Improved indirect limits on muon EDM

Yohei Ema

University of Minnesota

PPP 2022 @ Kyoto August 30, 2022

Based on 2108.05398 and 2207.01679 with T. Gao and M. Pospelov

Electric dipole moment

• Electric dipole moment of a particle is proportional to spin:

$$\mathscr{H} = -\overrightarrow{B}\cdot\overrightarrow{\mu} - \overrightarrow{E}\cdot\overrightarrow{d} = -2\overrightarrow{s}\cdot\left(\mu\overrightarrow{B} + d\overrightarrow{E}\right).$$

* μ : magnetic dipole moment, d :electric dipole moment.

EDM violates P and T (or CP).
$$\begin{array}{c|c} \overrightarrow{B} & \overrightarrow{E} & \overrightarrow{s} \\ \hline P & + & - & + \\ \hline T & - & + & - \end{array}$$

• Flavor diagonal: standard model contribution extremely suppressed.

e.g.
$$d_e^{(\text{equiv})}(\delta_{\text{CKM}}) \simeq 10^{-35} e \,\text{cm}$$
. [YE, Gao, Pospelov 22]

Background free probe of CP-odd new physics.

• CP violation motivated by baryogenesis, BSM such as 2HDM, SUSY, ...

EDM experiments

Many efforts on detecting EDM in different systems

[Taken from Kirch & Schmidt-Wellenburg 20]

Today's goal: understand muon EDM contributions to atomic experiments.

Muon EDM

• Recently FNAL confirms BNL muon g-2 result:

 $a_{\mu}(\exp) - a_{\mu}(SM) = (251 \pm 59) \times 10^{-11}$ (4.2 σ) [FNAL muon g-2 21]

• Muon g-2 and EDM can be closely related:

$$\mathscr{L} = -\frac{c}{2}\bar{\psi}_R \sigma \cdot F \psi_L + \text{h.c.} \Rightarrow \text{Re}[c] = \frac{ea_\mu}{2m}, \text{Im}[c] = d_\mu.$$

• $\mathcal{O}(1)$ phase directly probed in near future.

understand indirect limits from atomic/molecular EDM experiments.

[Figure taken from Crivellin et.al.18]

1. Introduction

2. Review on atomic EDM

3. Indirect limits on muon EDM

4. Summary

1. Introduction

2. Review on atomic EDM

3. Indirect limits on muon EDM

4. Summary

Spin precession

• Atomic EDM observable: spin precession (as for other cases)

$$\frac{d\vec{s}}{dt} = \vec{\omega} \times \vec{s}, \quad \vec{\omega} = 2\mu \vec{B} + 2d\vec{E}.$$

• Extract EDM by flipping \overrightarrow{E} :

• Atomic EDM actually has complications (screening → next slides).

Shielding theorem

• (Non-relativistic) atomic Hamiltonian with external \vec{E} and EDM:

$$\mathcal{H}_{A} = \mathcal{H}_{N} + \mathcal{H}_{e} + \Phi - \sum_{k} \left(e_{k} \vec{r}_{k} \cdot \vec{E}_{ext} + \vec{d}_{k} \cdot \vec{E}(\vec{r}_{k}) \right),$$

where Φ : coulomb potential btw particles and $\vec{E} = \vec{E}_{int} + \vec{E}_{ext}$.

*
$$\vec{E}_{int}(\vec{r}_k) = -\frac{\vec{\nabla}_k}{e_k} \Phi = -\frac{i}{e_k} \left[\vec{p}_k, \mathcal{H}_0\right]$$
 where $\mathcal{H}_0 = \mathcal{H}_N + \mathcal{H}_e + \Phi$.

