モジュラー不変な超対称模型における ニュートリノ混合とインフレーション

arXiv:2208.10086

軍司啓宏(金沢大)

with 石渡弘治(金沢大)& 吉田貴裕(開志専門職大)

2022年9月2日 基研研究会素粒子物理学の進展2022@基礎物理学研究所

1. Introduction

Standard Model (SM)

SM describes well phenomena of elementary particles below TeV scale

The phenomena unexplained in SM:

- Inflation
- Baryon asymmetry
- Light neutrino masses & mixing
- Dark matter

. . .

Neutrino masses & mixing

Observed values by neutrino oscillation experiments

	NH	IH	NuFIT 5.0 '20
θ_{12} /°	31.27 - 35.86	31.27 - 35.87	
θ_{23} /°	40.1 - 51.7	40.3 - 51.8	Large mixing angles
θ_{13} /°	8.20 - 8.93	8.24 - 8.96	
$\delta_{\rm CP}$ /°	120 - 369	193 - 352	
$\frac{\Delta m_{21}^2}{10^{-5}{\rm eV}^2}$	6.82 - 8.04	6.82 - 8.04	
$\frac{\Delta m_{3l}^2}{10^{-3}\mathrm{eV}^2}$	2.435 - 2.598	-2.5812.414	Light masses

SM cannot explain these results since neutrinos are massless in SM

Inflation

- Paradigm of accelerated expansion of the early universe
- Supported by cosmic microwave background (CMB) observations
- Realized by the potential energy of a slow-rolling scalar field (inflaton)

SM cannot explain inflation

The phenomena unexplained in SM:

- Inflation
- Baryon asymmetry
- Light neutrino masses & mixing
- Dark matter

The phenomena unexplained in SM:

The phenomena unexplained in SM indicate the existence of physics beyond the SM (BSM)

- Light neutrino masses & mixing
- Dark matter

Superstring theory

- A candidate for BSM
- Promising as a unified theory including gravity
- It has symmetries not found in SM

ex) Modular sym., Conformal sym., Supersymmetry (SUSY)

Phenomena unexplained in SM may originate from such symmetries

Modular symmetry

Approach to explain ν mass hierarchies & mixing by modular symmetry Feruglio '17

- Appears trough torus compactification in superstring theory
- Geometric symmetry of 2D torus characterized by modulus au
- Modular group has non-Abelian discrete groups as subgroups Γ_N : $\Gamma_2 \simeq S_3, \ \Gamma_3 \simeq A_4, \ \Gamma_4 \simeq S_4, \ \Gamma_5 \simeq A_5$

Modular Γ_N symmetry have been considered to explain neutrino problems

Modular symmetry

eg.) Modular A₄ symmetric model Feruglio '17 Kobayashi, et.al., '18

- Yukawa & mass structures are determined by the symmetry
- Neutrino mass hierarchy & mixing patterns are explained
- Characteristic CP phases are predicted

Models that explain problems in SM based on the symmetries may

provide clues to BSM

For neutrino & inflation

- Measurement accuracy has improved significantly in recent years
- Plans exist for future observations & experiments

Further findings are expected

Plan for model building

Consider a supersymmetric model with:

- Modular A_4 symmetry
- Inflation mechanism
- Three right-handed neutrinos N_i^c (*i* = 1-3) with Majorana masses

Identify the prediction of the model

Outline

- 1. Introduction
- 2. The model
- 3. Neutrino masses & mixing pattern
- 4. Inflation
- 5. Summary

2. The model

The model

Superpotential

 $W_{\lambda} = \lambda S_{+} S_{-} (N^{c} Y)_{1}$ $W_{N} = \Lambda (N^{c} N^{c} Y)_{1}$ $W_{D} = g_{1} (N^{c} H_{u} (LY)_{3s})_{1} + g_{2} (N^{c} H_{u} (LY)_{3a})_{1}$

 g_i , λ : Yukawa coupling Λ : Mass scale of N^c

• A_4 triplet modular form Feruglio '17

 $Y = (Y_1(\tau), Y_2(\tau), Y_3(\tau))^T$

Yukawa & mass structures are characterized by $Y(\tau)$

The model

Superpotential

$$\begin{split} W_{\lambda} &= \lambda S_{+}S_{-}(N^{c}Y)_{1} & \text{Inflation} \\ W_{N} &= \Lambda (N^{c}N^{c}Y)_{1} \\ W_{D} &= g_{1}(N^{c}H_{u}(LY)_{3s})_{1} + g_{2}(N^{c}H_{u}(LY)_{3a})_{1} \\ & \text{Neutrino masses \& mixing} \end{split}$$

