PPP2022@Kyoto University

モノ電弱ボソンシグナルを用いたLHC実験 における暗黒物質探索

Junichiro Kawamura

Institute for Basic Science, CTPU

PLB 831 (2022) 137191 , arXiv:2110.04185

in collaboration with

L.Carpenter and H.Gilmer [Ohio State U.]

WIMP DM

- DM decouples from thermal bath and "freeze-out"
- Electro-Weak [EW] coupling and mass can explain relic density
- realized in many BSM models including supersymmetry [SUSY]

Direct detection

- null results in direct detections
- many interested parameter space has been excluded

Co-annihilating DM

 χ^0 : DM, χ^{\pm} : new particle

 \succ If $m_{\chi^0} \simeq m_{\chi^\pm}$

"co-annihilation" $\chi^0 \chi^{\pm} \rightarrow SM^2$ turns on during freeze-out

 $\sigma_{\rm ann} \gg \sigma_{\rm scat}$ effectively due to co-annihilation

avoid direct detection limits

Higgsino

Supersymmetry [SUSY]

- solve hierarchy problem
- GUT/superstring
- Higgs potential
- neutralino DM
 *mixture of gaugino/higgsino

> Higgsino

- fermionic superpartners of Higgs bosons
- neutral component is a part of neutralino DM

Higgsino

Co-annihilating DM

there are two Higgs doublets in Minimal SUSY SM [MSSM]

• two neutral states: χ_1^0 , χ_2^0 and two charged states χ_1^{\pm}

• the lightest state χ_1^0 can be DM

 $m_Z^2 \sim -2|\mu|^2 - 2m_{H_u}^2$

mass differences are typically less than few GeV

Origin of EW scale

 $m_{Z} = 91.2 \text{ GeV},$

 μ : Higgsino mass,

 $m_{H_{\eta}}$: Higgs mass term

understanding the origin of EW scale !

Outline

- 1. Introduction
- 2. Higgsino searches at LHC
- 3. Mono-Z/W signal
- 4. Summary

Mono-jet search for DM

- DM may be produced at collider
- However, DM is invisible

$$E_T^{\text{miss}} \sim |-\vec{p}_T^j|$$

٠

- jet from initial state radiation [ISR]
- suffered from large bkg.
- no limits on Higgsinos at LHC

Higgsino search: higgsino decays

mass differences of higgsinos

$$\Delta m_{\chi_{2}^{0}} \sim 2\Delta m_{\chi_{1}^{\pm}} \sim 2.1 \text{ GeV} \times \left(\frac{4 \text{ TeV}}{M_{\text{wino}}}\right) \qquad \frac{\Delta m_{\chi_{2}^{0}} = m_{\chi_{2}^{0}} - m_{\chi_{1}^{0}}}{\Delta m_{\chi_{1}^{\pm}} = m_{\chi_{1}^{\pm}} - m_{\chi_{1}^{0}}}$$

 \succ decays of heavier higgsinos: χ_2^0 , χ_1^{\pm}

productions of heavier states are expected

• daughter particles are "soft" due to small mass diff.

Higgsino search: soft leptons

1401.1235 Han, Kribs, Martin Menon 1409.7058, Baer, Mustafayev, Tata

di-leptons are visible

if $\Delta m_{\chi^0_2} \gtrsim 10~{
m GeV}$

$\succ j + \ell^+ \ell^- + E_T^{\text{miss}}$

- productions $pp \rightarrow \chi_2^0 \chi_1^0, \chi_2^0 \chi_1^{\pm}$
- ISR jet is necessary to trigger
- $m^2_{\ell^+\ell^-} < 10~{
 m GeV}$ cut is effective

Higgsino search: disappearing tracks

disappearing track search

0610277 Ibe, Moroi, Yanagida 1703.05327 Mahbubani, Schwaller, Zurita 1703.09675 Fukuda, Nagata, Otono, Shirai

charged state χ_1^{\pm} is long-lived if $\Delta m_{\chi_1^{\pm}} \sim \mathcal{O}(100 \text{ MeV})$

flight length of $\mathcal{O}(cm)$

- charged track disappear in detector
- ISR jet is required to trigger

1703.09675, Fukuda, Nagatam Otono, Shirai

Higgsino search: current limits

soft leptons

disappearing track $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}$ production (higgsino)