• EDM without \overrightarrow{E}_{ext} induces mixing of (unperturbed) states as

$$\Psi\rangle \simeq |0\rangle - \sum_{n\neq 0} \frac{\langle n | \sum_{k} \vec{d}_{k} \cdot \vec{E}_{int}(\vec{r}_{k}) | 0\rangle}{E_{0} - E_{n}} |n\rangle = \left(1 + \sum_{k} \frac{i}{e_{k}} \vec{d}_{k} \cdot \vec{p}_{k}\right) |0\rangle.$$

• This cancels the direct contribution to the atomic EDM:

$$\vec{d}_A = \langle \Psi | \sum_k \left(\vec{d}_k + e_k \vec{r}_k \right) | \Psi \rangle \simeq \sum_k \langle 0 | \left(\vec{d}_k - \sum_l \frac{ie_l}{e_k} \left[\vec{d}_k \cdot \vec{p}_k, \vec{r}_l \right] \right) | 0 \rangle = 0,$$

"Schiff shielding theorem"

[Purcell, Ramsey 50; Garwin, Lederman 59; Schiff 63]

Shielding theorem

• Two contributions to atomic EDM:

(1) direct contribution from the constituent particle's EDM

(2) mixing of opposite parity wave functions through P,CP-odd interaction

$$\vec{d}_A \ni 2\sum_{n \neq 0} \frac{\langle 0 | \sum_k e\vec{r}_k | n \rangle \langle n | \mathscr{H}_{\text{int}} | 0 \rangle}{E_n - E_0}$$

doesn't have to be EDM

these two cancel for non-relativistic point particle's EDM.

• This is a rearrangement due to the constitutions.

• Two ways out:

(a) relativistic correction \rightarrow paramagnetic atom (an unpaired electron)

(b) finite size correction \rightarrow diamagnetic atom (all electrons paired)

Paramagnetic atom/molecule

• Electron actually relativistic $v \sim Z\alpha \rightarrow d_e$ can induce d_A :

$$\vec{d}_{A} = d_{e} \sum_{i=1}^{Z} \left[\langle 0_{e} | \left(\gamma_{0}^{(i)} - 1 \right) \vec{\Sigma}^{(i)} | 0_{e} \rangle + 2 \sum_{n \neq 0} \frac{\langle 0_{e} | e\vec{r}_{i} | n_{e} \rangle}{E_{0} - E_{n}} \langle n_{e} | \left(\gamma_{0}^{(i)} - 1 \right) \vec{\Sigma}^{(i)} \cdot \vec{E}_{int} | 0_{e} \rangle \right]$$

relativistic correction to shielding where $\vec{\Sigma} = \gamma_{5} \gamma^{0} \vec{\gamma}$.

 $(\gamma_0 - 1)\overrightarrow{\Sigma} = -2\begin{pmatrix} 0 & 0\\ 0 & \overrightarrow{\sigma} \end{pmatrix}$ in Dirac rep. \rightarrow need an unpaired electron = paramagnetic atom.

- The latter (mixing of states) dominant, [Sandars 65; ...] and this is actually an enhancement: $d_A/d_e \sim Z^3 \alpha^2 \sim \mathcal{O}(10^2)$.
- CP-odd operator $C_S(G_F/\sqrt{2}) \bar{e}i\gamma_5 e \times \bar{N}N$ also induces mixing of states.

• d_e and C_S degenerate.

 $d_e^{\text{equiv}} = d_e + C_S \times 1.5 \times 10^{-20} \, e\text{cm} \text{ for ThO.}$

• Experimental constraint: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} ecm$ [ACME 18].

1. Introduction

2. Review on atomic EDM

3. Indirect limits on muon EDM

4. Summary

Electron EDM

Muon EDM induces electron EDM at three-loop:

+ permutations * cross-dot: EDM operator insertion

• There are two types of contributions: * [Grozin, Khriplovich, Rudenko 08] computed only $S^{(1)}$.

$$i\mathcal{M} = i\tilde{F}^{\mu\nu}\,\bar{e}(p) \left[S^{(1)}m_e\sigma_{\mu\nu} + S^{(2)}\left\{\sigma_{\mu\nu}, \not\!\!\!p\right\} \right] e(p)\,. \label{eq:mass_static$$

• Combining two, the result is $\sim 40\%$ larger: [YE, Gao, Pospelov 22]

$$d_e = 2.75 \times d_\mu \left(\frac{\alpha}{\pi}\right)^3 \frac{m_e}{m_\mu} \sim 2 \times 10^{-10} \times d_\mu.$$

• But paramagnetic atom sensitive only to linear combination of d_e and C_S : $d_e^{\text{equiv}} = d_e + C_S \times 1.5 \times 10^{-20} e \text{ cm}$ for ThO. Need to evaluate semi-leptonic CP-odd operator C_S .

