ニュートリノ質量、暗黒物質、 バリオン数非対称性を同時に 説明する模型とその現象論

(9月からはKAIST)

青木真由美 (金沢大), 兼村晋哉 (大阪大)

Paper in preparation

Introduction

What is the origin of tiny neutrino mass?

Seesaw mechanism ^{Minkowski} (1977); Yanagida (1979); Gell-Mann, Ramond, Slansky (1979); Mohapatra, Senjanovic (1980); Schechter, Valle (1980)

Right-handed Majorana ν 's: N_R

 $(m_{\nu})_{\ell\ell'} \propto \frac{v^2}{M_N} \quad \mathcal{O}(M_N) = \text{GUT scale}$

Difficult to test

Radiative seesaw (quantum effects)
e.g.) Zee model A. Zee (1980)
The $\phi_2: (2, +1/2)$ S: (1+1)

The loop suppression

Can be tested

A radiative seesaw model proposed in M. Aoki, S. Kanemura, O. Seto (2009)

	Scalar		Fermion		
New Fields	Φ_2	S^+	η	N _{aR}	(a = 1, 2, 3)
$SU(2)_L$	2	1	1	1	
$U(1)_Y$	+1/2	+1	0	0	
Z_2	+	-	-	—	

• ν masses : 3-loop diagram

- •DM : Unbroken Z₂ symmetry
- •BAU : Electroweak baryogenesis by extended Higgs sector

(BAU = Baryon Asymmetry of the Universe)

Aoki, Kanemura, Seto (2009) In the previous works, Aoki, Kanemura, Yagyu (2011)

CP-violation was neglected

for simplicity

Q. Can this model explain ν mass, DM, and BAU simultaneously?

Our work Aoki, <u>KE</u>, Kanemura (2022) in preparation

Revisit (and extend) the model considering CPV phases.

New benchmark scenario

The model Aoki, Kanemura, Seto (2009); Aoki, <u>KE</u>, Kanemura in preparation

Scalar Bosons

$$Z_2$$
-even) $\Phi_1, \Phi_2 : (\mathbf{2}, +1/2)$

 Z_2 -odd) $S^+: (\mathbf{1}, +1), \quad \eta: (\mathbf{1}, 0)$ real scalar

Extension of 2-Higgs doublet model

$$\mathcal{V} = V_{\Phi}(\Phi_1, \Phi_2) + V_{S\eta}(\Phi_1, \Phi_2, S^+, \eta)$$

The model Aoki, Kanemura, Seto (2009); Aoki, <u>KE</u>, Kanemura in preparation

Mass of Neutral Higgs Bosons

<u>Higgs basis</u>

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v + H_1 + iG^0) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H_2 + iH_3) \end{pmatrix}$$

In the limit

$$\lambda_6 \rightarrow 0 \implies$$

Mixings vanish [Higgs alignment]. (Higgs couplings coincide with SM ones)

Higgs alignment scenario

Simple scenario $\lambda_6 = 0$ Kanemura, Kubota, Yagyu (2020), (2021) Kanemura, Mura (2021) Kanemura, Takeuchi, Yagyu (2021)

• H_1, H_2, H_3 are mass eigenstates w/o mixing (H_1 is 125GeV Higgs boson)

3 CPV couplings in the Higgs potential

$$\begin{split} \lambda_{6} &= 0 \\ (+ \text{ Stationary condition}) \\ \mathscr{V}_{CPV} &= \mathbf{Im} \begin{bmatrix} \mu_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + (\Phi_{1}^{\dagger} \Phi_{2}) \{ \frac{\lambda_{5}}{2} \Phi_{1}^{\dagger} \Phi_{2} + \lambda_{6} | \Phi_{1} |^{2} + \lambda_{7} | \Phi_{2} |^{2} \} \\ + \rho_{12} (\Phi_{1}^{\dagger} \Phi_{2}) | S^{+} |^{2} + \frac{\sigma_{12}}{2} (\Phi_{1}^{\dagger} \Phi_{2}) \eta^{2} + 2\kappa (\Phi_{1}^{\dagger} \Phi_{2}) S^{-} \eta \end{bmatrix} \\ S^{\pm} \end{split}$$

The model Aoki, Kanemura, Seto (2009); Aoki, <u>KE</u>, Kanemura in preparation

Yukawa interaction

Both Higgs doublets couple with the SM fermions.