	L	N^{c}	H_{u}	S_+	<i>S</i> _
A_4	3	3	1	1	1
U(1)	0	0	0	+q	-q

 g_i , λ : Yukawa coupling Λ : Mass scale of N^c

• A_4 triplet modular form Feruglio '17

 $Y = (Y_1(\tau), Y_2(\tau), Y_3(\tau))^T$

Yukawa & mass structures are characterized by $Y(\tau)$

3. Neutrino masses & mixing pattern

Light neutrino masses

$$W_{\rm neu} = W_D + W_N + W_\lambda$$

Seesaw mechanism: $M_{\nu} = -\tilde{M}_D^T \tilde{M}^{-1} \tilde{M}_D$

$$\tilde{M}_{D} = \langle H_{u} \rangle \begin{pmatrix} 2g_{1}Y_{1} & (-g_{1} + g_{2})Y_{3} & (-g_{1} - g_{2})Y_{2} \\ (-g_{1} - g_{2})Y_{3} & 2g_{1}Y_{2} & (-g_{1} + g_{2})Y_{1} \\ (-g_{1} + g_{2})Y_{2} & (-g_{1} - g_{2})Y_{1} & 2g_{1}Y_{3} \\ 0 & 0 & 0 \end{pmatrix} \quad 4 \times 3 \text{ matrix}$$

$$\tilde{M} = \Lambda \begin{pmatrix} 2Y_{1} & -Y_{3} & -Y_{2} & rY1 \\ -Y_{3} & 2Y_{2} & -Y_{1} & rY_{3} \\ -Y_{2} & -Y_{1} & 2Y_{3} & rY_{2} \\ rY_{1} & rY_{3} & rY_{2} & 0 \end{pmatrix} \qquad 4 \times 4 \text{ matrix}$$

$$r = \lambda \langle S_{+} \rangle / \Lambda \\ \langle S_{+} \rangle: \text{ VEV of } S_{+} \\ \langle H_{u} \rangle: \text{ VEV of } H_{u}$$

The mass matrix is different from a conventional one

Light neutrino masses

$$W_{\rm neu} = W_D + W_N + W_\lambda$$

Seesaw mechanism: $M_{\nu} = -\tilde{M}_D^T \tilde{M}^{-1} \tilde{M}_D$

Neutrino mixing

```
Lightest neutrino mass is zero
```

One of the two Majorana phases in mixing matrix $U_{\rm PMNS}$ vanishes

 $U_{\rm PMNS}$ is parametrized by:

- Three mixing angles $\theta_{12}, \theta_{13}, \theta_{23}$
- Two CP phases $\delta_{\rm CP}, \, \alpha_{21}$

 $\delta_{\rm CP}\!\!:$ Dirac phase

 α_{21} : Majorana phase

We have investigated consistency of this model with neutrino expt.

- Consider both NH & IH cases
- Identify predicted value for CP phases $\delta_{\rm CP}, \, \alpha_{21}$

Numerical results

- Only IH is allowed
- $\delta_{\rm CP}$ has characteristic pattern
- α_{21} is localized around $\pm (120^{\circ}-180^{\circ})$
- $m_{\rm eff}$ of $0\nu\beta\beta$ has relatively large value

Effective mass of $0\nu\beta\beta$ decay

$$m_{\rm eff} \equiv \left| \sum_{i} U_{ei}^2 m_i \right|$$

Results can be tested in future experiments

4. Inflation

Plan for inflation

YG & Ishiwata '21

Consider the hybrid type inflation proposed in a superconformal model

Inflation

- One of the right-handed sneutrinos plays the role of inflaton $\phi \equiv \sqrt{2} {\rm Re}\, \tilde{N}_3^c : {\rm Inflaton \ field}$
- Superpotential on inflation

 $W_{inf} = W_{\lambda} + \underline{W_N}$ Term not in the superconf. model $W_{\lambda} = \lambda S_+ S_- (N^c Y)_1$ $W_N = \Lambda (N^c N^c Y)_1$

