Solving Gauge Theories Using Supersymmetry

Hitoshi Murayama (Berkeley, Kavli IPMU) PPP 2022, August 30, 2022

Strong Impression

What is important in physics is to come up with a good zeroth order approximation

 Non-perturbative dynamics is very difficult to understand
 can we come up with a good zeroth order approximation?

Kiyoshi Higashijima

Main point

ø very few methods to study strongly coupled systems, e.g., QCD non-perturbative $e^{-8\pi^2/g^2\hbar}$ effects are essential supersymmetry makes exact analytic studies of non-perturbative effects possible small anomalymediated SUSY breaking still allows for exact solutions

Prototype of SUSY Landau level with g=2

Landau levels

$$H = \frac{1}{2m} (\vec{p} - e\vec{A})^{2}$$

$$E = \hbar \omega_{c} \left(n + \frac{1}{2}\right)$$

$$\omega_{c} = \frac{eB}{m}$$
• states are degenerate by $\frac{eBA}{2\pi\hbar}$
• zero-point energy

Landau levels with g=2

$$H = \frac{1}{2m} (\vec{p} - e\vec{A})^2 - g \frac{e}{2m} s_z I$$
$$E = \hbar \omega_c \left(n + \frac{1}{2} \right) \mp g \frac{eB}{2m} \frac{\hbar}{2}$$
$$\omega_c = \frac{eB}{m}$$
So states are degenerate by $\frac{eBA}{2\pi\hbar}$ So ground state E₀=0

And the second se	
and the second second second second	the same as a subscription of the same state of the same
	Restored to the second second second
	and the second se
A CONTRACTOR OF A CARL OF A CARL	

SUSY spectrum

 $H = \frac{1}{2m} (\vec{p} - e\vec{A})^2 - g \frac{e}{2m} s_z B = Q^2$ $Q = \frac{1}{\sqrt{2m}} \vec{\sigma} \cdot (\vec{p} - e\vec{A})$ $\langle \psi | H | \psi \rangle = |Q|\psi \rangle|^2 \ge 0$ ${\it O}$ ground state $Q|0
angle=0 \Rightarrow H|0
angle=0$ \odot excited states paired $Q|F\rangle = \sqrt{E}|B\rangle$ $|Q|B\rangle = \sqrt{E}|F\rangle$ ground state not paired

boson fermion

General

 $H = Q^2$ Q: hermitian operator $\langle \psi | H | \psi \rangle = |Q|\psi \rangle|^2 \ge 0$ ${\it O}$ ground state $Q|0
angle=0 \Rightarrow H|0
angle=0$ \odot excited states paired $Q|F\rangle = \sqrt{E|B\rangle}$ $|Q|B\rangle = \sqrt{E}|F\rangle$ ground state not paired

B

F

topological invariant

Witten $\operatorname{Tr}(-1)^F e^{-\beta H} = n_{0B} - n_{0F}$ index

topological invariant

moduli space

 in many systems, SUSY ground states E₀=0 from a continuous space: moduli space

 with SUSY breaking, moduli space gets lifted to isolated ground states

pure Yang-Mills theory

pure Yang-Mills theory

Ø non−abelian (e.g. SU(N_c)) generalization of Maxwell theory

only modification is definition $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + e f^{abc} A^b_\mu A^c_\nu$ of the field strength o no dimensionful parameter ø yet "believed" to develop a mass gap Inumerical simulation supports it Similar to 1D anti-ferromagnet with integer spin

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a}$$

$$m = \mu e^{-8\pi^2/\hbar g^2 3N_c}$$

Yang–Mills and Mass Gap

The laws of quantum physics stand to the world of elementary particles in the way that Newton's laws of classical mechanics stand to the macroscopic world. Almost half a century ago, Yang and Mills introduced a remarkable new framework to describe elementary particles using structures that also occur in geometry. Quantum Yang-Mills theory is now the foundation of most of elementary particle theory, and its predictions have been tested at many experimental laboratories, but its mathematical foundation is still unclear. The successful use of Yang-Mills theory to describe the strong interactions of elementary particles depends on a subtle

quantum mechanical property called the "mass gap": the quantum particles have positive masses, even though the classical waves travel at the speed of light. This property has been discovered by physicists from experiment and confirmed by computer simulations, but it still has not been understood from a theoretical point of view. Progress in establishing the existence of the Yang-Mills theory and a mass gap will require the introduction of fundamental new ideas both in physics and in mathematics.