- In AKS(2009): Softly broken Z₂ Glashow, Weinberg (1977)
- Current Work: Flavor Alignment

$$y_{2}^{f} = \frac{1}{v} \begin{pmatrix} m_{f^{1}} & 0 & 0 \\ 0 & m_{f^{2}} & 0 \\ 0 & 0 & m_{f^{3}} \end{pmatrix} \begin{pmatrix} \zeta_{f^{1}} & 0 & 0 \\ 0 & \zeta_{f^{2}} & 0 \\ 0 & 0 & \zeta_{f^{3}} \end{pmatrix} \xrightarrow{FC}$$

For quarks,

$$\zeta_{u^1} = \zeta_{u^2} = \zeta_{u^3} \equiv \zeta_u$$
$$\zeta_{d^1} = \zeta_{d^2} = \zeta_{d^3} \equiv \zeta_d$$

Pich, Tuzon (2009)

Page 7

The model Aoki, Kanemura, Seto (2009); Aoki, <u>KE</u>, Kanemura in preparation

Yukawa interaction

 Z_2 -odd Majorana fermions: N_R^a (a = 1,2,3)

$$\frac{1}{2} M_{N^a} \overline{(N_R^a)^c} N_R^a$$
Lepton # violating

$$\mathscr{L}_{Y} = -(Y_{N})_{ai}\overline{(N_{R}^{a})^{c}} \mathscr{C}_{R}^{i} S^{+} + h.c.$$

Lepton flavor violating

Summary of the model

New particles: $(Z_2$ -even) H^{\pm} , H_2 , H_3 (Z_2 -odd) S^{\pm} , η , N_R^a

Alignment:
$$\lambda_6 = 0$$
& $(y_2^f)_{ij} \propto m_{f^i} \zeta_{f^i} \delta_{ij}$
(No FCNC)

CP-violation: λ_7 , ρ_{12} , σ_{12} & ζ_u , ζ_d , ζ_τ , ζ_μ , ζ_e , $(Y_N)_{ai}$

Neutrino masses

 $\bigcirc \ \overline{L_{iL}} \tilde{\Phi}_1 N_{aR}$ (N_{aR} is Z_2 -odd)

Neutrino masses are generated via 3-loop diagrams

$$\kappa \tilde{\Phi}_{1} \Phi_{2} S^{-} \eta$$

$$(Y_{N})_{ai} \overline{N_{aR}^{c}} \ell_{iR} S^{+}$$

$$\zeta_{e} \frac{\sqrt{2}m_{\ell_{i}}}{\nu} \overline{L_{iL}} \Phi_{2} \ell_{iR}$$

Input parameters

$$\begin{split} |\zeta_e| &= 122, \ |\zeta_\mu| = 0.588, \ |\zeta_\tau| = 0.350, \ \arg[\zeta_e] = \arg[\zeta_\mu] = \arg[\zeta_\tau] = -2.94 \\ m_{H^\pm} &= 250 \text{ GeV}, \quad m_S = 400 \text{ GeV}, \quad \kappa = 2.0 \\ m_\eta &= 63 \text{ GeV}, \quad M_{N^i} = (3000, 3500, 4000) \text{ TeV} \\ Y_N &\simeq \begin{pmatrix} 0.951 - 0.309i & 0.187 + 0.0582i & -0.759 - 0.711i \\ -0.330 - 1.03i & -0.0470 - 0.200i & -0.723 + 0.746i \\ -0.414 + 0.174i & 1.31 - 0.0434i & 0.0809 + 0.0588i \end{pmatrix} \end{split}$$

LFV decays (LFV = Lepton Flavor Violating)

 $m_{S} = 400 \text{ GeV},$ $M_{N} = \{3000, 3500, 4000\} \text{ GeV}$ $Y_{N} \simeq \begin{pmatrix} 0.951 - 0.309i & 0.187 + 0.0582i & -0.759 - 0.711i \\ -0.330 - 1.03i & -0.0470 - 0.200i & -0.723 + 0.746i \\ -0.414 + 0.174i & 1.31 - 0.0434i & 0.0809 + 0.0588i \end{pmatrix}$

