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. Is energy conserved in general relativity ?

In a flat spacetime, energy is a conserved charge of time translational symmetry.

This symmetry not only defines “energy” but also leads to its conservation.
(Noether’s 1st theorem)

Does this hold in general relativity (GR) ?

time translation € general coordinate transformation (gauge symmetry)

|Obstruction | Noether’'s 2nd theorem

E. Noether, Gott. Nacho. 1918(1918)235-257 [arXiv:physics/0503066[physics]].

L ocal (gauge) symmetry »

In this poster, | will explain our answer to the above question:

Off-shell conserved current

conservation as an identity

(1) The matter energy can be defined in GR.

(2) The matter energy is not conserved in general.

(3) There exists a conserved charge as a generalization of the matter energy.



Set up

Lagrangian density L =Lg+ Ly+ La Action Sa = /Q dx L
La = %\/Tg(R — 2A0), k= 4Gy, gravity
Ly =+—g [—%g”yauqﬁam - V(¢)] scalar
La=+—g [—%FWFW — %m2AMA“] , Fu=0,A, —0,4,. massive vector
By, =— \/2? [R’“’ — %g””(R —2A) = 2x(T;" +T%")| =0  Einstein equation
Ey,=+—g V¢ —-V'(¢)] =0 EOM for scalar
Ea, =+v—=g[V,F"" —m?A*] =0 EOM for vector

T,"., T4 :  Energy momentum tensor (EMT) for matters



ll. Noether’s 2nd theorem

(infinitesimal) general coordinate transformations = d¢z" = &*

09w () = =8 (7)) gar (T) — €% L (T)gua(T) 0¢p =0 0g Ay = =&, A

Since the transformation does not commute with derivatives: 0D o # 0n(0cD)
we introduce ¢® 1= 5P — @,555335 » 0¢® o = 0o (0c®)  commute with derivatives
An individual action is invariant 0¢Se.0 =0 Se.0 1= / d’z Ly, ®=G,¢,A.
Y

* / Az € Ga.g + / %z 0, K" [¢] = 0.
Q Q

1. Choose & (z) = &4, (z) = &' 5(x) = 0 at a boundary of an arbitrary €.

—— Gaoe=0 d constraints among EOMs (Bianchi identity, etc.)

2. General £# and an arbitrary choice of 2.

— » O0,KL[¢]=0. conserved current



Explicitly  f¢#[¢] = ﬁv [V[“g’/]} = AM,EY 4 BMOEY |+ OBV s
Kg[g] — (0 Kﬁ['f] — ay [«/_gF,LLI/AOéSOé} — D'LLVSV _|_Eﬂya£y7a

arbitrary & » 0,A", =0 o,E", =0

These conservation equations hold for arbitrary off-shell g,,. ¢, A,

[aqu[g] =0 ] off-shell conserved current density (covariant)

conserved for an arbitrary vector &

Komar energy, ADM energy, Wald entropy, asymptotic charges

referred as Quasi-local (energy)

[ o,A", =0 ] off-shell conserved current density (non-covariant)

Einstein’s pseudo-tensor

Q0 o Gpv
Ar, = L oRe, + ghoTy, = g™ Tl | K =g (T, )

v

_ amp afH
(R 2A) —|_g'u Fﬁl/a g Faﬁ,
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th, = [R“V + —=
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“Energy” from Noether’s 2nd theorem

|Pros |

1. "energy” current is always conserved.

— a total energy is conserved in general relativity (?)

2. total "energy” can be evaluated by a surface integral

1
Eql¢] = /V[dd_lx]qu[f] =5 Av[dd_%]w\/—gv[“ﬁ"] quasi-local energy
Fot = / 47 ] Ao = _/ 2], B 0" seudo-tensor
\% oV g p

- - 1 1
AP, = —9, B B M = 5B[O&yu] _ 5050[0‘1/“]5



|Cons|

1. non-dynamical (off-shell) conservation, which is a purely kinematical constraint.
2. physical meaning is unclear. Is it indeed energy ?

conservation only from a gravity action, blind for matters, whose information is
encoded via Einstein eq. (EoM).

3. Ambiguity from a choice of & (quasi-local), or non-covariance (pseudo-tensor).

4. Ambiguity from a total divergence term, which does not change Eol.

Lo — Lg + 0,(v/—gM") K&E] — K&[¢)l + v—g |V, MY — Mk ¢V

E. Noether, Gott. Nacho. 1918(1918)235-257 [arXiv:physics/0503066[physics]].

Hilbert enunciates his assertion to the effect that the failure of proper laws of conservation of
energy is a characteristic feature of the “general theory of relativity.” In order for this assertion to
hold good literally, therefore, the term “general relativity” should be taken in a broader sense than
usual, and extended also to the forgoing groups depending on n arbitrary functions.?”




lll. Noether’s 1st theorem in GR

Invariance of the matter action implies

0= 5&5@)@ — / dda: (gchp + ch,aéga?a -+ 8a (5§ZEQ)L<I>)
Q

d=0¢ A
— 8a (ch(s,sflja)
_ OLg 8Lq> OLg OLg OLg
Ly = 5 o + 0P = 8¢ 0y + Eade® 5P
O0¢ Lo = agw%gu 95 — 0 55 ., 0o ¢ D € + Eg0e® + g (m : )
OL OL
» OLS g+ Eadc® + 0NGEI =0 NEIE = oe5e@ + Lobea®
uv 0P
. L L . aLCI) N 3%
If a transformation &* = (* satisfies 99 6cGuy = —vV—91% (V.o +V,(,) =0
1%

- @ . :
» OuNN, q‘; (] = —Eg0c® =~ 0 The current for a special ¢ is conserved.