 $m_{\chi} \gtrsim 100 \text{ GeV limits}$ for $\Delta m_{\chi_1^{\pm}} \sim \Delta m_{\chi_2^0}/2 \gtrsim 1.3 \text{ GeV}$

for $\Delta m_{\chi_1^{\pm}} \lesssim 0.35 \text{ GeV}$

- limits are at most 200 GeV
- no limits for $m_{\chi} \gtrsim 100 \text{ GeV}$ from LHC for $\Delta m_{\chi_1^\pm} \sim 1 \text{ GeV}$

Higgsino search: future limits

soft leptons

(soft) disappearing track

^{1910.08065,} Fukuda, Nagata, Oide, Otono, Shirai

- limits are at most about 300 GeV at HL-LHC
- limits are ~ 100 GeV for $\Delta m_{\chi^{\pm}_1} \sim 1$ GeV, the gap remains

Summary

- generic mono-jet search is not efficient for higgsinos
- soft leptons are available for relatively large mass diffs. $\Delta m_{\chi^{\pm}_{1}} \gtrsim 3 \text{ GeV}$
- disappearing tracks are available for very small mass diffs. $\Delta m_{\chi^{\pm}_1} \lesssim 0.8 \text{ GeV}$
- there is a gap at $\Delta m_{\chi_1^\pm} \sim 1~{
 m GeV}$ corresponding to $M_{
 m wino} \sim 4~{
 m TeV}$
- known searches basically require ISR jet to trigger

Outline

- 1. Introduction
- 2. Higgsino searches at LHC
- 3. Mono-Z/W signal
- 4. Summary

mono-Z/W signal

what if we use Z/W boson instead of jet ?

- ✓ less production cross section
- (much) less backgrounds

mono-Z/W signal

hadronic mono-V

production cross section

- W associated production is much larger than prod. with Z
- hadronic BRs $\sim 70\%$ are larger than leptonic BRs $\sim 10~(30)\%$ for Z (W)

significantly large production rate

mono-Z/W signal

- V+jets is dominant bkg.
- topologically same signal

• V+jets is dominant bkg. (\gg diboson)

• V_{had} should be found from jets

 V_{had} -tag efficiency ~ 50% (1.7%) for true W/Z jets (QCD jets) ATLAS-PHYS-PUB-2015-033

well discriminate signal/bkg.

Analysis

- Recast ATLAS analysis w/ 36.1 fb⁻¹data 1807.11471, ATLAS
 - one V_{had} jet with $p_T > 250$ GeV and $E_T^{miss} > 200$ GeV
 - 50% efficiency for V_{had} tagging
 - cuts for multi jet bkg. are applied
 - leptons with $p_T > 7$ GeV are vetoed

Assumptions

- all of higgsino states $\chi_{1,2}^0$, χ_1^{\pm} are invisible $\iff \Delta m_{\chi_1^{\pm}} \lesssim 3.5 \text{ GeV}$
- large R jet from Z/W is V-tagged with 50% efficienty
- events simulated by Madgraph5, pythia8 and Delphes
- only uncertainties in backgrounds are taken into account

Results

* using E_T^{miss} -binned data

- even LHC constraints 110 (210) GeV higgsinos at Run-2 (3)
- HL-LHC can probe higgsinos up to 520 GeV

Results: comparison

Summary

higgsino search

- hadronic mono-V signal is efficient for higgsinos searches
- can fill the gap at $\Delta m_{\chi^{\pm}_1} \sim 1 \text{ GeV}$
- can test higgsinos up to 520 GeV at HL-LHC
- discussions
 - V + soft leptons/disappearing tracks may work
 - may be applicable to other co-annihilating DM

Thank you !

backups

E_T^{miss} distribution

- signals are $\mathcal{O}(0.1 1\%)$ of the SM bkg.
- higher E_T^{miss} is expected for heavier masses

V_{had} tagging ATLAS-PHYS-PUB-2015-033

tagging by jet mass $m_I \sim 90$ GeV and D_2

V-tag rate from Z/W $\sim 50 \%$ (med.)