 $\blacksquare \ell \to \ell' \gamma$

Processes	BR	Upper limits
$\mu ightarrow e \gamma$	1.4×10^{-14}	4.2×10^{-13}
$ au o e\gamma$	5.3×10^{-10}	3.3×10^{-8}
$\tau ightarrow \mu \gamma$	1.1×10^{-11}	4.4×10^{-8}

 $\blacksquare \ell_i \to \ell_j \ell_k \overline{\ell}_m$

Processes	BR	Upper limits
$\mu ightarrow 3e$	1.0×10^{-13}	1.0×10^{-12}
au ightarrow 3e	6.2×10^{-10}	2.7×10^{-8}
$ au ightarrow 3 \mu$	$2.4 imes 10^{-11}$	$2.1 imes10^{-8}$
$ au o e \mu \overline{e}$	5.1×10^{-12}	1.8×10^{-8}
$ au o \mu \mu \overline{e}$	$1.1 imes 10^{-12}$	$1.7 imes10^{-8}$
$ au ightarrow ee\overline{\mu}$	$4.5 imes 10^{-13}$	$1.5 imes 10^{-8}$
$ au o e \mu \overline{\mu}$	$9.6 imes10^{-11}$	$2.7 imes10^{-8}$

Dark matter

DM candidates : real scalar η , Majorana fermion N_a In the benchmark scenario, DM is η .

$$m_{\eta} = 63 \text{ GeV}, m_{H_2} = 420 \text{ GeV}, m_{H_3} = 250 \text{ GeV}$$

 $\sigma_1 = |\sigma_{12}| = 1.1 \times 10^{-3}, \text{ arg}[\rho_{12}] = -2.94$

Relic abundance

$$\Omega_{\eta 0} h^2 = 0.12$$

Direct detection

$$\sigma(\eta N \to \eta N) = 2.3 \times 10^{-48} \text{ cm}^2$$

Planck (2018) $\Omega_{DM}h^2 = 0.1200 \pm 0.0012$

 $\frac{\text{XENON1T (2018)}}{\text{PANDAX-4T (2022)}} \sigma \lesssim 10^{-47} \text{ cm}^2$

Page 11

Electroweak baryogenesis

Kuzmin, Rubakov, Shaposhnikov (1985)

The Sakharov conditions Sakharov (1967)

- 1. B-violation
- 2. C and CP violation
- 3. Departure from thermal equilibrium

Sphaleron transition

CPV phases : $\lambda_7, \rho_{12}, \sigma_{12}, \zeta_u, \zeta_d, \zeta_\ell$

Strongly 1st order electroweak phase transition

Strongly 1st EWPT (EWPT = ElectroWeak Phase Transition)

Blue point : Benchmark scenario

 $m_{H^{\pm}} = m_{H_3} = 250 \text{ GeV},$ $m_{H_2} = 420 \text{ GeV}, m_S = 400 \text{ GeV}$

Sphaleron decoupling condition

$$v_n/T_n = 1.74$$

Page 12

Triple Higgs coupling

Kanemura, Okada, Senaha (2005)

$$\Delta R \equiv \lambda_{hhh} / \lambda_{hhh}^{SM} - 1 = 38 \%$$

 $v_w = 0.1$ is assumed

Cline, Joyce, Kainulainen (2000); Cline, Kainulainen (2020)

(2022.08.29) PPP2022

Page 14

electron Electric Dipole Moment (eEDM)

Two kinds of Barr-Zee type diagrams Barr, Zee (1990)

Fermion loop

eEDM can be small by **destructive interference** S. Kanemura, M. Kubota, K. Yagyu, JHEP(2020)

$$m_{H_2} = 420 \text{ GeV}, \quad m_{H_3} = m_{H^{\pm}} = 250 \text{ GeV}$$

 $|\lambda_7| = 0.835, \quad \arg[\lambda_7] = -2.34$
 $|\zeta_u| = 0.246, \quad \arg[\zeta_u] = 0.245$
 $|\zeta_e| = 122, \quad \arg[\zeta_e] = -2.94$