Rules:

Rules for the Millennium Prizes

Related Documents:

Official Problem Description

Status of the Problem by Michael Douglas

Related Links:

Lecture by Lorenzo Sadun

This problem is: Unsolved

pure SUSY YM theory

Edward Witten, Nuclear Physics B202 (1982) 253-316

- introduce "gaugino" i.e. Weyl fermions in the adjoint rep
 Witten showed his index can be computed by adiabatically putting the system in small box L→0 Tr(all non-zero momentum modes
- have energies 1/Ljust keep the zero modes
- @ reduces QFT to QM!
- index could be worked out
- also a mass gap!

 $\mathcal{L} = -\frac{1}{A} F^{a}_{\mu\nu} F^{\mu\nu a} + \bar{\lambda}^{a} i \gamma^{\mu} (D_{\mu} \lambda)^{a}$ $\operatorname{Tr}(-1)^{F} e^{-\beta H} = n_{0B} - n_{0F} = N_{c}$ $N_c=6$ $_{14} \langle \lambda^a \lambda^a \rangle = e^{2\pi i/N_c} e^{-8\pi^2/\hbar g^2 N_c}$

break SUSY

 introduce mass for gaugino
 now topological term also present
 degeneracy of N_c ground states lifted

This is a special case of anomaly mediation

 $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu a} + \bar{\lambda}^{a} i \gamma^{\mu} (D_{\mu} \lambda)^{a}$ $-\frac{1}{2} m \lambda^{a} \lambda^{a} + c.c. + \frac{\theta}{64\pi^{2}} \epsilon_{\mu\nu\rho\sigma} F^{a}_{\mu\nu} F^{a}_{\rho\sigma}$

 $N_c=6$

QCD: theory of strong nuclear force

Can we solve QCD?

When we first learn about quarks, we get told we can never see them
 Internet Scam?

Dear friend,

I am Andre Ouedraogo, a banker by profession from Burkina Faso in West Africa and currently holding the post of Director Auditing and Accounting unit of the bank. It's my urgent need for a foreign partner that made me to contact you for this business. I have the opportunity of transferring the left over funds (\$11.5 million) of one of my bank clients who died along with his entire family on 31 July 2000 in a plane crash. You can confirm the genuineness of the deceased death by clicking on this website.

http://news.bbc.co.uk/1/hi/world/europe/859479.stm

I need a foreign partner who will support me because i can not claim this money alone without a foreign partner since the deceased client (the owner of the fund) was a foreigner.

This fund (\$11.5 million) will be shared between us in the ratio of 60/40. I agreed that 40% of this money will be for you as a respect to the provision of a foreign account while 60% will be for me and I want to assure you that this transaction is absolutely legal and risk free since i work in this bank and i have all the necessary information that might be needed. Before we proceed, i would like to know your ability to handle this over there in your country.

Please tell me more about the political/economic stability/monetary policy of your country. I need to know all these because i don't want to have problem with the Government of your country.

Kindly update me with the

following information because i want to know you more before we proceed on this transaction. Hope you will understand the importance of this request.

- 1. Your full name.....
- 2. Your age/sex
- 3. your occupation
- 4. Your residential address
- 5. Your nationality
- 6. Your private phone number
- 7. Your fax number

I will be waiting for your response.

Thanks for your understanding.

Have a great day.

Yours.

Andre Ouedraogo

 τ decay (N³LO) \vdash low O^2 cont. (N³LO) \vdash DIS jets (NLO)

pp/pp̄ (jets NLO) ⊢■

pp (top, NNLO)

1000

Heavy Quarkonia (NLO)

EW precision fit (N³LO) →

e⁺e⁻ jets/shapes (NNLO+res) +*+

100

Q [GeV]

Can we solve QCD?

0.3 When we first learn about quarks, 0.25 we get told we can never see them 0.2 Internet Scam? 0.15 Confinement! 0.1 $\equiv \alpha_{s}(M_{Z}^{2}) = 0.1179 \pm 0.0010$ $\beta < 0$ and asymptotic freedom 0.05 10 only suggestive, doesn't prove confinement Another puzzle: proton and pion are made of same quarks why pion ≈ massless ≪ proton? øvery mysterious!

