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Topological Soliton

1

V(ϕ)

trivial non-trivial
(point) (circle )S1

V(ϕ)

• Non-perturbative object in field theories

• monopole, vortex string, skyrmion, instanton, etc..

• It appears if vacuum has non-trivial topology.

• Vortex string appears in many systems:

• cosmic string, superconductor, neutron star, etc.

y

z

x
vortex string



Interaction of Vortex Strings

2

two parallel vortex strings on 2D slice:

x
y

repulsive? attractive?

interaction between vortex strings

The (most) important question:

vortex

cf.) vortex-antivortex is always attractive
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[Nielsen-Olesen ’73]

[Abrikosov ’58]



Eg.) Abrikosov-Nielsen-Olesen string

3

• vortex string w/ mag. flux → called ANO string 

ℒ = − 1
4 FμνFμν + |Dμϕ |2 + m2 |ϕ |2 − λ |ϕ |4

• 3+1 D Abelian-Higgs model U(1)⟨ϕ⟩ = v

[Nielsen-Olesen ’73]

[Abrikosov ’58]

• Interaction force is repulsive or attractive depending on β ≡
m2

ϕ

m2
A

d

interaction potential
 

(type II)
β > 1

 
(type I)
β < 1

 (BPS limit)β = 1

/ 17 Ryusuke Jinno (IFT) "Coleman-Weinberg Abrikosov-Nielsen-Olesen strings" [ 2205.04394 ]02

TOPOLOGICAL DEFECTS
➤ Topological defects:  Ubiquitous objects in quantum field theory

- Cosmology:  cosmic strings and gravitational-wave emission

- Domain walls, Vortices (strings), Monopoles, ...

➤ Best-known example:  Abrikosov-Nielsen-Olesen vortex in superconductors

V(Φ) = m2 |Φ |2 + λ |Φ |4

➤ Vortices (strings) are interesting in e.g.

{{- Condensed matter systems:
magnetic flux tubes

quantum vorticies
 in superconductors

Φ : Cooper pair of electrons
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Φ
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Abrikosov lattice 
stable superconductor

(wikipedia)
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• Coleman-Weinberg potential w/o quadratic term:

VCW(Φ) = λ(Φ) |Φ |4 : running quartic couplingλ(Φ)

VCW(Φ)

λ ( |Φ |2 − 1)
2

[Coleman-Weinberg ’73]

• flatter structure around origin

• scale is induced by quantum effect 
→possible solution of hierarchy problem

[Iso-Okada-Orikasa ’09] [Iso-Orikasa ’12] [Chway+ ’13]

• tree level → =const., scale invariant, no SSBλ

• quantum effects → , triggers SSBλ(Φ) = λCW (log |Φ |2

v2 − 1
2 )

depend on underlying d.o.f. 
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• Coleman-Weinberg potential w/o quadratic term:

VCW(Φ) = λ(Φ) |Φ |4 : running quartic couplingλ(Φ)

VCW(Φ)

λ ( |Φ |2 − 1)
2

[Coleman-Weinberg ’73]

• flatter structure around origin

• scale is induced by quantum effect 
→possible solution of hierarchy problem

[Iso-Okada-Orikasa ’09] [Iso-Orikasa ’12] [Chway+ ’13]

• tree level → =const., scale invariant, no SSBλ

• quantum effects → , triggers SSBλ(Φ) = λCW (log |Φ |2

v2 − 1
2 )

depend on underlying d.o.f. 

Does this potential affect interaction of vortices? → Yes!!
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• Introduction ←Done 

• CW-ANO string 

• Interaction of CW-ANO string 

• Summary
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Model
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• 3+1 D Abelian-Higgs model w/ two types of potential

V(Φ) = λ (log |Φ |2

v2 − 1
2 ) |Φ |4

S = ∫ d4x [− 1
4 FμνFμν + |DμΦ |2 − V(Φ)]

V(Φ) = λ ( |Φ |2 − v2)
2

• usual Quadratic-Quartic • Coleman-Weinberg

• Both models spontaneously break  sym and have vortex strings.U(1)

Dμ = ∂μ + igAμ

• Quadratic-Quartic → conventional ANO string

• Coleman-Weinberg → CW-ANO string! (main interest)



Model
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• It is convenient to introduce rescaling: Aμ → Aμ/g Φ → Φ/g

