### CDFIIにおけるWボソン質量の精密測定 - ATLAS 測定と比較しながら-

#### Contents:

- W 質量測定の概要
  - 運動量、エネルギースケール
  - QCD成分(⇒v運動量)の評価
- 質量測定結果
- Implications of new W mass- quick
- Summary



CDF II: Science 376, (2022) 170 and Suppl.Material ATLAS: Eur. Phys. J. C 78 (2018) 110



## W mass: history





### W mass: PDG2022

## W mass (2022) 80.377 ± 0.012 GeV

CDF2022を加えると中心値は約40MeV大きくなる χ<sup>2</sup>/NDF~1には各実験の不確かさを2倍にする必要

CDF2022は中心値計算に入れていない

原さんへ

New "scale-factored" world average of mW のreferencesは次のようです。

(1) G. Wilson's talk at ECFA Higgs Factory seminars:

Precision physics in the e+e- -> WW region, June 10 2022: https://indico.cern.ch/event/1163667/

(2) S. Heinemeyer's talk at IDT-WG3-Phys Open Meeting on mW , 12 May 2022:

https://agenda.linearcollider.org/event/9357/



# **CDF Experiment**

Fermilab Tevatron  $(1.8 \rightarrow 1.96 \text{ TeV } p\overline{p} \text{ Collider})$ 



70km west of Chicago

#### **Brief History**

1980: US-Japan-Italy Collab. 1985 October: 1<sup>st</sup> collision 1988 W paper\*1 1994: evidence of top 25 years 1995: discovery of top (w/ DO) 2006: Bc, Ac discovery (2009 LHC first collision) 2011: Tevatron shutdown 2012: W paper (1/4 of Run2 data) 2022: most precise W mass \*2

\*1 3 Nations 18 Institutes 191 Authors
\*2 14 Nations 73 Institutes 381 Authors



### O) PDF: parton distribution W mass measurement: key points



W-mass測定に用いられる分布\*

 $p_T = p \sin \theta$ 

- Charged Lepton (=e/µ) transverse momentum
- Neutrino transverse momentum
- Transverse mass (no z components used)

\*ハドロン衝突器ではneutrino p<sub>z</sub>を測定できない ために、不変質量を計算できない <mark>Lepton (e/µ) momentum/energy測定</mark> (1) ←検出器応答のcalibration

<u>Neutrino</u>momentum は "missing" 成分とし て推定できる

- z方向の初期/最終運動量は決まらない
- p<sub>T</sub>バランスもW粒子以外の成分(=jets)の
   生成で崩れる

$$\begin{split} M_T^2 &= m_1^2 + m_2^2 + 2 \left( E_{T,1} E_{T,2} - \vec{p}_{T,1} \cdot \vec{p}_{T,2} \right) \\ \text{for} \quad m_1 &= m_2 = 0 \qquad \qquad \text{with} \quad E_T^2 = m^2 + (\vec{p}_T)^2 \\ M_T &= \sqrt{2 \left( p_T^\ell p_T^\nu - \vec{p}_T^\ell \cdot \vec{p}_T^\nu \right)} \\ &= \sqrt{2 \left( p_T^\ell p_T^\nu \left( 1 - \cos \phi_{12} \right) \right)} \end{split}$$

### More about transverse mass



### "Advantage" of W mass measurement with CDF

Tevatron: proton-antiproton collider@1.96TeV,8.8/fb, 2.4/1.8x10<sup>6</sup> Ws ( $\mu$ /e) LHC: proton-proton collider@7TeV, (ATLAS) 4.6/fb, 7.8/5.9x10<sup>6</sup> Ws ( $\mu$ /e)

✓ LHC:生成断面積が大きい



- ✓ LHC: 反クォークのPDF不定性が大きい $r_{PT}$ , QCD activity の不定性が大きい

# Signal shape and template fitting

#### W-mass測定に用いられる分布

- Charged Lepton transverse momentum
- <Neutrino transverse momentum>
- Transverse mass

