even if the BDT distinguished all background events
from signal events. We note, however, that the presented
signal significance does not faithfully reflect the perfor-
mance of a specific application of the Higgs preselection
such as the Yukawa coupling measurement.

The FCNN-only method shows the best signal signifi-
cance among all preselection methods in Table III, which
results from the highest signal acceptance and a high
background rejection rate. The Cut+FCNN method is
less e�cient than the FCNN-only due to the similar rea-
son discussed for the case of the BDT.

Figure 1 demonstrates the dependence of the BDT and
FCNN results on the choice of the threshold. The rela-
tionship between Nsig and Nbkg for the BDT and FCNN
analyses is plotted by scanning the threshold value. We
can see that Nsig of the FCNN is larger than that of
the BDT for any fixed value of Nbkg, indicating a clear
advantage of the FCNN.

Most events that pass the preselection by the BDT
or FCNN, regardless of being a true Higgs event or not,
have di-jet masses within 120 ⇠ 125.2GeV.2 Further-
more, since the flavor information is not used in training,
all quark flavors are equally likely to pass the preselec-
tion. Indeed, we have fed equal numbers of events from
h ! bb̄, h ! cc̄ and h ! gg into the trained BDT and
FCNN and observed almost equal passing rates. There-
fore, the tested BDT and FCNN architectures mostly
select H ! qq̄ signals in a flavor-blind manner, which is
crucial for measuring the quark Yukawa couplings.

The signal significance of the CNN-only method is ob-
served to be much worse than the other methods while
the Cut+CNN is only slightly better than the cut-based
method. The situation is the same for all the other CNN
architectures we have tested. The CNN is trained with
more than 105 sample events that contain equal numbers
of signal and background events. We monitor the training
of the CNN by its accuracy on the training and valida-

2
With the neural networks discussed in this work, the background

is solely estimated from their performance on the simulation

data. A pratical bump search usually preforms a sideband fit for

better control of background estimation and systematic uncer-

tainties. The combination of the NNs and the sideband subtrac-

tion method will require additional treatment[45–51] to decor-

relate the NN from resonance-sensitive variables such as the in-

variant mass.

tion sets with a classification threshold of 0.5. We have
observed that the classification accuracy plateaus near
90% during the training, which signals the saturation of
the CNN performance. However, increasing the classifi-
cation threshold for the tested CNN does not improve the
Higgs signal significance as sharply as that for the BDT
or the FCNN, since the tested CNN assigns high scores
for some background events just like for the signal events.
As a result, the CNN gives the worst performance among
the machine learning methods, and its training accuracy
always collapses after going through several epochs even
if we use smaller amount of training data. It is hard to
decipher the CNN black box, and we only provide an ed-
ucated guess for such an under-performance of the tested
CNN as follows. Although the CNN is renowned for its
ability to recognize shapes and edges in an image, it is
not clear whether the CNN is equally good at perceiv-
ing precise numerical correlations over large separation
in an image. The latter type of information such as the
di-jet mass and missing mass are used directly as input
variables of the BDT and FCNN. However, it may be
hard for the CNN to recognize these variables because it
takes several convolutions to correlate two far-separated
points while the numerical precision might be lost dur-
ing pooling. We thus conclude that the CNN architecture
presented above is not a suitable ML technique for the
Higgs preselection and leave a possible improvement of
the performance to a future study.
Yukawa coupling measurements.– To showcase

the importance of the improved preselection by the BDT
and FCNN, we estimate the resultant improvement on
sensitivities to the bottom, charm and strange Yukawa
couplings measured or constrained by H ! ff̄ (f is a
quark) searches in the absence of systematic uncertainty.
Assuming the SM value for the Higgs production cross
section, the signal strength is given by

µff =
Br

�
H ! ff̄

�

BrSM
�
H ! ff̄

� . (5)

Here, BrSM
�
H ! ff̄

�
denotes the SM expectation of the

branching ratio for H ! ff̄ . We now define the number
of events that pass the preselection of H ! jj events and
the subsequent quark flavor tagging as Nf = Sf + Bf

where Sf (Bf ) is the number of signal (background)
events. They are related to their SM expectation val-
ues via Sf ' µffS

SM
f

and Bf ' B
SM
f

. The statistical

‣ 湯川結合の測定（簡易的な解析） 
‣ Cut and Count の～2倍の精度

‣ 重要な応用が多数 
- 湯川結合・自己相互作用の測定をしっかり解析 
- SMEFT/HEFT への制限（例えば N. Craig+ ’15）

‣ , , ビーム偏極なしs = 250 GeV ℒ = 250 fb−1
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