In our benchmark scenario, $|d_e| = 0.41 \times 10^{-29}$ ecm

ACME (2018)

 $|d_e| < 1.0 \times 10^{-29}$ ecm

How to test the benchmark scenario

EDM measurements

One order improvement is expected in future ACME experiment ACME(2018)

Flavor experiments

- $B \to X_s \gamma$ or $B_d^0 \to \mu^+ \mu^-$ in Belle-II experiments E. Kou, et al [Bell-II], arXiv:1808.10567 [hep-ex]
- CP violation in $B \to X_s \gamma (\Delta A_{CP})$ Benz, Lee, Neubert, Paz (2011); Watanuki et al [Belle] (2019)
- Lepton flavor violating decays $\mu \rightarrow e\gamma$ MEG-II $\mu \rightarrow 3e$, $\tau \rightarrow 3e$ Belle-II

Collider experiments

• $gg \to H_2, H_3; gg \to H^{\pm}tb; q\overline{q} \to H_{2,3}H^{\pm}$

•
$$q\overline{q} \rightarrow S^+S^-; e^+e^- \rightarrow S^+S^-; e^+e^- \rightarrow NN$$

• Higgs triple coupling $\Delta R = \frac{\Delta \lambda_{hhh}}{\lambda_{hhh}^{SM}} = 38 \%$

Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu (2021); S. Kanemura, M. Takeuchi, K. Yagyu (2021)

M. Aoki, S. Kanemura, O. Seto (2009)

Sensitivity @ ILC ($\sqrt{s} = 500 \text{ GeV}$) $\Delta R = 27 \%$ K. Fujii, et al, arXiv:1506.05992 [hep-ph]

• Azimuthal angle distribution of $H_{2,3} \to \tau \overline{\tau}$ at e^+e^- collider

S. Kanemura, M. Kubota, K. Yagyu, JHEP (2021)

Page 16

Dark matter direct detection

Observation of gravitational waves

Details of these are currently under investigation.

Summary of this talk

The SM cannot explain some observed phenomena (tiny v masses, DM, BAU), therefore, we need physics beyond the SM.

In the previous work, the authors proposed a model where tiny v masses, DM, and BAU can be explained simultaneously at TeV-scale. However, they neglected CPV phases for simplicity.

■ We have revisited the model and found a new benchmark scenario including CPV phases, where tiny ν masses, dark matter, and BAU can be explained under the constraints from the current experiments. (LFV, EDM, ...).

This benchmark scenario includes some new particles at a few hundred GeV scale, and they would be testable at various future experiments.

Thank you for listening!

Page 17

Backup Slides

Masses of New particle

Z₂ even:
$$m_{H^+} = 250 \text{ GeV}, \quad m_{H_2} = 420 \text{ GeV}, \quad m_{H_3} = 250 \text{ GeV}$$

Z₂ odd: $m_S = 400 \text{ GeV}, \quad m_\eta = 63 \text{ GeV}$
 $(M_{N_1}, M_{N_2}, M_{N_3}) = (3000, 3500, 4000) \text{ GeV}$

Higgs potential

$$\begin{split} \mu_2^2 &= (50 \text{ GeV})^2, \quad \mu_s^2 = (330 \text{ GeV})^2, \quad \mu_\eta^2 \simeq (62.7 \text{ GeV})^2, \quad (\mu_{12}^2 = 0) \\ \lambda_2 &= 0.1, \quad \lambda_3 \simeq 1.98, \quad \lambda_4 \simeq 1.88, \quad \lambda_5 \simeq 1.88, \quad \lambda_6 = 0, \\ |\lambda_7| &= 0.821, \quad \arg[\zeta_7] = -2.34, \\ \rho_1 &= 1.90, \quad |\rho_{12}| = 0.1, \quad \arg[\rho_{12}] = -2.94 \\ \rho_2 &= 0.1, \quad \sigma_1 = |\sigma_{12}| = 1.1 \times 10^{-3}, \quad \theta_\sigma = 0, \quad \sigma_2 = 0.1 \end{split}$$