 $M_W$ を変えて分布をシミュレートする ⇒ 測定値に最も合致する分布から  $M_W$ 



- 要点:Lepton (e, µ) energy scales/acceptance/efficiency
  - ⇒ 検出器応答を可能な限り正確に理解する
  - ⇒ Simulation parameters ⇒ data分布を用いてtune

X (e, μ) = 6 個の分布 by CDF = 4 個の分布 by ATLAS(v p<sub>T</sub>は使わない)

#### **Simulation modelling**

PDF: NNPDF3.1,CT10,.. /CT10, CT14,.. - NNLO



- CDF:RESBOS/DYqT+PHOTOSのparametersを ZやWのdata分布を用いて決定する
- ATLAS: (NLO) Powheg+Pythia8 event generator を用い、 event毎に高次補正を勘案したweightをかける (parameters は Z や W data分布を用いて決定)





ATLAS は前方η 領域まで、いくつか 🔘

の要素からなる検出器を使用



## (1) CDF charged lepton E&p measurement



# (1) ATLAS charged lepton E&p measurement

(b) Electron energy(+direction)

#### (a) Muon momentum





### Muon momentum scale

✓ Use Z mass for scale calibration







## **Momentum scale systematics**

| Source                   |                               | $J/\psi$       | 3                  | ſ        | Co             | orrelation |
|--------------------------|-------------------------------|----------------|--------------------|----------|----------------|------------|
| QED                      |                               | 1              |                    | 1        |                | 100 %      |
| Magneti                  | ic field non-uniformity       | 13             |                    | 13       | <b>B-filed</b> | 100        |
| Ionizing                 | material correction           | 11             |                    | 8        | material       | 100        |
| Resoluti                 | ion model                     | 10             |                    | 1        |                | 100        |
| Backgro                  | ound model                    | $\overline{7}$ |                    | 6        |                | 0          |
| COT ali                  | ignment correction            | 4              |                    | 8        |                | 0          |
| Trigger efficiency       |                               | 18             |                    | 9        | Low pT         | 100        |
| Fit rang                 | ge                            | 2              |                    | 1        | modeling       | 100        |
| $\Delta p/p$ step size   |                               | 2              |                    | <b>2</b> |                | 0          |
| World-average mass value |                               | 4              |                    | 27       |                | 0          |
| Total systematic         |                               | 29             | ppm                | 34       | ppm            | 16  ppm    |
| Statistical NBC (BC)     |                               | 2              | 1                  | 3(10     | 0)             | 0          |
| Total                    |                               | 29             | ppm                | 36       | ppm            | 16 ppm     |
|                          |                               |                |                    |          |                |            |
|                          | was (2012 paper)<br>∆M= 7 MeV | Δ              | M <sub>W,Z</sub> = | = 3.3    | 3 MeV          |            |

| ATLAS                  |                         |        | [0.8<br>[1.4<br>[2.0    | 8, 1.4]<br>4, 2.0]<br>0, 2.4] |
|------------------------|-------------------------|--------|-------------------------|-------------------------------|
| $ \eta_{\ell} $ range  | [0.0                    | 0,0.8] | Com                     | bined                         |
| Kinematic distribution | $p_{\mathrm{T}}^{\ell}$ | mT     | $p_{\mathrm{T}}^{\ell}$ | m <sub>T</sub>                |
| δm <sub>W</sub> [MeV]  |                         |        |                         |                               |
| Momentum scale         | 8.9                     | 9.3    | 8.4                     | 8.8                           |
| Momentum resolution    | 1.8                     | 2.0    | 1.0                     | 1.2                           |
| Sagitta bias           | 0.7                     | 0.8    | 0.6                     | 0.6                           |
| Reconstruction and     |                         |        |                         |                               |
| isolation efficiencies | 4.0                     | 3.6    | 2.7                     | 2.2                           |
| Trigger efficiency     | 5.6                     | 5.0    | 4.1                     | 3.2                           |
| Total                  | 11.4                    | 11.4   | 9.8                     | 9.7                           |