- Assume $\Lambda \ll 1$
 - To ignore the impact of W_N on inflaton potential $(W_N \propto \Lambda)$
 - To realize the same inflation as in superconf. model

Estimate how small Λ must be

Impact of Majorana masses on inflation

 Λ dependent term may disturb inflation trajectory

$$V_{\text{inf}} = V + \Delta V(\Lambda) \qquad \Delta V(\Lambda) \propto \Lambda^2$$

To avoid the impact of Λ dependent term on the inflation trajectory

 $\Delta V(\Lambda)/V \ll 1$

The upper bound on Λ

 $\Lambda \lesssim 10^{10} \text{ GeV} \quad (\ll m_{\phi})$

 $m_{\phi} \simeq 10^{13} \, {\rm GeV}$: Inflaton mass

Future work

Remaining the other problems unexplained in SM:

- ✓ Inflation
- Reheating
 Inflaton decay
- Baryon asymmetry
 Leptogenesis
- ✓ Light neutrino masses & mixing
- Dark matter

. . .

Summary

We have studied neutrino mixing & inflation in a SUSY model with modular ${\cal A}_4$ symmetry

- Light neutrino mass matrix given by seesaw mechanism has an unconventional pattern
- Only IH is consistent with neutrino experiments & characteristic pattern of CP phases are predicted
- One of the right-handed sneutrinos plays the roll of inflaton & $\Lambda \lesssim 10^{10}\,{\rm GeV}$ is required for successful inflation
- Thermal history after the inflation will be studied in the future work

Backup

Hybrid inflation Linde '93

- Inflation occurs until slow-rolling inflaton reaches the critical point
- It is simple model but not consistent with current CMB observations

Various types of *D*-term hybrid inflation are realized depending on the symmetry of the Kähler potential

Superconformal symmetry Starobinsky type

Buchmuller, Domcke, Schmitz '13 Buchmuller, Domcke, Kamada '13

• Shift symmetry

Chaotic regime (below critical point)

Buchmuller, Domcke, Schmitz '14 Buchmuller, Ishiwata '13

• Superconformal + approx. shift symmetry α -attractor type (below critical point)

Ishiwata '18

Generlalized superconf. Various types depending on params.
 (below critical point)

YG & Ishiwata '21

Subcritical hybrid inflation

- Inflaton keeps slow-rolling after crossing the critical point
- Inflation continues in subcritical regime with growth of waterfall field

Superconformal subcritical hybrid inflation Ishiwata '18 YG & Ishiwata '21

• Superpotential $W = \lambda S_+ S_- N$

Kähler potential

$$K = -3\alpha \log\left(-\frac{\Phi}{3}\right) \qquad \alpha > 0$$

with $\Phi = -3 + |S_+|^2 + |S_-|^2 + |N|^2 + \frac{\chi}{2}(N^2 + \bar{N}^2)$

superconf. breaking term

- Constant Fayet-Iliopoulos term $\xi \; (\, > 0)$

$$\phi \equiv \sqrt{2} \operatorname{Re} N$$
: Inflaton field
 $s \equiv \sqrt{2} |S_+|$: Waterfall field

 $M_{\rm pl} = 1$

Superconformal subcritical hybrid inflation

Simple case: $\alpha = 2/3 \& \chi = 0$

- Parameter values consistent with CMB: $\lambda \simeq 10^{-3}, \sqrt{\xi} \simeq 0.6 \times 10^{16} \, \text{GeV}$
- Inflaton mass: $m_\phi \simeq \lambda \sqrt{\xi} \simeq 10^{13}\,{\rm GeV}$

Modular transformation

Modular transformation:

$$\tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}$$
 $(a, b, c, d \in \mathbb{Z}, ad - bc = 1)$

Modular group consists of two generators S & T:

$$S: \tau \to -1/\tau, \quad T: \tau \to \tau + 1$$

Transformation laws under modular transformation:

• Chiral superfields X^I

 $X^I \to (c\tau + d)^{-k_I} \rho^I(\gamma) X^I$

• Modular form $f(\tau)$ of weight k $f(\tau) \rightarrow (c\tau + d)^k \rho(\gamma) f(\tau)$ $c, d \in \mathbb{Z}$ k, k_I : Modular weight $\rho(\gamma), \rho^I(\gamma)$: Unitary representation of Γ_N