Noether’s 1st theorem for

a global symmetry generated by 6 x (*(x) for a given g with a constant 6.

g is a background field



scalar  Ny[¢] =2v—g(Ty)",¢"
1
massive vector NA[(] = V=g |F**(¢"dsAa + AsCl — Z(FO‘BFQB +2m* A% A, )M

We can define a new current JE[C] :== N§[C(] — Kg[C]  which satisfies 0, J5[C] = 0, N5 [(]

— P
Therefore 0,J51(] = —E36¢® =~ 0 on-shell conserved

NOether”S 1 st theorem A gauge field g can be off-shell as well as on-shell.

.y o
where  a new conserved current isgivenby J2[(] = 2v/—gTL"(,

symmetric EMT

q) 14
conserved current density Jgl¢] = 2v—gTg" G,

Condition and conserved current were proposed to define a conserved charge
INn general relativity from a different point of view in

S. Aoki, T. Onogi and S. Yokoyama, Int. J. Mod. Phys. A36 (2021) 2150098.

S. Aoki, T. Onogi and S. Yokoyama, Int. J. Mod. Phys. A36 (2021)2150201



It our method is applied to the total action

JEE] = JGLE] + T [€] + J4[€] is on-shell conserved for an arbitrary £ as
0, J"€] = —E,,,0¢Gu — Epded — Ea,0¢A, = 0. Noether’s 1st theorem ?

However JPIE] =0 on-shell trivial

and NH[¢] = KF[E] == Kg[€] + KL [¢] Noether’s 2nd theorem



Is the energy in this definition conserved 7

1. If a stationary Killing vector, satistying V£, + V., &, = 0, exists,

TH" (Vi + Viéy) =0 the condition is trivially satisfied.

Ex. If a metric g,,, doesn’t depend on ¥, ¢F = -4} is a Killing vector.

E = /[dd—lx]w /—gTkV¢, conserved "energy”  standard definition of energy in x — 0 limit

2. BEven if §# = -6 is NOT a Killing vector but satisfies (75)", I, = 0,
(Te)" V& = —(Te)", T g =0 the condition is satisfied.

energy FE is conserved.

3. Energy FE is not conserved for a generic g, . energy F is NOT conserved.

However Q[¢] := /[dd_lx],ﬂ/ —gT5"(, is conserved if (* = B(x)&H satisfies the condition

TSV(VMCV +Vu(,) =0



Comparison

E = /[dd_lx]w/—ngyf,, gH = —of Egl€] with V¢ or E,y
Noether . . .
1st (time translation) 2nd (general coordinate tr.)
(symmetry)
Conservation dynamical (on-shell) constraint (off-shell)
total energy not conserved in general always conserved(?)
defined from matter action gravity action (matter via Einstein eq.)
covariance yes yes/no
ambiguity no a choice of &, a total divergence term
physical matter energy unclear
i i no gravitational ener o
Interpretation J 9y matter + gravitational energy 7




IV. Physical meaning of Q|(]

S. Aoki, T. Onogi and S. Yokoyama, Int. J. Mod. Phys. A36 (2021)215020T1

Q[¢] == /[dd_lx]u\/—chﬁ'/Cﬁ is conserved if the following condition is satisfied.
Tcgy(vugy + VVCM) =0

For example, take ({)*(x) = —f(x)d}, then the condition becomes
()0 (2)003(x) + (T) 00 B(x) + (Te)"s (2)T o (x)B(w) =0 1St orderinear PDE
If an initial value 8(2%,” ¥)) is given at 20, 3(x) for other 2° is easily obtained.

A solution is known as a Kodama vector for a spherically symmetric system. Kodama’80

There exists a conserved charge more general than energy in GR.