If pions are heavy

With real light-weight pions

elements in the Universe

<u>元素の周期表</u> The Periodic Table

副制入物	1	2	2	4	5	Ŕ	7	Ó	0	10	11	12	12	14	15	18	17	10
1000 100		2	<u>່</u> ບ	4	J	0		0	9	10	- 11	12	10	14	10	10	. 17	
	**																	
1	/jN-295 Hadroom																	Helium
	1.00798																	4.0026
2	3 Li	4 Be											5 B	6 C	7 N	80	9 F	10 Ne
	リチウム	ペリリウム											現まが素	炭素	窒素	耐素	弗(75)素	オオン
	Lithium	Bendlum											Baron	Carbon	Nitrogen	Disygen	Fluorine	Neor
	6.968	9.01218											10.814	12.0106	14.0069	15.9994	18.9984	20.1797
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
	ナトリウム	マジネシウム											アルミニウム	珪の不素	(編(リン)	硫黄	塩素	アルゴン
	Sedium	Magnesium											Aluminum	Silicon	Phosphorus	Suffar	Octorine	Argon
	22.9898	24.306											26.9815	28.085	30.9738	32.068	35.452	39.948
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 🗄 r	36 Kr
	カリウム	カルシウム	スカンジウム	チタン・	バナジウム	20A	マンガン	鉄	astask	ニックル	銅	亜鉛	ガリウム	ゲルマニウム	砒に素	セレン	臭素	クリプトン
	Potassium	Caloium	Scandium	Titanium	Vanacium	Ohromium	Manganese	Iron	Cobalt	Nickel	Capper	Zino	Gallium	Germanium	Arsenic	Selenium	Dromine	Krypton
	39.0983	40.078	44.9559	47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.38	69.723	72.630	74.9216	78.971	79.904	83.798
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 T¢	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 🕻	54 Xe
	ルビジウム	ストロンチウム	イットリウム	ジルコニウム	ニオブ	モリブデン	アクネチウム	ルケニウム	ロジウム	パラジウム	截	カドミウム	10/99A	錫(スズ)	アンチモン	アルル	沃白水素	キセノン
	Bubicium oct. 407.0	Stration	Yllrium	Ziromian	Nictium Do. coo 4	Molyhdonum A F, O F	Technolium Food	But region	Rhodum	Edheinen K Do. 40	Siver	Calmium	Infun 444.040	Tin Hido Tito	Antimony And Top	Tellurium H e T. e e	licine App. op. 4	Xonar A Oct. ODO
	85.4678	87.62	88.9058	91.224	92.9064	95.95	[99]	101.07	102.906	106.42	107.868	112.414	114.818	118.710	121.760	127.60	126.904	131.293
6	55 CS	56 Ba		72 Hf	73 18	74 W	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	8111	82 PD	83 BI	64 Po	85 At	86 K n
	65.524	797A	※ 1	ND=95	9590 Territori	\$50X75	D=92A Phone in the	#25/24	40294	日金(ブラテナ	911 Colu	八個	800X	26	EXXX	Relation	72975	5F2 Balan
	129.005	127 202		170.40	100.040	102.04	106 207	100.92	102.217	105 094	106.067	200 502	201/201	207.2	ono pon	[9 in]	Es Lol	Faca1
7	07 Ee	00 D		104 DF	105.Dh	106.5%	107. Bh	100.20	100 Mt	110 De	111 80	112 Cn	112 Nb	114 El	115 Me	116 1	117 Te	110 0 m
	0/11	oana		-#t+-t	105 00	100 08	107 611	100113		#-63¢	usawi-	74 0 0	TIS NUL			TIGEV	117 13	110 08
	フランシウム	7994 1	※ 2	- 54	ドブニウム	64	ボーリウム	A3994	- <u>ウム</u>	- 1 02	54	54	ニホニウム	フレロビウム	モスコビウム	りバモリウム	テネシン	オガネソン
	Francium	Hadium		Rutherfordium	Dubnium	Seaborgium	Bahrium	Hossium	Maitnerium	Darmstedtium	Roontgenium	Copernicium	Nihonium	Florovium	Moscovium	Livernorium	Tennessine	Ogenessen
	[223]	[226]		[267]	[268]	[271]	[272]	[277]	[276]	[281]	[280]	[285]	[278]	[289]	[289]	[293]	[293]	[294]
※1	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu			
ランタ	ランタン	セリウム	ブラセオジム	ネオジム	プロメデウム	サマリウム	ユウロピウム	ガドリニウム	テルビウム	ジスプロシウム	ホルミウム	тлеод	ジリウム	イソアルビ	ルデデウム			
115														94				
系	Lanthanum	Derium LAD LLC	Praceodymium L 4/0, D/0/2	Recdynium 144 n.40	Promethium Filiaire1	150.90	Europium 151 O.S.4	Gedelinium 157.95	LEB 02E	Dysprosium Le 2 E OD	Heimium Leve crack	Draium Le 7 2 C 0	Thatan Log oo a	Viterbium	Listet um			
WO	138.905	140.110	140.908	144.242	[140]	150.36	101.904	137.25	198.929	162.500	164.930	167.209	108.934	173.045	174.907	1		
<u>%2</u>	89 AC	90 I n	91 Pa	92 0	93 ND	94 Pu	95 Am	96 Cm	97 BK	98 CT	99 E\$	100 Fm	101 Md	102 NO	103 LP			
アクチ	アクチニウム	NUCH	フロト フクチニウム	ウラン	キブシニウム	ブルトニウム	759204	キュリウム	パークリウム	かりホルニウム	アインスタイ 二一ウ人	フェルミウム	メンテレビ ウム	ノーベリウム	ローレンシー うん			
ノイド	Antipition	There is a	Protectivity	Unarian	Nanturiur	Plateniae	à marini an	Orion	Barkedium	Californian	Finatairian	Farming	Manshelseinen	KinterSum	La supervision			
系	[227]	232.038	231.036	238.029	[237]	[239]	[243]	[247]	[247]	[252]	[252]	[257]	[258]	[259]	[262]			
			2011000		Contra 1	Lana'	10.001	1 J	10000		Concerned and	Frank 7	Current.	Fernal 1	frank?	1		