S = 1
g2 ∫ d4x [− 1

4 FμνFμν + |DμΦ |2 − Vβ(Φ)] Dμ = ∂μ + iAμ

Vβ(Φ) = β
2 ( |Φ |2 − 1)

2
(QQ) Vβ(Φ) = β

2 (log |Φ |2 − 1
2 ) |Φ |4 (CW)

• Tension (=energy per unit length of string):

T = dE
dz

= ∫ d2x [ 1
2 (∂iAj)2 + |DiΦ |2 + Vβ(Φ)]

(assuming static and Coulomb gauge)

β ≡
m2

ϕ

m2
A

= 2λ
g2



Axisymmetric string
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• Field configuration:

Φ(x) = f(r)eiθ Aθ(x) = a(r)

y

z

x

r

θ

winding # = 1 & magnetic flux ∫ d2x B = 2π

• classical EOMs for   and :f(r) a(r)

3.1 ANO string solution

As shown by Nielsen and Olesen in Ref. [2], the Abelian Higgs model (2.1), in general, has a

vortex string solution as a non-trivial (classical) solution to its equation of motion. This is

ensured whenever the potential V (�) has U(1)-breaking vacua (i.e., the vacua characterized

by a non-trivial first homotopy group). Thus the existence does not depend on the detailed

shape of the potential V (�).

To find the solutions, we start by assuming static and axially symmetric configurations

and then parametrizing the fields � and Aµ = (At, Ar, A✓, Az) as2

� = f(r)ein✓, A✓ = na(r), At = Az = Ar = 0. (3.1)

Here n is the winding number being integers and r =
p
x2 + y2 is the (dimensionless) radius

on the xy-plane. For their regularity and finiteness of the energy, the profile functions f(r)

and a(r) satisfy the boundary conditions

f(0) = a(0) = 0, f(1) = a(1) = 1. (3.2)

Inserting Eq. (3.1) into the energy per unit length (i.e. tension) yields

T ⌘
dE

dz
=

Z
rdr d✓

"✓
df

dr

◆
2

+
n2

2r2

✓
da

dr

◆
2

+
n2

r2
f2(1� a)2 + V (f)

#
. (3.3)

The rescaled potential V defined in Eq. (2.14) is given respectively by

V (f) =

8
>>><

>>>:

�

2
(f2

� 1)2 : AH,

�

2
f4

✓
ln(f2)�

1

2

◆
: CW.

(3.4)

Here the coe�cient of the potentials is given in terms of the mass ratio � defined in

Eq. (2.7). We see that only � is a free parameter of the system. Varying the tension (3.3)

with respect to f and a, their equations of motion are found to be

f 00 +
1

r
f 0

�
n2(1� a)2

r2
f �

1

2

@V

@f
= 0, (3.5)

a00 �
1

r
a0 + 2(1� a)f2 = 0, (3.6)

respectively. Here and hereafter the prime denotes the derivative with respect to r, e.g.

f 0 = df/dr.

We read o↵ the energy density for the stationary configurations (3.1) as

E(r) = (f 0)2 +
n2

2r2
(a0)2 +

n2

r2
f2(1� a)2 + V (f). (3.7)

2
Note Ax = �A✓ sin ✓/r and Ay = A✓ cos ✓/r.

– 8 –

• boundary conditions:

f(0) = a(0) = 0 f(∞) = a(∞) = 1



Axisymmetric string
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• Field configuration:

Φ(x) = f(r)eiθ Aθ(x) = a(r)

y

z

x

r

θ

β = 0.5 β = 1.5

winding # = 1 & magnetic flux ∫ d2x B = 2π
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• no significant difference for the string solutions



Asymptotics of CW-ANO string
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• Asymptotic behavior at  can be derived analytically.r → ∞

• Since  and  at , it is useful to write 

down linearized EOM w.r.t.   and 

f(r) ≃ 1 a(r) ≃ 1 r → ∞
δf ≡ 1 − f δa ≡ 1 − a

In particular, for VAH, the tension (3.3) can be rewritten as

T = 2⇡

Z 1

0

dr r E(r)

= 2⇡|n|

+ 2⇡

Z 1

0

dr r

"✓
f 0 + |n|

a� 1

r
f

◆
2

+
n2

2r2

✓
a0 +

r

|n|
(f2

� 1)

◆
2

+
1

2
(� � 1)(f2

� 1)2
#
.