 $\Gamma_N: \text{Finite subgroup}$ $\Gamma_2 \simeq S_3, \ \Gamma_3 \simeq A_4, \ \Gamma_4 \simeq S_4, \ \Gamma_5 \simeq A_5$

The model (Kähler potential)

Kähler potential: $K = K^m + K^\tau$

$$K^{\mathrm{m}} = -3\alpha \log\left(-\frac{\Phi}{3}\right), \ \Phi = -3 + \sum_{I} \frac{|X^{I}|^{2}}{(2 \operatorname{Im} \tau)^{k_{I}}} \qquad X^{I} = \{X^{\mathrm{MSSM}}, N_{i}^{c}, S_{\pm}\}$$

$$K^{I}: \text{Modular weight of } X^{I}$$

$$K^{\tau} = -3n \log(2 \operatorname{Im} \tau) \qquad K^{\tau} + 3n \log|c\tau + d|^{2}$$

Modular transf.

The model (Modular weight)

Modular symmetry in SUGRA

Combination of Kähler potential & superpotential should be invariant
 Feruglio '17

$$G = K + \log |W|^2$$

Modular inv.

K : Kähler potential *W*: Superpotential

• Superpotential has modular weight -3n

 $W \longrightarrow (c\tau + d)^{-3n} W \quad \because K \to K + 3n \log |c\tau + d|^2$ Modular transf.

The model (Assignment of modular weights)

Superpotential

 $W_{\lambda} = \lambda S_{+}S_{-}(N^{c}Y)_{1}$ $W_{N} = \Lambda (N^{c}N^{c}Y)_{1}$ $W_{D} = g_{1}(N^{c}H_{u}(LY)_{3s})_{1} + g_{2}(N^{c}H_{u}(LY)_{3a})_{1}$

 g_i , λ : Yukawa coupling const.

 Λ : Majorana mass scale of N^c

 A_4 triplet modular form of weight 2 Feruglio '17 $Y = (Y_1(\tau), Y_2(\tau), Y_3(\tau))^T$

Assignment of modular weights

$$k_L = 1, \ k_{N^c} = k_{e^c,\mu^c,\tau^c} = 2k_{S_{\pm}} = k_{H_{u,d}} + 1 = (3n+2)/2$$

Tensor product of A_4

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}_{3} \otimes \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}_{3} = (a_1b_1 + a_2b_3 + a_3b_2)_1 \oplus (a_3b_3 + a_1b_2 + a_2b_1)_{1'} \oplus (a_2b_2 + a_1b_3 + a_3b_1)_{1''} \oplus \frac{1}{3} \begin{pmatrix} 2a_1b_1 - a_2b_3 - a_3b_2 \\ 2a_3b_3 - a_1b_2 - a_2b_1 \\ 2a_2b_2 - a_1b_3 - a_3b_1 \end{pmatrix}_{3s} \oplus \frac{1}{2} \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_1b_2 - a_2b_1 \\ a_3b_1 - a_1b_3 \end{pmatrix}_{3a} ,$$

 $1 \otimes 1 = 1$, $1' \otimes 1' = 1''$, $1'' \otimes 1'' = 1'$, $1' \otimes 1'' = 1$

Light neutrino masses

 $W_{\rm neu} = W_D + W_N + W_\lambda$

Seesaw mechanism: $M_{\nu} = A f(g_2/g_1, \tau)$ $A \propto g_1^2/\Lambda$

Numerical results (Allowed region for $\tau \& g_2/g_1$)

 $g_2/g_1 \equiv g e^{i\phi_g}$

Impact of Majorana masses on inflation

Impact of Majorana masses on inflation

Neutrinoless double beta decay

• A lepton number violating process in low-energy $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$ A : Atomic number Z : Mass number

 $T_{1/2}^{0\nu^{-1}} = G |\mathcal{M}|^2 m_{\text{eff}}^2$

- G: Phase-space factor ~ $\mathcal{O}(10^{-25})/(\mathrm{y~eV^2})$ \mathcal{M} : Nuclear matrix element m_{eff} : Effective mass
- Experimental upper bound on $m_{\rm eff}$ $m_{\rm eff} < 36-156 \text{ meV} \text{KamLAND-Zen '22}$ (There is uncertainty of \mathcal{M} in decay process)