Unless pions are light, we wouldn't exist!

Credit: Wikimedia Commons

Feeling better

Qualitative picture makes us feel better Confinement ø dual Meißner effect (Mandelstam) Some monopole condensation @ quarks confined by electric flux tube Chiral symmetry breaking (Nambu) massless QCD invariant under $SU(N_f)_L \times SU(N_f)_R \times U(1)_B$ @ assume broken to $SU(N_f)_V XU(1)_B$ ø pion = Nambu-Goldstone boson = massless So but still not derived from QCD!

Feeling even better but not there yet

Progress in understanding QCD Confinement (Seiberg-Witten) ON=2 SU(2) SYM a triplet field = vacua \oslash SU(2) \rightarrow U(1): magnetic monopoles! special points = massless monopole/dyon N=1 perturbation: monopole condensation! Chiral symmetry breaking So N=2 doesn't have the chiral symmetry Ø N=1 (Seiberg) has too unusual phases

Renormalization

Nima Arkani-Hamed and HM, arXiv:hep-th/9707133

Konishi anomaly $\int \mathcal{D}\phi_i = \int \mathcal{D}(e^{\sigma}\phi_i)e^{-\int d^2\theta T_F^i \frac{1}{8\pi^2} 2\sigma W_{\alpha}W^{\alpha}}$ rescaling anomaly $\int \mathcal{D}V = \int \mathcal{D}(e^{\sigma}V)e^{+\int d^2\theta C_A \frac{1}{8\pi^2} 2\sigma W_{\alpha}W^{\alpha}}$

• first rescale matter fields $\int d^{4}\theta \sum_{i} \phi_{i}^{*} e^{V} \phi_{i} + \int d^{2}\theta \left(\left(\frac{1}{g_{0}^{2}} - \frac{b_{0}}{8\pi^{2}} t - \sum_{i} T_{F}^{i} \frac{1}{8\pi^{2}} \ln Z_{i} \right) W_{\alpha} W^{\alpha} + Z_{i}^{-1/2} Z_{j}^{-1/2} Z_{k}^{-1/2} \lambda_{0}^{ijk} \phi_{i} \phi_{j} \phi_{k} \right)$ • then rescale the gauge field $V \rightarrow g_{c} V$ $\frac{1}{g_{c}^{2}} = \frac{1}{g_{0}^{2}} - \frac{b_{0}}{8\pi^{2}} t - \sum_{i} T_{F}^{i} \frac{1}{8\pi^{2}} \ln Z_{i} - C_{A} \frac{1}{8\pi^{2}} \ln g_{c}^{2}$ $\int d^{2}\theta \frac{1}{g_{c}^{2}} (\bar{D}^{2} e^{-g_{c} V} D_{\alpha} e^{g_{c} V})^{2} = -\frac{1}{4} F_{\mu V} F^{\mu V} + \cdots$ Anomaly-Mediated Supersymmetry Breaking Randall, Sundrum (1998) Giudice, Luty, HM, Rattazzi (1998)

