Deeply Learned Preselection of Higgs Dijet Decays at Future Lepton Colliders

SC, Shu Li, Yuichiro Nakai, Wenxing Zhang, Yufei Zhang, and Jiaming Zheng Phys. Lett. B 833 (2022) 137301 [2202.02534]

目的、やりたいこと、これまでにやられたこと

- $\sqrt{s} = 250 \,\text{GeV}$, $\mathcal{L} = 250 \,\text{fb}^{-1}$, ビーム偏極なし レプトン加速器でヒッグスがたくさんできる
- ヒッグスの性質の精密測定
 - 湯川結合
 - 自己相互作用
 - 知らない崩壊モード etc.
- まず初めに、大量の背景事象の中からヒッグスの イベントを選び取らなくてはならない

- ・いくつかのアプローチ
- Cut and Count Ono+ '12
- BDT talk slide by Bai '16

"Higgs Preselection"

Deep Learning

ヒッグスイベントの特徴量を考える

- ・考える終状態はダブルジェット $H \rightarrow jj$ (Br = 70%)
- ・結合定数の測定に感度の高い $Z \rightarrow \nu \bar{\nu}$ (Br = 20%) に着目

② 運動量のスカラー和 p_T, p_L

③ 荷電粒子トラックの数 N_{chd}

④ ダブルジェットイベントっぽさ

⑤ ジェットの不変質量 *M_{ii}*

	Signal		Background					
Process	$HZ(\to \nu\bar{\nu})$	$ u \bar{\nu} H (WW \text{ fusion}) $	ZZ	W^+W^-	qar q	$e^{\pm}\nu W^{\mp}$	e^+e^-Z	
Before cut	11725	1942	275250	3.85×10^{6}	1.255×10^{7}	1.285×10^{6}	1.1825×10^{6}	
$80 \mathrm{GeV} < M_{\mathrm{miss}} < 140 \mathrm{GeV}$	8854	1322	83565	409174	33876	242224	241020	
$20 \mathrm{GeV} < P_T < 70 \mathrm{GeV}$	8161	1072	49099	291164	4376	169402	144559	
$ P_L < 60 \mathrm{GeV}$	7967	969	16086	145018	4043	83310	38178	
$N_{\rm chd} \ge 10$	7772	946	14072	53070	4009	4478	0	
$P_{\rm max} < 30 {\rm GeV}$	6963	855	10951	27265	2619	447	0	
$Y_{23} < 0.02$	4623	554	7546	4344	2193	109	0	
$0.2 < Y_{12} < 0.8$	4535	500	4995	3385	2008	91	0	
$100 \mathrm{GeV} < M_{jj} < 130 \mathrm{GeV}$	4331	475	856	1677	277	50	0	

アプローチ、結果、考察

- ・比較のため Cut and Count と BDT の解析
- ► 閾値の選び方と S vs B の関係図
- Fully-connected neural network (FCNN)

最大化したい f(S, B) 毎に閾値を選ぶ

▶ 湯川結合の測定(簡易的な解析) Cut and Count の~2倍の精度

	Cut-based	BDT-only	FCNN-only
μ_{bb}	1 ± 0.021	1 ± 0.016	1 ± 0.013
μ_{cc}	1 ± 0.34	1 ± 0.16	1 ± 0.16
μ_{ss}	70	36	35

	Signal		Background					Significance
Process	$HZ(\to \nu\bar{\nu})$	$ u \overline{\nu} H (WW \text{ fusion}) $	W^+W^-	qar q	ZZ	$e^{\pm}\nu W^{\mp}$	$ e^+e^-Z $	
Cut-based	4331	475	1677	277	856	50	0	54.9σ
BDT-only	6721	1047	61	195	399	9	0	84.6σ
FCNN-only	9562	1427	754	1101	419	109	1	95.0 σ

重要な応用が多数

- 湯川結合・自己相互作用の測定をしっかり解析

- SMEFT/HEFT への制限(例えば N. Craig+ '15)