 $\delta M_W = 9.7 \text{ MeV}$ 

14

# **1-3 CDF Electron energy calibration**(1/2)<sup>15</sup>





# 1-3 Electron energy calibration (2/2)

16

#### Track only M<sub>z</sub>(ee): blinded measurement





## **Electron energy scale : ATLAS**





# M<sub>z</sub> validation (CDF/CDF-II – ATLAS)



PDG 91,187.6  $\pm$  2.1 MeV

ATLAS はPDG  $M_z$  を校正に使用 ⇒ reconstruct  $M_z$  as in  $M_w$  reconstruction QCD 不定性も含めたスケール不定性



M<sub>Z</sub> agrees PDG better in 2022 analysis ←検出器の理解が向上

(統計的にずれはないが), 中心値は: CDF は **M**<sub>W</sub> ~5 MeV 程度高め ATLAS は **M**<sub>W</sub> ~20 MeV 程度低め



(LLと some leading effects を補正した数値計算: ATLAS)

素粒子物理学の進展2022」原 8.31

![](_page_19_Picture_1.jpeg)

## (2-1) Tune RESBOS parameters

Z→ll events を用いた tuning (1)

recoil の小さな事象に限定し、  $\left| \overrightarrow{u} \right| < 15 \, {
m GeV}$  モデリングの精度を上げる

![](_page_19_Figure_6.jpeg)

## **RESBOS tuning – detail**

![](_page_20_Figure_2.jpeg)

21

素粒子物理学の進展2022」原 8.31

## (2-1a) hadron activity verification

![](_page_21_Figure_2.jpeg)

RESBOS parameterをtune後に,他の分布との一致を検証

R: すべての recoil hadronic activity を検出できる わけではない(低エネルギーや中性成分) ⇒ Z→ll 事象で、p<sub>T</sub> 依存性として ratioを評価

22

![](_page_21_Figure_5.jpeg)

![](_page_22_Figure_0.jpeg)

) 30 p\_(Z→μμ) (GeV)

![](_page_23_Figure_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Picture_1.jpeg)

| Distribution                                 | W boson mass (MeV)                         | χ <sup>2</sup> /dof |
|----------------------------------------------|--------------------------------------------|---------------------|
| $m_{\mathrm{T}}(e, \mathbf{v})$              | $80,429.1 \pm 10.3_{stat} \pm 8.5_{syst}$  | 39/48               |
| $p_{\mathrm{T}}^{\ell}(e)$                   | $80,411.4 \pm 10.7_{stat} \pm 11.8_{syst}$ | 83/62               |
| $p_{\rm T}^{\rm v}(e)$                       | $80,426.3 \pm 14.5_{stat} \pm 11.7_{syst}$ | 69/62               |
| $m_{\mathrm{T}}(\mu, \nu)$                   | $80,446.1 \pm 9.2_{stat} \pm 7.3_{syst}$   | 50/48               |
| $p_{T}^{\ell}(\mu)$                          | $80,\!428.2\pm9.6_{stat}\pm10.3_{syst}$    | 82/62               |
| $\mathcal{P}^{\mathrm{v}}_{\mathrm{T}}(\mu)$ | $80,\!428.9\pm13.1_{stat}\pm10.9_{syst}$   | 63/62               |
| Combination                                  | $80,433.5 \pm 6.4_{stat} \pm 6.9_{syst}$   | 7.4/5               |

Previous CDF II publication PRL108, 151803 (2012)

| W-boson mass (MeV)                            |
|-----------------------------------------------|
| $80408 \pm 19_{stat.} \pm 18_{svst.}$         |
| $80393 \pm 21_{stat.} \pm 19_{syst.}$         |
| $80431 \pm 25_{stat.} \pm 22_{syst.}$         |
| $80379 \pm 16_{\rm stat.} \pm 16_{\rm syst.}$ |
| $80348 \pm 18_{\rm stat.} \pm 18_{\rm syst.}$ |
| $80406\pm22_{stat.}\pm20_{syst.}$             |
| $80.387 \pm 12_{stat} \pm 15_{sus}$           |
| Stat Sys                                      |