Our Needs

We'd like to connect N=1 SUSY results by Seiberg to non-SUSY gauge theories decouple gauginos and squarks! \odot SUSY breaking m_{λ} and $m_{\tilde{O}}$ But we need to deal with composites such as mesons and baryons In particular, we need to know signs of their mass-squared to understand symmetry breaking patterns and universality classes

Anomaly Mediation of SUSY Breaking (AMSB) Tree-level piece on dimensionful parameters $V_{\rm AMSB} = -m \left(\phi \frac{\partial W}{\partial \phi} - 3W \right)$ loop-level piece from running $M_{i} = -\frac{\beta_{i}(g^{2})}{2g_{i}^{2}}m_{3/2}, \quad m_{i}^{2} = -\frac{\dot{\gamma}_{i}}{4}m_{3/2}^{2}, \quad A_{ijk} = -\frac{1}{2}(\gamma_{i} + \gamma_{j} + \gamma_{k})m_{3/2}$ ø determined only by physics at the energy scale of interest OUV insensitivity!

UV insensitivity

 $M_{i} = -\frac{\beta_{i}(g^{2})}{2a_{\cdot}^{2}}m_{3/2}, \quad m_{i}^{2} = -\frac{\dot{\gamma}_{i}}{4}m_{3/2}^{2}, \quad A_{ijk} = -\frac{1}{2}(\gamma_{i} + \gamma_{j} + \gamma_{k})m_{3/2}$ Surprising result: AMSB depends only on physics at the energy scale of interest No matter how complicated the UV physics is,
 they all disappear from low-energy soft SUSY breaking @ e.g., decouple a massive matter field: Changes the beta function one-loop threshold correction precisely account for the change in gaugino mass

UV insensitivity cont.

- decouple a massive matter field
- two-loop threshold correction precisely account for the change in the anomalous dimension and hence the scalar mass

$$M_i = -rac{eta_i(g^2)}{2g_i^2}m_{3/2}$$

 $m_i^2 = -rac{\dot{\gamma}_i}{4}m_{3/2}^2,$
 $A_{ijk} = -rac{1}{2}(\gamma_i + \gamma_j + \gamma_k)m_{3/2}$
Boyda, HM, Pierce 2001

It is sometimes convenient to introduce a complex gravitino mass, defined as

$$\tilde{m}_g \equiv \frac{2\kappa}{3} \left(\langle s \rangle + i \langle p \rangle \right), \qquad (31.3.20)$$

whose absolute magnitude is the physical gravitino mass (31.3.19).

31.4 Anomaly-Mediated Supersymmetry Breaking

In Section 28.3 the possibility was raised that supersymmetry may be broken in some sort of hidden sector of superfields that do not carry the $SU(3) \times SU(2) \times U(1)$ quantum numbers of the standard model, and communicated to observable particles gravitationally. In this section we will deal with one class of supersymmetry-breaking effects in the minimum supersymmetric standard model, those of first order in $\kappa \equiv \sqrt{8\pi G}$. This includes the gaugino masses and the parameters A_{ij} and B in the Lagrangian density (28.4.1). Other supersymmetry-breaking effects such as squark and slepton squared masses are of second order in κ , and will be taken up in Section 31.7, when we consider gravity-mediated supersymmetry breaking using the general supergravity formalism described in Section 31.6.