V-tag rate from jets $\sim 60^{-1} \sim 1.7$ % (med.)

 V_{had} jet and D_2

$$V \qquad j \\ j \\ j \\ large-R (= 1.0) jet: J$$

mass of large R jet : m_I should be around $m_V \sim 90 \text{ GeV}$

$$D_{2} = e_{3}/e_{2}^{3}$$

$$e_{2} = \frac{1}{p_{TJ}^{2}} \sum_{i \le j \le n_{i}} p_{Ti} p_{Tj} R_{ij} \qquad e_{3} = \frac{1}{p_{TJ}^{3}} \sum_{i \le k \le n_{i}} p_{Ti} p_{Tk} R_{ij} R_{ik} R_{jk}$$

- e_2, e_3 are smaller when more soft/collinear pair exists
- $e_3 \ll e_2$ is expected for V_{had} since there two hard jets

mono-jet bounds

1504.02472, Barducci, Belyaev, Bharucha, Porod, Sanz

backgrounds

number of events 1807.11471, ATALS

	Merged topology				
Process	0 <i>b</i> -HP	0b-LP	1 <i>b</i> -HP	1 <i>b</i> -LP	2b
Vector-mediator model,					
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 200 \text{ GeV}$	814 ± 48	759 ± 45	96 ± 18	99 ± 16	49.5 ± 4.3
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 600 \text{ GeV}$	280.9 ± 9.0	268.5 ± 8.8	34.7 ± 3.6	33.8 ± 3.1	15.38 ± 0.84
Invisible Higgs boson decays	$(m_H = 125 \text{ GeV}, \mathcal{B})$	$B_{H \to \text{inv.}} = 100\%$			
VH	408.4 ± 2.1	299.3 ± 2.0	52.06 ± 0.85	44.06 ± 0.82	27.35 ± 0.52
ggH	184 ± 19	837 ± 35	11.7 ± 3.8	111 ± 30	12.3 ± 4.2
VBF	29.1 ± 2.5	96.0 ± 4.6	2.43 ± 0.36	5.83 ± 0.43	0.50 ± 0.07
W+jets	3170 ± 140	10120 ± 380	218 ± 28	890 ± 110	91 ± 12
Z+jets	4750 ± 200	15590 ± 590	475 ± 52	1640 ± 180	186 ± 12
tī	775 ± 48	937 ± 60	629 ± 27	702 ± 34	50 ± 11
Single top-quark	159 ± 12	197 ± 13	89.7 ± 6.7	125.5 ± 8.7	16.1 ± 1.7
Diboson	770 ± 110	960 ± 140	88 ± 14	115 ± 18	54 ± 10
Multijet	12 ± 35	49 ± 140	3.7 ± 3.3	15 ± 13	9.3 ± 9.4
Total background	9642 ± 87	27850 ± 150	1502 ± 31	3490 ± 52	407 ± 15
Data	9627	27856	1502	3525	414

Statistics

ATLAS, CMS and LHC Higgs Combination Group Collab. "Procedure for the Higgs boson search combination in Summer 2011"

test statistics

$$q_{\mu}^{n} := -2\log\frac{L(n|\mu,\hat{\hat{b}})}{L(n|\hat{\mu},\hat{b})},$$

 n_i : # data, s_i : # signal, b_i : # bkg. $\lambda_i = s_i \mu + b_i$

likelihood

$$L(n|\mu, b) := \prod_{i}^{N_{\text{bin}}} \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i} \times \frac{1}{\sqrt{2\pi}\Delta b_i} \exp\left(-\frac{(b_i - b_i^0)^2}{2(\Delta b_i)^2}\right),$$

CLs and significances

$$CL_s = \frac{1 - \Phi\left(\sqrt{q_1^{n_{obs}}}\right)}{\Phi\left(\sqrt{q_1^{b_0}} - \sqrt{q_1^{n_{obs}}}\right)}, \quad Z_{excl} = \sqrt{q_1^{b_0}}, \quad \text{and} \quad Z_{disc} = \sqrt{q_0^{s+b_0}},$$