- ✓ M<sub>w</sub>の測定値はより一様になった
- ✓ µでの測定値の増加が大きい
   cf. ∔8.8 MeV from mom. calibration

![](_page_27_Figure_7.jpeg)

## **Uncertainty** vs previous CDF-II

#### Source

### Uncertainty (MeV)

| Lepton energy scale             |        | 3.0 |  |
|---------------------------------|--------|-----|--|
| Lepton energy resolution        |        | 1.2 |  |
| Recoil energy scale             |        | 1.2 |  |
| Recoil energy resolution        |        | 1.8 |  |
| Lepton efficiency               |        | 0.4 |  |
| Lepton removal                  |        | 1.2 |  |
| Backgrounds                     |        | 3.3 |  |
| $p_{\rm T}^{\rm Z}$ model       | VECBOS | 1.8 |  |
| $p_{\rm T}^W/p_{\rm T}^Z$ model | DyqT   | 1.3 |  |
| Parton distributions            |        | 3.9 |  |
| QED radiation                   |        | 2.7 |  |
| W boson statistics              |        | 6.4 |  |
| Total                           |        | 9.4 |  |

Reserved to the second se

![](_page_28_Picture_6.jpeg)

Previous CDF II publication PRL108, 151803 (2012)

| Source                       | Uncertainty | (MeV) |
|------------------------------|-------------|-------|
| Lepton energy scale and res  | olution 7   | -     |
| Recoil energy scale and reso | olution 6   |       |
| Lepton removal               | 2           |       |
| Backgrounds                  | 3           |       |
| $p_T(W)$ model               | 5           |       |
| Parton distributions         | 10          |       |
| QED radiation                | 4           |       |
| W-boson statistics           | 12          |       |
| Total                        | 19          |       |
|                              |             |       |

PDF:  $10 \Rightarrow 3.9 \text{ MeV}$ Lepton scale:  $7 \Rightarrow 3.2 \text{ MeV}$ Recoil:  $6 \Rightarrow 2.2 \text{ MeV}$ Total:  $19 \Rightarrow 9.4 \text{ MeV}$ 

![](_page_29_Picture_1.jpeg)

## W production simulation model

![](_page_29_Figure_3.jpeg)

其研研空会[表粒子物理学の准屈2022) 6 8 21

$$W/Z cross section th degree degree$$

![](_page_31_Figure_1.jpeg)

パラメータは特定のgenerator(Pythia 8 AZ)を用いて決定したものなので、他との違いは不定性に含まない ⇒ Recoil QCD modelingにおける不定性として考慮: PDF uncertainty is dominant

![](_page_32_Picture_1.jpeg)

## **Recoil hadronic activity**

- pile-up 事象を MC に入れ、データと一致するよう、 $\Sigma E_T$  を補正  $\rightarrow \Sigma E_T^*$
- Z->μμ 事象のΣE<sub>T</sub>\*に合うようにスケールと分解能を補正

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)

## W mass CDF-II vs ATLAS

34

![](_page_33_Figure_2.jpeg)

M(CDF)-M(ATLAS)~73 MeV

# Uncertainty in PDF 3.9MeV vs 9.2MeV

![](_page_34_Picture_2.jpeg)

"PDF の理解度がこの10年で大きく向上" ΔM<sub>w</sub>: 10MeV⇒3.9MeV

NNPDF3.1 (NNLO) as default "uncertainty" of PDF => **3.9 MeV** 

他の PDF sets (NNLO) CT18 MMHT2014 NNPDF3.1 中心値は2.1 MeV以下 で一致

NNPDF3.1 他の PDF sets (NLO) - as a check

ABMP16 CJ15 中心値は3 MeV以下 MMHT2014 で一致 NNPDF3.1

考慮していない高次のQCD effects ~ 0.4 MeV

- varying factorization/renormalization scales
- changing resummation/non-perturvative schema