We can find the effects of gravity-mediated supersymmetry breaking to first order in κ by simply replacing the component fields of the gravitational supermultiplet in the interaction (31.1.34) with their expectation values. The only ones of these component fields that can acquire nonvanishing vacuum expectation values from the spontaneous breakdown

Volume III Supersymmetry

THE QUANTUM THEORY OF FIELDS

STEVEN WEINBERG

I must acknowledge my special intellectual debt to colleagues at the University of Texas, notably Luis Boya, Phil Candelas, Bryce and Cecile De Witt, Willy Fischler, Daniel Freed, Joaquim Gomis, Vadim Kaplunovsky, and especially Jacques Distler. Also, Sally Dawson, Michael Dine, Michael Duff, Lawrence Hall, Hitoshi Murayama, Joe Polchinski, Edward Witten, and Bruno Zumino gave valuable help with special topics. Jonathan Evans read through the manuscript of this volume, and made many valuable suggestions. For pointing out various errors in the first printing of this book, I am greatly indebted to Stephen Adler, Jose Espinora, Tony Gherghetta, and San Fu Tuan. For corrections to the first printing of this volume I am indebted to several colleagues, especially Stephen Adler. Thanks are due to Alyce Wilson, who prepared the illustrations, to Terry

Copyrighted Material

Copyrighted Material

Preface

xix

Riley for finding countless books and articles, and to Jan Duffy for many helps. I am grateful to Maureen Storey of Cambridge University Press for working to ready this book for publication, and especially to my editor, Rufus Neal, for his continued friendly good advice.

STEVEN WEINBERG

Austin, Texas May, 1999

$SU(N_c) QCD (N_c \ge 3)$

HM, 2104.01179 Phys.Rev.Lett. 126 (2021) 25, 251601

$$N_{f} < N_{c}$$

$$Trun-away superpotential for $M^{ij} = \tilde{Q}^{i}Q^{j}$

$$W = (N_{c} - N_{f}) \left(\frac{\Lambda^{3N_{c} - N_{f}}}{\det M}\right)^{1/(N_{c} - N_{f})} \qquad M^{ij} = \delta^{ij}\phi^{2}$$

$$V = \left|2N_{f}\frac{1}{\phi} \left(\frac{\Lambda^{3N_{c} - N_{f}}}{\phi^{2N_{f}}}\right)^{1/(N_{c} - N_{f})}\right|^{2} - (3N_{c} - N_{f})m \left(\frac{\Lambda^{3N_{c} - N_{f}}}{\phi^{2N_{f}}}\right)^{1/(N_{c} - N_{f})} + c.c$$$$

$$\begin{split} M_{ij} &= \Lambda^2 \left(\frac{4N_f(N_c + N_f)}{3N_c - N_f} \frac{\Lambda}{m} \right)^{(N_c - N_f)/N_c} \delta_{ij} \\ &\quad \mathsf{SU}(\mathsf{N}_f)_\mathsf{L} \times \mathsf{SU}(\mathsf{N}_f)_\mathsf{R} \longrightarrow \mathsf{SU}(\mathsf{N}_f)_\mathsf{V} \\ &\quad \chi \mathsf{SB}! \text{ Proving Nambu} \\ &\quad \mathsf{mesino loop} \longrightarrow \mathsf{WZW term} \\ &\quad \mathsf{N}_f = 1 \text{ special} \\ &\quad \mathsf{no NGB, gapped} \end{split}$$

$$\begin{split} \mathbf{N}_{\mathbf{f}} &= \mathbf{N}_{\mathbf{c}} + \mathbf{1} \\ & \bullet \text{``Confinement without } \chi \mathsf{SB''} \quad W = \frac{\det M - \tilde{B}MB}{\Lambda^{2N_c - 1}} \\ & W = \lambda \frac{\det M}{\Lambda^{N_f - 3}} - \kappa \tilde{B}MB \qquad B_i = \epsilon_{ij_1 \cdots j_{N_c}} Q^{j_1} \cdots Q^{j_{N_c}} \\ & V = N_f \lambda^2 \frac{\left|\phi\right|^{2N_f - 2}}{\Lambda^{2N_f - 6}} - \lambda(N_f - 3)m\phi^{N_f} + c.c. \\ & \phi = \kappa^{-1} \Lambda \left(\frac{2N_f - 3N_c}{N_c} \frac{m}{\Lambda}\right)^{(N_f - N_c)/(2N_c - N_f)} \ll \Lambda \end{split}$$