Benchmark Scenario

Yukawa interaction

$$|\zeta_u| = |\zeta_d| = 0.25, \quad |\zeta_\tau| = 0.35, \quad |\zeta_\mu| = 0.588, \quad |\zeta_e| = 122$$

$$\left(\begin{array}{ccc} y_t |\zeta_u| \simeq 0.25, & y_b |\zeta_d| \simeq 6 \times 10^{-3}, & y_\tau |\zeta_\tau| \simeq 3.6 \times 10^{-3}, \\ y_\mu |\zeta_\mu| = 3.6 \times 10^{-4}, & y_e |\zeta_e| = 3.6 \times 10^{-4} \end{array} \right)$$

$$\arg[\zeta_u] = 0.245, \quad \arg[\zeta_d] = 0$$

 $\arg[\zeta_\tau] = \arg[\zeta_\mu] = 0, \quad \arg[\zeta_e] = -2.94$

$$Y_N \simeq \begin{pmatrix} 0.951 - 0.309i & 0.187 + 0.0582i & -0.759 - 0.711i \\ -0.330 - 1.03i & -0.0470 - 0.200i & -0.723 + 0.746i \\ -0.414 + 0.174i & 1.31 - 0.0434i & 0.0809 + 0.0588i \end{pmatrix}$$

Backup

The Higgs potential

$$\mathcal{V} = V_{\Phi}(\Phi_1, \Phi_2) + V_{S\eta}(\Phi_1, \Phi_2, S^+, \eta)$$

$$\begin{split} V_{\Phi} &= \mu_1^2 |\Phi_1|^2 + \mu_2^2 |\Phi_2|^2 + \left(\mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}\right) \\ &+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_3|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &+ \left\{ \left(\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 |\Phi_1|^2 + \lambda_7 |\Phi_2|^2\right) (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \right\} \end{split}$$

$$\begin{split} V_{S\eta} &= \mu_S^2 |S^+|^2 + \frac{\mu_\eta^2}{2} \eta^2 \\ &+ \rho_1 |\Phi_1|^2 |S^+|^2 + \rho_2 |\Phi_2|^2 |S^+|^2 + \left(\rho_{12}(\Phi_1^{\dagger}\Phi_2)|S^+|^2 + \text{h.c.}\right) \\ &+ \frac{\sigma_1}{2} |\Phi_1|^2 \eta^2 + \frac{\sigma_2}{2} |\Phi_2|^2 \eta^2 + \left(\frac{\sigma_{12}}{2}(\Phi_1^{\dagger}\Phi_2)\eta^2 + \text{h.c.}\right) \\ &+ \left(\sum_{a,b=1}^2 \kappa(\epsilon_{ab} \tilde{\Phi}_a^{\dagger} \Phi_b) S^- \eta + \text{h.c.}\right) + \frac{\lambda_s}{4} |S^+|^4 + \frac{\lambda_\eta}{4!} \eta^4 + \frac{\xi}{2} |S^+|^2 \eta^2 \end{split}$$

Masses of scalar bosons

$$\begin{split} m_{H^+}^2 &= \mu_2^2 + \frac{1}{2}\lambda_3 v^2, \quad m_{H_2}^2 = \mu_2^2 + \frac{1}{2}(\lambda_3 + \lambda_4 + \lambda_5)v^2, \\ m_{H_3}^2 &= \mu_2^2 + \frac{1}{2}(\lambda_4 + \lambda_4 - \lambda_5)v^2, \\ m_{S^+}^2 &= \mu_s^2 + \frac{1}{2}\rho_1 v^2, \quad m_\eta^2 = \mu_\eta^2 + \frac{1}{2}\sigma_1 v^2 \\ \end{split}$$

$$\begin{split} m_{H^+} &= 250 \text{ GeV}, \quad m_{H_2} = 420 \text{ GeV}, \quad m_{H_3} = 250 \text{ GeV} \\ m_S &= 400 \text{ GeV}, \quad m_\eta = 63 \text{ GeV} \\ \mu_2^2 &= (50 \text{ GeV})^2, \quad \mu_s^2 = (330 \text{ GeV})^2, \quad \mu_\eta^2 \simeq (62.7 \text{ GeV})^2, \\ \lambda_3 &\simeq 1.98, \quad \lambda_4 \simeq 1.88, \quad \lambda_5 \simeq 1.88, \quad \rho_1 = 1.90, \quad \sigma_1 = 1.1 \times 10^{-3} \end{split}$$