(3.8)

The first and second terms in the integrand are in squared forms and thus always give

positive values. Therefore, the tension is bounded from below as

T � 2⇡|n|+ 2⇡

Z 1

0

dr r


1

2
(� � 1)(f2

� 1)2
�
. (3.9)

Moreover, if � � 1, the second term in Eq. (3.9) also becomes non-negative, so that one

has the Bogomol’nyi bound; T � 2⇡|n|. In particular, for � = 1 the last term in Eq. (3.8)

vanishes, and the equations of motion (3.5) and (3.6) can be rewritten as the first-order

Bogomol’nyi equations [25] in terms of f and a:

f 0 + |n|
a� 1

r
f = 0, a0 +

r

|n|
(f2

� 1) = 0, (3.10)

for which the tension is given by the Bogomol’nyi limit

T = 2⇡|n| (� = 1). (3.11)

Hence, the vortex becomes stable in sense that its tension takes the lowest value of the

energy bound. This is the BPS state. In the case of VAH, the stability of the vortex strings

can be understood analytically in terms of �, but this is not possible for the CW potential

VCW. Thus the stability analysis of the latter should instead rely on numerical methods.

Clarifying the stability of vortex strings for the CW type potential is one of the main

purposes in this work, and is done in Sec. 4.

We close this subsection by mentioning the behavior of f and a as functions of r. Since

exact solutions to Eqs. (3.5) and (3.6) do not exist even in the case of the AH potential,

numerical methods are necessary to obtain the full solutions. This is discussed in the next

subsection. Instead, we here explore the asymptotic behaviors of f and a in an analytic

way. In the limit r ! 1, the functions f and a are su�ciently close to the vacuum

values, and hence it is convenient to rewrite the equations of motion to the leading order

in �f ⌘ 1� f ⌧ 1 and �a ⌘ 1� a ⌧ 1 as

�f 00 +
1

r
�f 0

� 2��f = O((�f)2, (�a)2), (3.12)

�a00 �
1

r
�a0 � 2�a = O((�f)2, (�a)2), (3.13)

from which it is clear that �f and �a behave as

�f / r�1/2 exp
h
�

p
2�r

i
, �a / r1/2 exp

h
�
p
2r
i
, (3.14)

– 9 –

Only curvature around vac is relevant.
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• Asymptotic behavior doesn't depend on the potential shapes.

δf ≃ r−1/2 exp [− 2βr] δa ≃ r1/2 exp [− 2r]
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• Field configuration:

Φ(x) = f(r)einθ Aθ(x) = n a(r)
r

θ

winding #  & magnetic flux = n ∫ d2x B = 2πn
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• String tension for QQ and CW cases:

• For QQ case, all lines cross at  (BPS state) while it doesn't 
happen for CW case (next slide).

β = 1

(QQ) (CW)



BPS state

11

• In Quadratic Quartic case, the energy can be rewritten by 
completion of square:

[Bogomol’nyi '76]

[Prasad-Sommerfield '75]

In particular, for VAH, the tension (3.3) can be rewritten as

T = 2⇡

Z 1

0

dr r E(r)

= 2⇡|n|

+ 2⇡

Z 1

0

dr r

"✓
f 0 + |n|

a� 1

r
f

◆
2

+
n2

2r2

✓
a0 +

r

|n|
(f2

� 1)

◆
2

+
1

2
(� � 1)(f2

� 1)2
#
.

(3.8)

The first and second terms in the integrand are in squared forms and thus always give

positive values. Therefore, the tension is bounded from below as

T � 2⇡|n|+ 2⇡

Z 1

0

dr r


1

2
(� � 1)(f2

� 1)2
�
. (3.9)

Moreover, if � � 1, the second term in Eq. (3.9) also becomes non-negative, so that one

has the Bogomol’nyi bound; T � 2⇡|n|. In particular, for � = 1 the last term in Eq. (3.8)

vanishes, and the equations of motion (3.5) and (3.6) can be rewritten as the first-order

Bogomol’nyi equations [25] in terms of f and a:

f 0 + |n|
a� 1

r
f = 0, a0 +

r

|n|
(f2

� 1) = 0, (3.10)

for which the tension is given by the Bogomol’nyi limit

T = 2⇡|n| (� = 1). (3.11)

Hence, the vortex becomes stable in sense that its tension takes the lowest value of the

energy bound. This is the BPS state. In the case of VAH, the stability of the vortex strings

can be understood analytically in terms of �, but this is not possible for the CW potential

VCW. Thus the stability analysis of the latter should instead rely on numerical methods.