ATLAS publication EPJ C78(2018) 110

use CT10 (NNLO) as default "uncertainty" of PDF => 14 MeV for W<sup>+</sup> /13 MeV for W<sup>-</sup>

Total light-quark sea PDF is well constrained by DIS data But u to d (s)-quark decomposition is less precisely known

→ PDF不定性によるm<sub>T</sub> 分布は、W<sup>+</sup>とW<sup>-</sup>で反相関

```
PDF 不定性はW+とW-の和を取ると減少
=> 7.4 MeV
他の PDF sets (NNLO)
CT14
MMHT201 => 3.8 MeV
考慮していない高次のQCD effects => small
Overall PDF uncertainty: 9.2 MeV
```

### **Uncertainty** vs ATLAS ATLAS publication EPJ C78(2018) 110

|                                 | +                   | Combined Value Stat. Muon Elec. Recoil Bckg. QCD EW PDF Total $\chi^2/dof$ ategories [MeV] Unc. Unc. Unc. Unc. Unc. Unc. Unc. Unc.                          |  |  |  |  |  |
|---------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Source                          | Uncertainty (MeV)   |                                                                                                                                                             |  |  |  |  |  |
| Lepton energy scale             | 3.0 0.00            | $\frac{m_{\rm T}-p_{\rm T}^{\rm c}}{m_{\rm T}-p_{\rm T}^{\rm c}}, W^{\pm}, e-\mu \mid 80369.5 \mid 6.8  6.6  6.4  2.9  4.5  8.3  5.5  9.2  18.5 \mid 29/27$ |  |  |  |  |  |
| Lepton energy resolution        | 1.2                 | Neutrino transverse                                                                                                                                         |  |  |  |  |  |
| Recoil energy scale             | 1.2                 | distribution not used => QCD uncertainty                                                                                                                    |  |  |  |  |  |
| Recoil energy resolution        | 1.8                 | EWK uncertainty                                                                                                                                             |  |  |  |  |  |
| Lepton efficiency               | 0.4                 | Decay channel $W \to ev$ $W \to uv$                                                                                                                         |  |  |  |  |  |
| Lepton removal                  | 1.2                 | Decay ename $m_T$ $p_T^\ell$ $m_T$ $p_T^\ell$ $m_T$ Kinematic distribution $p_T^\ell$ $m_T$ $p_T^\ell$ $m_T$                                                |  |  |  |  |  |
| Backgrounds                     | 3.3 4.5             | $\delta m_W$ [MeV]                                                                                                                                          |  |  |  |  |  |
| $p_{\rm T}^{\rm Z}$ model       | 1.8 8.3             | FSR (real) $< 0.1 < 0.1 < 0.1 < 0.1$                                                                                                                        |  |  |  |  |  |
| $p_{\rm T}^W/p_{\rm T}^Z$ model | 1.3                 | $\Delta$ (LO-NLO) Pure weak and IFI corrections 3.3 2.5 3.5 2.5                                                                                             |  |  |  |  |  |
| Parton distributions            | 3.9 9.2             | Material FSR (pair production) 3.6 0.8 4.4 0.8                                                                                                              |  |  |  |  |  |
| QED radiation                   | 2.7 5.5             | understanding Total 4.9 2.6 5.6 2.6                                                                                                                         |  |  |  |  |  |
| W boson statistics              | 6.4 6.8             |                                                                                                                                                             |  |  |  |  |  |
| Total                           | 9.4 19              | 2つの実験で大きな違いはPDF, QCD modeling,                                                                                                                              |  |  |  |  |  |
|                                 | ATLAS<br>uncertaint | lepton energy scale, EWK<br>Material pp collider ?                                                                                                          |  |  |  |  |  |

Z stat.

understanding

## Number of W/Z events

![](_page_36_Picture_2.jpeg)