 μ_2^2

 λ_3

CPV phases in $(Y_N)_{a\ell}$

Rephasing of lepton fields

$$\begin{pmatrix} e_{L,R} \\ \mu_{L,R} \\ \tau_{L,R} \end{pmatrix} \to P_{\phi} \begin{pmatrix} e_{L,R} \\ \mu_{L,R} \\ \tau_{L,R} \end{pmatrix} \quad \begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} \to P_{\phi} \begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} \quad P_{\phi} \equiv \begin{pmatrix} e^{i\phi_{e}} & 0 & 0 \\ 0 & e^{i\phi_{\mu}} & 0 \\ 0 & 0 & e^{i\phi_{\tau}} \end{pmatrix} \\ \phi_{e}, \phi_{\mu}, \phi_{\tau} \in \mathbb{R}$$

Lagrangian except $(Y_N)_{ai}\overline{N_{aR}^c} \mathscr{C}_{iR}S^+$ is invariant under this rephasing

Three of phases in $(Y_N)_{ai}$ are **not physical (not CPV phases)**

We use this degree of freedom to vanish 3 phases from PMNS matrix.

$$\begin{pmatrix} \nu'_{eL} \\ \nu'_{\mu L} \\ \nu'_{\tau L} \end{pmatrix} = P_{\phi} \begin{pmatrix} \nu_{eL} \\ \nu_{\mu L} \\ \nu_{\tau L} \end{pmatrix} \qquad \begin{matrix} U_{\text{PMNS}} = P_{\phi} U'_{\text{PMNS}} & \text{Unitary matrix : 6 phases} \\ \text{Using } P_{\phi}, \text{ 3 of phases can be 0.} & (\text{CPV phases}) \\ \delta_{CP}, \alpha_{1}, \alpha_{2} \end{matrix}$$

In this talk, we consider the basis where PMNS have only 3 phases.

Backup

(2022.08.29) PPP2022

Page 23

Yukawa sector in THDM with Softly broken Z_2

$$egin{aligned} -\mathcal{L}_Y &= rac{\sqrt{2}m_{u_i}}{v}\overline{Q_{iL}}\Big(\Phi_1^c+\zeta_u\Phi_2^c\Big)u_{iR} + rac{\sqrt{2}m_{d_i}}{v}\overline{Q_{iL}}\Big(\Phi_1+\zeta_d\Phi_2\Big)d_{iR} \ &+ rac{\sqrt{2}m_{\ell_i}}{v}\overline{L_{iL}}\Big(\Phi_1+\zeta_\ell\Phi_2\Big)\ell_{iR} + ext{h.c.} \end{aligned}$$

	Ι	II	X	Y
ζ_u	$\cot \beta$	$\cot eta$	$\cot eta$	$\cot eta$
ζ_d	$\cot \beta$	$-\tan\beta$	$\cot eta$	$-\tan\beta$
Se	$\cot eta$	- aneta	- aneta	$\cot eta$

Type-I like : $|\zeta_u| = |\zeta_d| = |\zeta_e|$ Type-II like : $|\zeta_u| = 1/|\zeta_d| = 1/|\zeta_e|$ Type-X like : $|\zeta_u| = |\zeta_d| = 1/|\zeta_e|$ Type-Y like : $|\zeta_u| = 1/|\zeta_d| = |\zeta_e|$

Backup

Constraints from flavor exps.

 $\frac{1}{|\zeta_u|} = \mathbf{\hat{g}}$

45

40

35

30

25

20

15

10

5

200

300

400

500

600

 $B \rightarrow X_{s}\gamma$

 $B_s \to \mu\mu$

 $B \rightarrow \tau v$

 $D_a \rightarrow \mu \nu$

 $D_s \rightarrow \tau v$

700

 $\cdots B(\mathsf{K} \to \mu \mathsf{v}) / B(\mathsf{x} \to \mu \mathsf{v})$

800

900

M_{H*} [GeV]

Constraints from Collider exps.