Clarifying the stability of vortex strings for the CW type potential is one of the main

purposes in this work, and is done in Sec. 4.

We close this subsection by mentioning the behavior of f and a as functions of r. Since

exact solutions to Eqs. (3.5) and (3.6) do not exist even in the case of the AH potential,

numerical methods are necessary to obtain the full solutions. This is discussed in the next

subsection. Instead, we here explore the asymptotic behaviors of f and a in an analytic

way. In the limit r ! 1, the functions f and a are su�ciently close to the vacuum

values, and hence it is convenient to rewrite the equations of motion to the leading order

in �f ⌘ 1� f ⌧ 1 and �a ⌘ 1� a ⌧ 1 as

�f 00 +
1

r
�f 0

� 2��f = O((�f)2, (�a)2), (3.12)

�a00 �
1

r
�a0 � 2�a = O((�f)2, (�a)2), (3.13)

from which it is clear that �f and �a behave as

�f / r�1/2 exp
h
�

p
2�r

i
, �a / r1/2 exp

h
�
p
2r
i
, (3.14)

– 9 –

T

• For , the last term vanishes and the EOMs reduce to β = 1

f′ + |n |
a − 1

r
f = 0 a′ + r

|n |
( f 2 − 1) = 0 BPS equations

T
|n |

= 2π But, CW case doesn't have this 
property due to the log-potential.
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Interaction of CW-ANO string



Two string system
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d
• put two strings orthogonal to  plane w/ distance .xy d

string core



Calculation of interaction potential
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• minimization is performed by the relaxation method 
(gradient flow):

∂τX = − δE
δX

 or X = Φ Ai

→ minimum-energy configuration w/ fixed d

τ EX

d

1. put two strings w/ distance d

2. fix distance  (pinning string cores)d

3. minimize the energy of the system

4. do 1~3 for various d
→ interaction potential as a function of d

: fictitious timeτ



Result
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Result: Energy barrier
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• Energy barrier appears in CW case for !!β > 1

repulsive
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TOPOLOGICAL DEFECTS
➤ Topological defects:  Ubiquitous objects in quantum field theory

- Cosmology:  cosmic strings and gravitational-wave emission

- Domain walls, Vortices (strings), Monopoles, ...

➤ Best-known example:  Abrikosov-Nielsen-Olesen vortex in superconductors

V(Φ) = m2 |Φ |2 + λ |Φ |4

➤ Vortices (strings) are interesting in e.g.

{{- Condensed matter systems:
magnetic flux tubes

quantum vorticies
 in superconductors

Φ : Cooper pair of electrons

ANO vortex
m2

A = 2g2v2
Φ

m2
Φ = 4λv2

Φ
⟨Φ⟩ = vΦ = − m2

2λ
m2 < 0 → →

attractive

large
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• Interaction potential as a function of  for different d β

E(
d)

d
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This repulsive behavior is easy to 
understand.

The gauge field is dominant at large  for .d β > 1

δf ≃ r−1/2 exp [− 2βr]
δa ≃ r1/2 exp [− 2r]
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Each vortex has the asymptotic 
behavior:

The gauge field mediates the repulsive force.



Reason?

17

0 1 2 3 4 5 6

11

12

13

14

0 1 2 3 4 5 6

11

12

13

14

15

0 1 2 3 4 5 6

12.45

12.50

12.55

12.60

12.65

0 1 2 3 4 5 6
13.3

13.4

13.5

13.6

13.7

13.8

13.9

14.0

On the other hand, this attractive 
behavior is difficult.

Numerical simulation saids  
increases w/

T(d)

T(d) ∝ d4

for small  independently of .d β

But it is difficult to understand analytically!

As shown later, the flatter structure of the 
potential seems crucial...