Semi-leptonic CP-odd operator

- Paramagnetic atom EDM depends on C_S : $\mathscr{L} = C_S \frac{G_F}{\sqrt{2}} \bar{e} i \gamma_5 e \bar{N} N$.
- Muon EDM induces

• Nuclear electric field E_N^2 localized around nucleus.

•
$$\bar{e}i\gamma_5 e \times E_N^2 \sim \bar{e}i\gamma_5 e \times \bar{N}N$$
 : equivalent to C_S .

* Fudge factor included in our actual computation.

• ACME experiment: $|d_e^{\text{equiv}}| < 1.1 \times 10^{-29} e \text{ cm}$ [ACME 18]

 $|d_{\mu}(\text{ThO})| < 1.7 \times 10^{-20} \, e \, \text{cm}$ [YE, Gao, Pospelov 21, 22]

* C_S dominates over d_e by a factor 4, better than direct bound by BNL $|d_{\mu}| < 1.8 \times 10^{-19} e \,\mathrm{cm}$.

1. Introduction

2. Review on atomic EDM

3. Indirect limits on muon EDM

4. Summary

Summary

- We derived indirect limits on muon EDM, motivated by muon g-2.
- $|d_{\mu}(\text{ThO})| < 1.7 \times 10^{-20} e \text{ cm from ThO}.$
- $|d_{\mu}(\text{Hg})| < 6.4 \times 10^{-20} e \text{ cm from } ^{199}\text{Hg}.$
- Two different observables, so cancellation by chance less likely.
- Can be applied to tau EDM: $|d_{\tau}| < 1.1 \times 10^{-18} e \text{ cm}$ (dominantly from d_e).

CP-odd photon operator

• Muon EDM induces CP-odd photon operator at one-loop:

where cross-dot: muon EDM $d_{\mu}\bar{\mu}\sigma\cdot\tilde{F}\mu$ insertion.

• Atomic EDM exp. has large $Z \rightarrow$ strong nuclear electric field.

 $\tilde{F}_{\mu\nu}F^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma} \ni E^{3}B$ can induce sizable CP-odd effects.

• In particular this operator induces

 $\left\{ \begin{array}{ll} \text{semi-leptonic CP-odd operator} \rightarrow \text{paramagnetic EDM (ThO)} \\ \text{Schiff moment} & \rightarrow \text{diamagnetic EDM (Hg)} \end{array} \right.$

Diamagnetic atom

• Nucleus actually not point-like $\rightarrow d_N$ can induce d_A through mixing of states.

$$\overrightarrow{d}_{A} = \sum_{n \neq 0} \frac{1}{E_{0} - E_{n}} \left[\langle 0_{e} | e \sum_{i=1}^{Z} \vec{r}_{i} | n_{e} \rangle \langle n_{e} | \mathscr{H}_{\text{int}} | 0_{e} \rangle + \text{h.c.} \right]$$
where $\mathscr{H}_{\text{int}} = \int d^{3}r \left(\frac{\overrightarrow{d}_{N}(\vec{r})}{e} - \rho_{q}(\vec{r}) \frac{\langle \overrightarrow{d}_{N} \rangle}{e} \right) \cdot \overrightarrow{\nabla}_{e} \frac{\alpha}{|\vec{r} - \vec{r}_{e}|} : \text{difference btw charge and EDM distribution.}$
(partial) shielding
avoid complete suppression: $d_{A}/d_{N} \sim 10Z^{2}(R_{N}/R_{A})^{2} \sim \mathcal{O}(10^{-3})$.