Supersymmetric higher power potential together with

AMSB

 \bigvee

SU(N_f)_L×SU(N_f)_R→SU(N_f)_V $\bigotimes \chi$ SB! $\bigotimes massless pions$ $\bigotimes massive baryons$ $m_B=\kappa f_{\pi}\approx 4\pi f_{\pi}$

$N_c+2 \leq N_f < 3N_c/2$

"free magnetic phase" SU(N_c) becomes strong, binds baryons, which break up into dual quarks $B^{i_1,\cdots i_{N_c}} = Q^{i_1}_{\alpha_1}\cdots Q^{i_{N_c}}_{\alpha_{N_c}} \epsilon^{\alpha_1\cdots\alpha_{N_c}} = \epsilon^{i_1\cdots i_{N_c}i_{N_c}+1\cdots i_N} b_{i_{N_c}+1}\cdots i_{N_f}$ $b_{i_{N_{c}+1}\cdots i_{N_{f}}} = q_{i_{N_{c}+1}}^{\beta_{1}} \cdots q_{i_{N_{f}}}^{\beta_{N_{f}}-N_{c}} \epsilon_{\beta_{1}\cdots\beta_{N_{f}}-N_{c}}$ "magnetic" IR-free SU(N_f-N_c) gauge theory $W = \frac{1}{\mu} M^{ij} q_i \tilde{q}_j \to \lambda \tilde{M}^{ij} q_i \tilde{q}_j$ $\otimes \lambda$ dimensionless, only loop-level AMSB

+Csáki, Gomes, Noether, Varier

χSB is a local minimum but well-defined and still useful no similar issues with SO, Sp

χSB

baryon condensate

confinement and χSB Csáki, Gomes, HM, Telem, 2106.10288, 2107.02813

confinement vs screening

 \oslash We've derived χ SB in SU(N_c) QCD it has no confinement massless quarks in the fundamental rep can screen any color charges Wilson loop is perimeter law O SO(N_c) QCD with quarks in vector rep Cannot screen Z₂ center (e.g. spinor rep) ø rigorous definition of confinement \oslash can we see an interplay with χ SB?

$N_f = N_c - 2$

rank $M=N_f$, $SO(N_c)$ is broken to SO(2)Coulomb branch $u = \det M$ two singularities $V \approx -\left(\frac{\lambda^2}{16\pi^2}\right)^4 m^4$ u = det M = 0dyons: $q_i^{\pm} W = \frac{1}{\mu} M^{ij} q_i^+ q_j^ u = \det M = \Lambda^{2N_f}$ monopoles: $W = (u - \Lambda^{2N_f})E^+E^ |E^{\pm}| = (m\Lambda)^{1/2}$ ø both monopoles and $V = -N_f m^2 \Lambda^2$ meson condense!

$N_f < N_c - 2$

add mass m_q to some of the quarks
 an show monopole VEVs persist m_q→∞
 demonstration of confinement and chiral symmetry breaking for all N_f ≤ N_c-2

Chiral gauge theories

Nature is chiral

Standard model is a chiral gauge theory
 but chiral gauge theories are difficult to regularize

In attice simulations yet!

SO(10): smallest anomaly-free group that admits complex representation

I6: smallest complex representation of SO(10)

 Kikukawa: probably the best candidate for first lattice simulation of chiral gauge theory
 What do we expect?

SO(10) with N_f 16's

SU(N_f) global symmetry among 16's
lowest dimension fermion composite operator
120=10C₃ rep A^{µνρ}_{ij} = 16^T_i CΓ_{µνρ}16_j = -A^{µνρ}_{ji}
S_{ij;kl} = A^{µνρ}_{ij} A^{µνρ}_{kl} i k j l

+Kondo, Sylber, in preparation

SO(10) with one 16

no global symmetry ø dynamically breaks SUSY (HM: hep-th/ 9505082 "Studying noncalculable models of dynamical supersymmetry breaking") no D-flat direction, no weakly coupled limits add 10, D-flat direction emerges, breaks SO(10) to SO(7), gauge condensate generates superpotential $W = \left(\frac{\Lambda^{21}}{(16\ 16\ 10)^2}\right)^{1/5} + M10\ 10$ gapped, no symmetry breaking

SO(10) with two 16

SU(2) global symmetry $S_{ij;kl} = A_{ij}^{\mu\nu\rho} A_{kl}^{\mu\nu\rho}$ is SU(2) singlet