 $\sigma B$  is about 10:1 for W:Z

![](_page_36_Picture_4.jpeg)

| Sample                    | Candidates |
|---------------------------|------------|
| $W \rightarrow electron$  | 1 811 700  |
| $Z \rightarrow electrons$ | 66 180     |
| $W \rightarrow muon$      | 2 424 486  |
| $Z \rightarrow muons$     | 238 534    |

| TABLE VIII. Effect of                        | selection cuts.    | e-channe              |
|----------------------------------------------|--------------------|-----------------------|
| Criterion                                    | W events after cut | Z events<br>after cut |
| Initial sample                               | 108455             | 19527                 |
| Z vertex requirement                         | 101103             | 16724                 |
| Fiducial requirements                        | 74475              | 9493                  |
| Tracks through all CTC superlayers           | 71877              | 8613                  |
| $E_T^e > 25  \text{GeV}$                     | 67007              | 6687                  |
| $E_T^{\nu} > 25 \mathrm{GeV}$                | 55960              | N/A                   |
| $ \mathbf{u}  < 20 \mathrm{GeV}$             | 46910              | N/A                   |
| $P_T^e > 15 \mathrm{GeV}$                    | 45962              | 5257                  |
| $N_{\text{tracks}}$ in the electron towers=1 | 43219              | 1670 🔨                |
| $M_{e,\text{track}} \leq 1 \text{ GeV}$      | 43198              | N/A                   |
| Not a Z candidate                            | 42588              | N/A                   |
| Opposite sign                                | N/A                | 1652                  |
| Mass fit region                              | 30115              | 1559                  |

| $ \eta_{\ell} $ range                                                                     | 0-0.8                  | 0.8–1.4              | 1.4–2.0              | 2.0-2.4            | Inclusive              |
|-------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------|--------------------|------------------------|
| $ \begin{array}{c} W^+ \to \mu^+ \nu \\ W^- \to \mu^- \bar{\nu} \end{array} $             | 1 283 332<br>1 001 592 | 1 063 131<br>769 876 | 1 377 773<br>916 163 | 885 582<br>547 329 | 4 609 818<br>3 234 960 |
| $ \eta_{\ell} $ range                                                                     | 0–0.6                  | 0.6-1.2              |                      | 1.8–2.4            | Inclusive              |
| $ \begin{array}{c} W^+ \rightarrow e^+ \nu \\ W^- \rightarrow e^- \bar{\nu} \end{array} $ | 1 233 960<br>969 170   | 1 207 136<br>908 327 |                      | 956 620<br>610 028 | 3 397 716<br>2 487 525 |

| W events | $5.88 \times 10^{6}$ electron channel<br>7.84 × 10 <sup>6</sup> muon channel |
|----------|------------------------------------------------------------------------------|
| Z events | $0.58 \times 10^{6}$ electron channel<br>1 23 × 10 <sup>6</sup> muon channel |

Table from 2001 W-mass measurement PRD (D64.052001).

In electron channel, Ntrk=1

requirement is critical for  $Z \rightarrow ee$ 

events

### 38

## **CDF: Effect of mass fit window**

![](_page_37_Figure_3.jpeg)

# **CDF: Sub-sample/time dependence**

TABLE S10: Differences (in MeV) between W-mass  $p_T^{\ell}$ -fit results and Z-mass fit results obtained from subsamples of our data with equal statistics. For the spatial and time dependence of the electron channel fit result, we show the dependence with (without) the corresponding cluster energy calibration using the subsample E/p fit.