• Expanding this w.r.t. $r \sim r_N \ll r_e$:

$$\mathscr{H}_{\text{int}} = \int d^3 r \left(\frac{\overrightarrow{d}_N}{e} - \rho_q \frac{\langle \overrightarrow{d}_N \rangle}{e} \right) \cdot \overrightarrow{\nabla}_e \frac{\alpha}{|\overrightarrow{r} - \overrightarrow{r}_e|} = -4\pi \alpha \frac{\overrightarrow{S}}{e} \cdot \overrightarrow{\nabla}_e \delta^{(3)}(\overrightarrow{r}_e) + \cdots \qquad \text{[Schiff 63]}$$
where \overrightarrow{S} : Schiff moment.

• Diamagnetic atom EDM exp. puts constraints on this S.

e.g. ¹⁹⁹Hg constraint:
$$|S_{199Hg}| < 3.1 \times 10^{-13} \, e \text{fm}^3$$
. [Graner et.a. 16]

Schiff moment

• Schiff moment: $\mathscr{H}_{int} = -4\pi\alpha(\vec{S}/e)\cdot\vec{\nabla}_e\delta^{(3)}(\vec{r}_e)$.

$$\overrightarrow{d}_A = \sum_{i=1}^Z \langle \Psi \,|\, e\vec{r}_i \,|\, \Psi \rangle = -\sum_{n \neq 0} \frac{2}{E_0 - E_n} \sum_{i=1}^Z \langle 0_e |e\vec{r}_i |n_e \rangle \langle n_e |4\pi\alpha(\overrightarrow{S}/e) \cdot \overrightarrow{\nabla}_i \delta^{(3)}(\vec{r}_i) |0_e \rangle \,.$$

• $E^{3}B$ with two E_{N} and one B_{N} induces effective EDM distribution:

$$e \xrightarrow{e} e = \int d^3r \left(\overrightarrow{\nabla}_e \frac{\alpha}{|\vec{r} - \vec{r}_e|} \right) \cdot \frac{\overrightarrow{d}_N(\vec{r})}{e}, \quad \overrightarrow{d}_N \propto d_\mu \left(2\overrightarrow{E}_N(\overrightarrow{E}_N \cdot \overrightarrow{B}_N) + \overrightarrow{B}_N E_N^2 \right).$$

• Difference between EDM and charge distribution gives Schiff moment:

$$\mathcal{H}_{\rm eff} = \int d^3 r \left(\frac{\overrightarrow{d_N}}{e} - \rho_q \frac{\langle \overrightarrow{d_N} \rangle}{e} \right) \cdot \overrightarrow{\nabla}_e \frac{\alpha}{|\overrightarrow{r} - \overrightarrow{r_e}|} = -4\pi \alpha \frac{\overrightarrow{S}}{e} \cdot \overrightarrow{\nabla}_e \delta^{(3)}(\overrightarrow{r_e}) + \cdots.$$

• ¹⁹⁹Hg constraint: $|S_{199Hg}| < 3.1 \times 10^{-13} \, e \mathrm{fm}^3$. [Graner et.a. 16]

$$|d_{\mu}(\text{Hg})| < 6.4 \times 10^{-20} \, e\text{cm}$$

[YE, Gao, Pospelov 21]

¹⁹⁹Hg experiment

[Graner et.a. 16]

ACME ThO experiment

Nuclear electric field

• Nuclear electric field given by the charge distribution inside nuclei:

$$e\vec{E}_{N}(\vec{r}) = \frac{Ze^{2}}{4\pi} \int d^{3}r_{N}\rho_{q}(\vec{r}_{N})\vec{\nabla}\frac{1}{|\vec{r}-\vec{r_{N}}|}$$

• We simply take the charge distribution as

$$\rho_q(r_N) = \frac{3}{4\pi R_N^3} \Theta \left(R_N - r_N \right), \quad R_N = \sqrt{\frac{5}{3}} r_c, \quad r_c = 5.45 \,\text{fm for }^{199}\text{Hg}.$$

• The Woods-Saxon shape different only within 10% in the final result.