M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, K. Sakurai, K. Yagyu, NPB (2021)

Backup

Direct search by future HL-LHC

M. Aiko, S. Kanemura, M. Kikuchi, K. Mawatari, K. Sakurai, K. Yagyu, NPB (2021)

Backup

(2022.08.29) PPP2022

Page 27

The measurement of $\arg[\zeta_e] @ e^+e^-$ colliders

 $e^+ e^- \rightarrow H_2 H_3$, $\begin{cases} H_2 \rightarrow \tau^+ \tau^-, H_3 \rightarrow b \overline{b} \\ H_2 \rightarrow b \overline{b}, H_3 \rightarrow \tau^+ \tau^- \end{cases}$ S. Kanemura, M. Kubota, K. Yagyu, JHEP (2021)

M = 240,	$m_{H_2^0} = 280,$	$m_{H_3^0} = 230,$	$m_{H^\pm}=230$	(in GeV)
$ \zeta_u = 0.01,$	$ \zeta_d = 0.1,$	$ \zeta_e = 0.5,$	$ \lambda_7 = 0.3,$	$\lambda_2 = 0.5$
$\theta_u = 1.2,$	$\theta_d = 0,$	$\theta_e = \pi/4,$	$\theta_7 = -1.8$	(in radian)

Future LFV experiments

Processes	BR	Expected limits	Experiment
$\mu ightarrow e \gamma$	1.4×10^{-14}	$6 imes 10^{-14}$	MEG-II
$ au o e\gamma$	$5.3 imes10^{-10}$	$3 imes 10^{-9}$	Belle-II
$\tau ightarrow \mu \gamma$	1.1×10^{-11}	$1 imes 10^{-9}$	Belle-II

Processes	BR	Expected limits	Experiment
$\mu ightarrow 3e$	1.0×10^{-13}	1.0×10^{-16}	Mu3e
au ightarrow 3e	6.2×10^{-10}	4×10^{-10}	Belle-II
$ au ightarrow 3\mu$	2.4×10^{-11}	3×10^{-10}	Belle-II
$\tau \to e \mu \overline{e}$	5.1×10^{-12}	3×10^{-10}	Belle-II
$\tau \to \mu \mu \overline{e}$	1.1×10^{-12}	$3 imes 10^{-10}$	Belle-II
$\tau \to e e \overline{\mu}$	4.5×10^{-13}	1×10^{-10}	Belle-II
$\tau \to e \mu \overline{\mu}$	$9.6 imes 10^{-11}$	4×10^{-10}	Belle-II

The cubic term *E* can be large by the non-decoupling effects of H^{\pm} , $H_{2,3}$, S^{\pm} , and η

$$E = \frac{1}{12\pi v^3} \sum_{s=H^{\pm}, H_{2,3}, S^{\pm}, \eta} g_i m_i^3 \left(1 - \frac{M_i^2}{m_i^2} \right)$$

 $m_i^2 = M_i^2 + \frac{1}{2}\lambda_i v^2$

 M_i^2 : Invariant mass parameter

Page 30

Backup

(2022.08.29) PPP2022

 $(m_i^2 \gg M_i^2)$

The electroweak phase transition in the model

Non-decoupling effects of new scalars predicts large enhancement of the *hhh* coupling

$$\Delta R = \frac{\lambda_{hhh} - \lambda_{hhh}^{SM}}{\lambda_{hhh}^{SM}} = \frac{1}{12\pi^2 v^2 m_h^2} \sum_{i=H^{\pm}, H_{2,3}, S^{\pm}, \eta} m_i^4 \left(1 - \frac{M^2}{m_i^2}\right)^3$$
Testable at future colliders
$$(m_i^2 \gg M^2) \quad \begin{array}{c} \text{Kanemura, Kiyoura, Okada, Senaga, Yuan (2003)} \\ \text{Kanemura, Okada, Senaha, Yuan (2004)} \\ \text{Kanemura, Okada, Senaha, Yuan (2004)} \\ \text{Kanemura, Okada, Senaha, Yuan (2005)} \end{array}$$

Backup

(2022.08.29) PPP2022

Page 31

Local mass of the particles

In expanding the vacuum bubbles, the VEV is space-dependent.