| Fit difference                                        | Muon channel                              | Electron channel                                                                                |
|-------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|
| $M_W(\ell^+) - M_W(\ell^-)$                           | $-7.8\pm18.5_{\rm stat}\pm12.7_{\rm COT}$ | $14.7 \pm 21.3_{\text{stat}} \pm 7.7_{\text{stat}}^{\text{E/p}} \ (0.4 \pm 21.3_{\text{stat}})$ |
| $M_W(\phi_\ell > 0) - M_W(\phi_\ell < 0)$             | $24.4 \pm 18.5_{\rm stat}$                | $9.9 \pm 21.3_{\rm stat} \pm 7.5_{\rm stat}^{\rm E/p} \ (-0.8 \pm 21.3_{\rm stat})$             |
| $M_Z(\text{run} > 271100) - M_Z(\text{run} < 271100)$ | $5.2 \pm 12.2_{ m stat}$                  | $63.2 \pm 29.9_{\text{stat}} \pm 8.2_{\text{stat}}^{\text{E/p}} (-16.0 \pm 29.9_{\text{stat}})$ |

with (w/o) subsample/time dependent E/p calibration

## Momentum scale from $Y \rightarrow \mu \mu$

Time 
$$(\frac{\Delta p}{p})_{\text{later}} - (\frac{\Delta p}{p})_{\text{earlier}} = (23 \pm 22_{\text{stat}}) \text{ ppm}$$
  
Luminosity  $(\frac{\Delta p}{p})_{\text{higher}} - (\frac{\Delta p}{p})_{\text{lower}} = (22 \pm 22_{\text{stat}}) \text{ ppm}$ 

## Discussion

### CDF II Improvements from previous publication

**statistics**: 4-fold increase (uncertainty: 12⇒6.4MeV)

systematics (uncertainty: 15⇒6.9MeV)

- lepton scale uncertainty from 7⇒3.0MeV (unc. associated to NBC/BC is understood and removed)
- Theoretical model improvement: RESBOS (angular smearing, kurtosis of recoil energy),

PDF (
$$\Delta M=10\Rightarrow3.4$$
MeV)  
DYqT for  $p_T^W/p_T^Z$  difference  
.... (data driven calibration: improve with *L*)  
previous CDF II 80,389±19 MeV  
new value  $M_W = 80,433.5 \pm 9.4$  MeV  
SM expectation:  $M_W = 80,357 \pm 6$  MeV +7.0 $\sigma$   
PDF: +3.5MeV  
contributions from others not breakdown-able  
More robust analysis than previous  
+3.0 $\sigma$   
ATLAS value: 80 370±19 MeV

J. Isaacson @KEK workshop 10 May 2022

2205.02788 [hep-ph]

### **RESBOS** uncertainty

Results

![](_page_40_Figure_5.jpeg)

Resum. Pert. CDF: NNLL(+NLO) available: N<sup>3</sup>LL(+NNLO)

|             | Mass Shift [MeV] |                       |
|-------------|------------------|-----------------------|
| Observable  | ResBos2          | +Detector Effect+FSR  |
| $m_T$       | $1.5\pm0.5$      | $0.2\pm1.8\pm1.0$     |
| $p_T(\ell)$ | $3.1\pm2.1$      | $4.3\pm2.7\pm1.3$     |
| $p_T( u)$   | $4.5\pm2.1$      | $3.0 \pm 3.4 \pm 2.2$ |

Red=simulated ratio CDF/REBOS2 Blue=stat uncertainty of CDF data

p<sub>7</sub>(v) [GeV]

Tune pT(Z) simulation data a la CDF (1)

(2)extract W mass for "available" higher order sim data Shits are consistent with 0 MeV and up to 10 MeV in worst case

![](_page_41_Figure_1.jpeg)

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

- New W-mass measurement by CDF-II provides most precise value of  $M_W = 80,433.5 \pm 9.4 \,\mathrm{MeV}$
- The value is  $7\sigma$  heavier than the SM expectation,  $3.2\sigma$  heavier than the latest world average (PDG2022)
- The deviation should be explained by new physics (*e.g.* MSSM, 2HDM,...)
- Coordinated understanding of the LHC and CDF-II is preferred
- The result should be examined by other experiments
  - LHC experiments with large sample of W's (precision limited?)
  - New e<sup>+</sup>e<sup>-</sup> collider