Nuclear magnetic field

• ¹⁹⁹Hg has an unpaired outermost neutron with $2p_{1/2}$ (n = 2, l = 1, j = 1/2).

 \overrightarrow{B}_N dominantly provided by this neutron.

• As a result \overrightarrow{B}_N is given by

$$e\vec{B}_{N}(\vec{r}) = \frac{2e\mu_{n}}{3}\psi_{n}^{\dagger}(\vec{r})\vec{\sigma}\psi_{n}(\vec{r}) + \frac{e\mu_{n}}{4\pi}\left[\vec{\nabla}\left(\vec{\nabla}\cdot\right) - \frac{\vec{\nabla}^{2}}{3}\right]\int d^{3}r_{n}\frac{\psi_{n}^{\dagger}(\vec{r}_{n})\vec{\sigma}\psi_{n}(\vec{r}_{n})}{|\vec{r}_{n} - \vec{r}|}$$
$$= e\mu_{n}\frac{\left|R(r)\right|^{2}}{4\pi}\chi^{\dagger}\left[\left(\vec{n}\cdot\vec{\sigma}\right)\vec{n}-\vec{\sigma}\right]\chi + \frac{e\mu_{n}}{4\pi}\int_{0}^{\infty}dr_{n}r_{n}^{2}\left|R(r_{n})\right|^{2}\chi^{\dagger}\vec{g}(\vec{r},r_{n})\chi,$$

where $\mu_n \simeq -1.91 \frac{e}{2m_p}$: neutron magnetic moment, ψ_n : neutron wave function, R_n : neutron radial wave function, χ neutron spinor, $\vec{n} = \vec{r}/r$.

• We use the nuclear shell model to obtain ψ_n .

Fudge factor from E_N^2 to $\bar{N}N$

- E_N^2 and $\overline{N}N$ are both localized around nuclei, but not exactly the same.
- Relevant electron transition btw $s_{1/2}$ and $p_{1/2}$ states.

matrix element:

$$\begin{cases} \int d^3 r \rho_N \psi_p^{\dagger} \gamma^0 \gamma_5 \psi_s \propto \int dr \, r^2 \bar{\rho}_N \left(f_p g_s + f_s g_p \right) & \text{for } \bar{N} N \bar{e} i \gamma_5 e, \\ \int d^3 r \, |\vec{E}_N|^2 \psi_p^{\dagger} \gamma^0 \gamma_5 \psi_s \propto \int dr \, r^2 \bar{\rho}_{E^2} \left(f_p g_s + f_s g_p \right) & \text{for } E_N^2 \bar{e} i \gamma_5 e. \end{cases}$$

• We compute the fudge factor κ by solving the Dirac equation and get

$$\kappa = \frac{\int dr \, r^2 \bar{\rho}_{E^2} \left(f_p g_s + f_s g_p \right)}{\int dr \, r^2 \bar{\rho}_N \left(f_p g_s + f_s g_p \right)} \simeq 0.66.$$

Magnetic quadrupole moment

• Magnetic quadrupole moment (MQM) also violates P and CP:

$$\mathscr{H}_{\text{eff}} = -\frac{M}{6} \nabla_j B_i I_{ij}, \quad I_{ij} \equiv \frac{3}{2I(I-1)} \left(I_i I_j + I_j I_i - \frac{2}{3} \delta_{ij} I(I+1) \right).$$

• The E^3B operator converts EQM Q to MQM as

$$\frac{M}{e} \simeq -\frac{Z^2 \alpha^3 d_{\mu}/e}{5\pi m_{\mu}^2 R_N^3} \frac{Q}{e} \simeq 1.1 \times 10^{-4} \,\mathrm{fm} \left(\frac{Q/e}{300 \,\mathrm{fm}^2}\right) \times d_{\mu}/e \,.$$

• Q can be large in nuclei with $I \ge 1$ and large deformation.

can be an interesting observable in future.