The mass of the particles also varies with spatial coordinate (Local mass)

CP-violating Force

$$F_{\text{odd}} = \pm \lambda \text{sign}(p_z) \left\{ \frac{(|m|^2 \theta')'}{2E_0 E_{0z}} - \frac{|m|^2 \theta'(|m|^2)'}{4E_0^3 E_{0z}} \right\} +: \text{Particles}, \quad -: \text{Anti-particles}$$
$$\lambda : \text{helicity} \simeq \text{chirality}$$
$$\theta = \arg[m(z)] \qquad E_0^2 = p_x^2 + p_y^2 + p_z^2 + m^2 \qquad E_{0z}^2 = p_z^2 + m^2$$

Backup

Bubble profiles and Nucleation temperature

Euclidean action : $S_E = \int d^d x \left\{ \frac{1}{2} (\partial_\mu \varphi)^2 + V_{eff}(\varphi) \right\}$ Finite temperature d = 3

Rate of the nucleation per volume : $\Gamma/V = \omega T^4 e^{-S_E/T}$ ($\omega = \mathcal{O}(1)$)

Probability of the bubble nucleation per one Hubble volume is $\mathcal{O}(1)$

$$\blacksquare \quad \frac{S_E}{T_n} \sim 140$$

Bubble profile is given by the bounce solution of the following equation

$$\frac{d^2\varphi}{d\rho^2} + \frac{\alpha}{\rho}\frac{d\varphi}{d\rho} = \nabla V_{eff} \qquad \text{(Boundary)} \\ \varphi(\infty) = \varphi_F \\ \varphi(\infty) = \varphi_F \\ \frac{d\varphi}{d\rho}\Big|_{\rho=0} = 0 \\ \varphi(\infty) = \varphi_F \\ \varphi(\infty) =$$

The WKB method

Joyce, Cline, Kainulainen (2000); Fromme, Huber, (2007); Cline, Kainulainen (2020)

WKB approximation

CosmoTransitions

Backup

 $\begin{array}{l} \mbox{Sphaleron process} \\ \eta_B\sim\Gamma_{ws}\int_0^\infty {\rm d}z\,\mu_{q_L}(z)e^{-kz} \\ \eta_B : \mbox{ baryon to photon ratio, }\Gamma_{ws} : \mbox{ weak sphaleron rate} \end{array}$

L_w dependence of baryon asymmetry

Cline, Laurent (2021)

Generated baryon asymmetry is roughly estimated as

$$\eta_B \sim \int_0^\infty \mathrm{d}z \, \frac{S(z)}{T^3} - A \int_{-\infty}^\infty \mathrm{d}z \frac{S(z)}{T^3}$$

A is a function of v_w and L_w

With some value of A, the first and second terms are canceled.

(2022.08.29) PPP2022

Page 35

Relativistic effect of v_w

We used the linear expansion of v_w .

The higher-order effect has been investigated in Cline, Kainulainen (2020)

Landau poleについて

Landau poleについて

Backup

(2022.08.29) PPP2022

Page 37

New physics beyond the Landau pole

e.g.) SUSY $SU(2)_H$ gauge theory Kanemura, Shindou, Yamada (2012)

Higgs as mesons

Field	${ m SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Z_2
H_u	1	2	+1/2	+1
H_d	1	2	-1/2	+1
Φ_u	1	2	+1/2	$^{-1}$
Φ_d	1	2	-1/2	-1
Ω^+	1	1	+1	-1
Ω^{-}	1	1	-1	-1
N, N_{Φ}, N_{Ω}	1	1	0	+1
ζ, η	1	1	0	$^{-1}$

Gauge theory

Predicts all scalar fields in the model of Aoki, Kanemura, Seto (2009)

(2022.08.29) PPP2022

 (y_N)