Other potentials

18

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

Figure 15. Potentials used in App. A: ṼAH (blue), ṼCW (red), ṼAH�cut with Ṽ0 = 0.5 (yellow),
ṼAH�36 (green), and ṼAH�48 (light blue).

the CW potential. We study the rescaled potentials
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8
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>>>>:

�

2
Ṽ0
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, (A.2)

ṼAH�48 =
�

8

⇣
|�̃|4 � 1

⌘
2

. (A.3)

We plot these potentials in Fig. 15. We calculate the d-dependence of the energy of the

two-string system with the same method as the main text. The result is shown in Fig. 16.

We see that all of these potentials develop an energy barrier around d ⇠ 2� 3.

B Explanation with one-string ansatz

In this appendix we study whether the superposition of the string configuration with wind-

ing number n = 1 can explain the behavior of the energy. In Fig. 17 we show the compari-

son between the energy calculated from the actual two-string configuration (blue) and that

from superposed one-string ansatz (red). For the latter, we first solve for the axisymmetric

configuration that minimizes the energy for n = 1, and then superpose two of such config-

urations at distance d. The superposition is done with � = �L⇥�R and Ai = Ai,L+Ai,R,

with the subscripts L and R are for the left and right strings, respectively. We see that the

superposed configurations explain the behavior of the blue lines at large distances, while

they fail at small distances.

– 30 –

36

cut

48

CW

QQ
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It seems that the energy barrier is universal for flatter 
potential than Quadratic-Quartic one.

 w/ Ṽcut Ṽ0 = 0.5

Ṽ36 Ṽ48
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• Formation of Abrikosov-like lattice in superconductor?

• Cosmic string in universe → reconnection? gravitational waves?

repulsive attractive

large d small d

might lead to non-trivial dynamics! (future work)

dilute → lattice-like structure 
dense → gather and merge!
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• We study vortex strings in U(1) gauged model w/ 
Coleman-Weinberg potential (called CW-ANO string).

• In contrast to the conventional ANO string, interaction between 
the two CW-ANO strings has the energy barrier for .β > 1

VCW(Φ) = β
2 (log |Φ |2

v2 − 1
2 ) |Φ |4
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 state can decay 
by quantum tunneling.
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• We can read off the stability of the vortex of  state.n = 2
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Vortex String
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U(1)

• Vortex string appears by SSB of U(1)

2D space

vortex

x

y

→ winding # = 1, vortex is topologically protected

ϕ

 is a map: Vac.( )  on -space 
w/ 1-to-1 correspondence
ϕ S1 → S1 xy



Vortex String

28

U(1)

• Vortex string appears by SSB of U(1)

3D space

y

z

x vortex string

→ winding # = 1, vortex is topologically protected

ϕ

 is a map: Vac.( )  on -space 
w/ 1-to-1 correspondence
ϕ S1 → S1 xy



Bardeen's argument
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• Conventional potential

V(Φ) = − m2 |Φ |2 + λ(Φ) |Φ |4

• quantum correction for m2

• In scale invariant scheme (such as ),  does not appear.MS Λ2

: UV cutoff scaleΛ

[Bardeen ’95]

δm2 = Λ2 + m2 log μ2

Λ2 + ⋯

• In the RG-running sense, this corresponds to a choice of "boundary 
conditions" at the cutoff scale .μ = Λ

If we adopt a boundary condition that the mass vanishes at 
, then  at all scale. → no naturalness problemμ = Λ m2 = 0

0
: renormalization scaleμ

classically scale invariance



Dimensional transmutation
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•  QCD: ∂αs

∂ log μ
= − b0

2π
αs

[Coleman-Weinberg ’73]

• Coleman-Weinberg mechanism (taking unitary gauge)

VCW(ϕ) = λ(ϕ)ϕ4

: -func coeffb = 1
16π2 (#g4 − #y4) β

αs(μ)−1 = αs(Λ)−1 + b0
2π

log μ
Λ

αs(ΛQCD)−1 = 0 ⇔ ΛQCD = Λ exp (− 2π
b0αs(Λ) )

Scale  is non-perturbatively generated.ΛQCD

λ(ϕ) = b log ϕ
Λ

V′ CW(ϕ) = 0 ⇔ ⟨ϕ⟩ = Λ exp [−(4 λ(Λ)
b

+ 1)]
Potential minimum  is non-perturbatively generated.⟨ϕ⟩
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Higher winding (con't)
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