What is a physical meaning 7



Ex. Homogeneous and isotropic expansing Universe

ds* = —(dz°)* + a*(2°)g;;dx'dz?  Freedman-Lemaitre-Robertson-Walker metric

EMT (perfect fluid) T% = —p(a”), T*; = P(2")8%, T°; =T =0

covariant conservation v, T", =0 — P+ (d—1)(p+ P)9 =0
a

energy E(z") := - / A" y/=gT % = Va_1a®'p, Va1 := / "z /5.

| &

= —(d— 1)@5 £ () not conserved
a p

condition T#,V,(" =0 (*(a°) = -B(")sy — pB—(d- 1)5%P =0

charge S(SIZO) — —/dd’_lx \/TgTooﬁ — Vd_1ad_1,05 = E(:Uo)ﬁ(ib“o)

1 P 1 P
:_(d_1)9—+(d—1)9—:0 conserved |
a p a p

0| W
|
| &

_|_

|-



Physical interpretation of the charge

charge density energy density volume density

s(") = e(x)B(x") e(x) = p((x’) V(%) = a(x0)%!

ds deﬂ+ dp de +Pdv 3 Tds — de + Pd

— C— = — —_— : - —

dx®  dxY dx0 dx0 dx0 m 4 P ’
dp a Pp dv p 1st law of thermodynamics
—=d-1)——=P——
dxV a p dxV e

1

- / S entropy p= 7 inverse temperature

Entropy of the Universe Is conserved during its expansion.

é = (d — 1)53 > () —> Temperature of the Universe decreases as it expands, so as to conserve
p d the total entropy.

A space-time behaves like an adiabatic piston 7



In @ more generic spacetime, we can not show that a conserved charge
satisfies the 1st law of thermodynamics, thus it may be a more general

one than an entropy.

Since such a general conserved charge is unknown, however, we temporarily
call it an "entropy”. Regardless of its name, it remains true that there always
exists a conserved matter charge in general relativity as a consequence of
Noether’s 1st theorem for the matter sector.



V. Conclusion and discussion

1. We have proposed a (new) definition for the matter energy in GR.
A. The matter energy is not conserved in general.

2. We have proposed a new method to define a conserved matter Noether’s
charge for a global symmetry which is a part of a local (gauge) symmetry, in
the presence of the (background) gauge field.

A. The conserved charge corresponds to the entropy in GR.
B. The electric charge can be defined for a U(1) gauge theory.

C. It is possible to define charges for non-abelian gauge theories.

Ref. Sinya Aoki, “Noether’s 1st theorem with local symmetries”, arXiv:2206.00283[hep-th].

A conserved total energy = energy for matters + energy for gravitational field ?

Unfortunately, Noether’'s 1st theorem does not give such a quantity.



Backup



Examples of conserved energy

S. Aoki, T. Onogi and S. Yokoyama, Int. J. Mod. Phys. A36 (2021) 2150098.

Schwarzschild black hole energy

dS2 =—(1+ u)dfz — 2udtdr + (1 — u)dr2 + ”de?z—z Eddington-Finkelstein coordinates
u() 1= Su(r) — — AT sutr) o 2GMO0 A(r) with 6(0) = 0 handles
T u(r) .= —
(d=2)d=1) rd=> singularity at r =0

T

\>\"(>‘\yd stationary Killing vector
g = —ot

r constant surface




. . . 1
Einstein equation R, — §gWR + Aguy = 26T, — T =0atr#0

If we calculate carefully, we obtain

d—2 0, (r*35u) (d—2)M o(r)

T _ L r d—3 -
e e e T". r®2ou(r) = —2GMO(r)
i _ 1 92(r 36u) -1 9,0(r)
' 16nG rd3 8 pd3

—  Dblack hole is not a vacuum solution to Einstein equation.

cf. Coulomb potential by a point charge is NOT a vacuum solution to Maxwell eq.

V2<l>=0 r#+#0 — V2<l>o<5(x)

r r

Einstein/Maxwell equations are distributional equations.

energy of black hole

Epy = — / 411 g1, = (7 D / " dro, (Mo(r)) = (1= 2

ST 0 ST

M

—> FEgg=M at d =4



Energy of compact star
stationary spherically symmetric  ds* = —f(r)(dz")* + h(r)dr® + r*§;;dx"da’

with perfect fluid EMT T, = —p(r), T".= P(r), T; = 5;-P(7“)

O outside star f(r) = =1 Schwarzschild metric

.0
3
3
‘e
3

‘e
A
*

ADM mass
(a type of quasi-local energy)

*
»
*
*
*
»
*
‘e
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‘e
3
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00 R
ourenergy p = —/dQZE/ dr/—g Ty = 47’(’/ dr / f(r)h(r)r?p(r)
0 0

R
difference FEF = M(R) — 47TG4/ dr \/f(r)h3(7“) rM(r) (p(r) + P(r))
T ot
observed correction due to the

. = AF
gravitational mass internal structure of the star

G
Newtonian limit AF ~ 3 /d3:€ p(x)p(x) <0 Newton potential  ¢(x) = —/dSy‘}f(_y;‘
G 3 . .
M(R) ~ Ey + o d’x p(x)p(x) Ey : energy without gravity
E ~ FEy+ G/d?’a: p(x)p(x) matter energy in the presence of Newton potential

consistent with our “derivation”

M(R) ~ E + g /deV¢(X) -Vo(x) = Ey — g/d‘gx 43y IO‘(;)_p(y}?

Implied by Noether’s

off-shell conserved “energy” including gravitational contribution >nd theorem

— g factor “1/27