D-flat direction breaks SO(10) to G₂
 gaugino condensate generates superpotential
 $W = \left(\frac{\Lambda^{20}}{S^2}\right)^{1/4}$ gapped, no symmetry breaking

SO(10) with three 16

SU(3) global symmetry • $S_{ij;kl} = A_{ij}^{\mu\nu\rho} A_{kl}^{\mu\nu\rho}$ is SU(3) symmetric tensor $\frac{i \ k}{j \ l} \ 3^* \times 3^* = 6^*$ D-flat direction breaks SO(10) to SU(2) gaugino condensate generates superpotential $W = \left(\frac{\Lambda^{18}}{\det S}\right)^{1}$ In breaks SU(3) to SO(3) Iow-energy: SU(3)/SO(3) chiral L with WZW testable predictions!

Chiral SU(N_c) with A + (N_c-4) F* Csáki, HM, Telem, 2104.10171

conjectures

A + (N_c-4)F*: anomaly free chiral gauge th
SU(N_c-4) × U(1) global symmetry
massless composite fermions: AF_i, F_j satisfy
't Hooft anomaly matching conditions without breaking any global symmetries (E. Eichten, R. D. Peccei, J. Preskill, and D. Zeppenfeld (1986))

2. condensate AF_i breaks SU(N_c)_gxSU(N_c-4)xU(1) to SU(N_c-4)xU(1)xSU(4)_g with massless (1/2N_c(N_c+1),N_c) fermion AF_i, F_j (S. Dimopoulos, S. Raby, L. Susskind (1980)) "tumbling"

SUSY + AMSB, Nc odd

on non-perturbative run-away superpotential $A = \frac{\varphi}{\sqrt{2}} \begin{pmatrix} J_{(N-5)} & 0\\ 0 & 0_{5\times 5} \end{pmatrix}, \qquad \bar{F} = \varphi \begin{pmatrix} I_{(N-5)} & 0\\ 0 & 0_{5\times 1} \end{pmatrix}$ $W = \begin{pmatrix} \Lambda_N^{2N+3}\\ (\mathrm{Pf}'A\bar{F}\bar{F})(\mathrm{Pf}'A) \end{pmatrix}^{3/13} \qquad \begin{array}{l} \text{Pouliot}\\ \text{(1995)} \end{array}$ $\varphi \approx \Lambda \left(\frac{\Lambda}{m}\right)^{13/(4N-7)} \gg \Lambda$ O SU(N_c-4)XU(1) broken to Sp(N_c-5)XU(1) \oslash massless fermions (N_c-4,N_c)

revised tumbling

F[i, F_j] breaks it further to
SU(4)_g×Sp(N_c-5)×U(1)

SU(4)_g becomes strong and A(4) and F*(4*) condense

SUSY + AMSB, Nc even

In non-perturbative run-away superpotential $A = \frac{\varphi}{\sqrt{2}} \left(\begin{array}{c|c} J_{(N_c-4)} & 0\\ \hline 0 & 0_{4\times 4} \end{array} \right), \qquad \bar{F} = \varphi \left(\begin{array}{c|c} I_{(N_c-4)} \\ \hline 0 \end{array} \right)$ $W = \left(\frac{\Lambda^{2N+3}}{(\mathrm{Pf}A\bar{F}\bar{F})(\mathrm{Pf}A)} \right)^{1/3} \qquad \begin{array}{c} \mathsf{Pouliot}\\ \mathsf{(1995)} \end{array}$ $\varphi \approx \Lambda \left(\frac{\Lambda}{m}\right)^{3/2N_c}$ O SU(N_c-4)XU(1) broken to Sp(N_c-4) no massless fermions

revised tumbling

 $O AF_i$ breaks SU(N_c)_gxSU(N_c-4)xU(1) to SU(4)_gxSU(N_c-4)xU(1)

\$\vec{F}_{[i,F_j]}\$ breaks it further to SU(4)_gxSp(N_c-4)
 SU(4)_g becomes strong and A(4) and F*(4*) condense

Conclusions

SUSY + AMSB help us understand quantum dynamics ø obtain results consistent with Yukawa, Nambu o no obvious signs of phase transition as SUSY breaking is increased applied to systems not understood yet, results very different from past conjectures systems (not yet) interested in strongly-coupled dark sector

