Coleman-Weinberg Abrikosov-Nielsen-Olesen strings

Yu Hamada (KEK)

2205.04394 [hep-ph]
w/ M. Eto (Yamagata U.), R. Jinno (IFT), M. Nitta (Keio U.),
M. Yamada (Heidelberg U.)

Introduction

Topological Soliton

- Non-perturbative object in field theories
- monopole, vortex string, skyrmion, instanton, etc..

Topological Soliton

- Non-perturbative object in field theories
- monopole, vortex string, skyrmion, instanton, etc..

Topological Soliton

- Non-perturbative object in field theories
- monopole, vortex string, skyrmion, instanton, etc..
- It appears if vacuum has non-trivial topology.

trivial
(point)

non-trivial
(circle S^{1})

Topological Soliton

- Non-perturbative object in field theories
- monopole, vortex string, skyrmion, instanton, etc..
- It appears if vacuum has non-trivial topology.

trivial
(point)

non-trivial (circle S^{1})

Topological Soliton

- Non-perturbative object in field theories
- monopole, vortex string, skyrmion, instanton, etc..
- It appears if vacuum has non-trivial topology.

trivial (point)

non-trivial (circle S^{1})
- Vortex string appears in many systems:

- cosmic string, superconductor, neutron star, etc.

Interaction of Vortex Strings

The (most) important question:

interaction between vortex strings

two parallel vortex strings on 2D slice:

repulsive? attractive?
cf.) vortex-antivortex is always attractive

Eg.) Abrikosov-Nielsen-Olesen string

- 3+1 D Abelian-Higgs model

$$
\langle\phi\rangle=v \rightarrow O(1)
$$

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}+m^{2}|\phi|^{2}-\lambda|\phi|^{4}
$$

- vortex string w/ mag. flux \rightarrow called ANO string

Eg.) Abrikosov-Nielsen-Olesen string

- 3+1 D Abelian-Higgs model

$$
\langle\phi\rangle=v \rightarrow O(1)
$$

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}+m^{2}|\phi|^{2}-\lambda|\phi|^{4}
$$

- vortex string w/ mag. flux \rightarrow called ANO string

- Interaction force is repulsive or attractive depending on $\beta \equiv \frac{m_{\phi}^{2}}{m_{A}^{2}}$

Eg.) Abrikosov-Nielsen-Olesen string

- 3+1 D Abelian-Higgs model

$$
\langle\phi\rangle=v \rightarrow O(1)
$$

$$
\mathscr{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \phi\right|^{2}+m^{2}|\phi|^{2}-\lambda|\phi|^{4}
$$

- vortex string w/ mag. flux \rightarrow called ANO string

- Interaction force is repulsive or attractive depending on $\beta \equiv \frac{m_{\phi}^{2}}{m_{A}^{2}}$
(wikipedia)

Abrikosov lattice $\beta=1$ (BPS limit) stable superconductor
unstable supercond.
 ($U(1)$ restored)

Coleman-Weinberg potential

- Coleman-Weinberg potential w/o quadratic term:

$$
V_{\mathrm{CW}}(\Phi)=\lambda(\Phi)|\Phi|^{4} \quad \lambda(\Phi) \text { : running quartic coupling }
$$

- tree level $\rightarrow \lambda=$ const., scale invariant, no SSB
- quantum effects $\rightarrow \lambda(\Phi)=\lambda_{\mathrm{CW}}\left(\log \frac{|\Phi|^{2}}{v^{2}}-\frac{1}{2}\right)$, triggers SSB

$$
\rangle^{2}
$$

depend on underlying d.o.f.

- flatter structure around origin
- scale is induced by quantum effect
\rightarrow possible solution of hierarchy problem

Coleman-Weinberg potential

- Coleman-Weinberg potential w/o quadratic term:

$$
V_{\mathrm{CW}}(\Phi)=\lambda(\Phi)|\Phi|^{4} \quad \lambda(\Phi) \text { : running quartic coupling }
$$

Does this potential affect interaction of vortices? \rightarrow Yes!!

depend on underlying d.o.f.

Plan of talk

- Introduction \leftarrow Done
- CW-ANO string
- Interaction of CW-ANO string
- Summary

CW-ANO string

Model

- 3+1 D Abelian-Higgs model w/ two types of potential

$$
S=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \Phi\right|^{2}-V(\Phi)\right] \quad D_{\mu}=\partial_{\mu}+i g A_{\mu}
$$

- usual Quadratic-Quartic

$$
V(\Phi)=\lambda\left(|\Phi|^{2}-v^{2}\right)^{2}
$$

- Both models spontaneously break $U(1)$ sym and have vortex strings.
- Quadratic-Quartic \rightarrow conventional ANO string
- Coleman-Weinberg \rightarrow CW-ANO string! (main interest)

Model

- It is convenient to introduce rescaling: $A_{\mu} \rightarrow A_{\mu} / g \quad \Phi \rightarrow \Phi / g$

$$
S=\frac{1}{g^{2}} \int d^{4} x\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left|D_{\mu} \Phi\right|^{2}-V_{\beta}(\Phi)\right] \quad D_{\mu}=\partial_{\mu}+i A_{\mu}
$$

$$
\begin{equation*}
V_{\beta}(\Phi)=\frac{\beta}{2}\left(|\Phi|^{2}-1\right)^{2} \quad \text { (QQ) } \tag{CW}
\end{equation*}
$$

$$
V_{\beta}(\Phi)=\frac{\beta}{2}\left(\log |\Phi|^{2}-\frac{1}{2}\right)|\Phi|^{4}
$$

- Tension (=energy per unit length of string):

$$
\beta \equiv \frac{m_{\phi}^{2}}{m_{A}^{2}}=\frac{2 \lambda}{g^{2}}
$$

$$
T=\frac{d E}{d z}=\int d^{2} x\left[\frac{1}{2}\left(\partial_{i} A_{j}\right)^{2}+\left|D_{i} \Phi\right|^{2}+V_{\beta}(\Phi)\right]
$$

(assuming static and Coulomb gauge)

Axisymmetric string

- Field configuration:

$$
\Phi(x)=f(r) e^{i \theta} \quad A_{\theta}(x)=a(r)
$$

$\longrightarrow \quad$ winding \# $=1$ \& magnetic flux $\int d^{2} x B=2 \pi$

- classical EMs for $f(r)$ and $a(r)$:

$$
\begin{aligned}
& f^{\prime \prime}+\frac{1}{r} f^{\prime}-\frac{n^{2}(1-a)^{2}}{r^{2}} f-\frac{1}{2} \frac{\partial V}{\partial f}=0 \\
& a^{\prime \prime}-\frac{1}{r} a^{\prime}+2(1-a) f^{2}=0
\end{aligned}
$$

- boundary conditions:

$$
f(0)=a(0)=0 \quad f(\infty)=a(\infty)=1
$$

Axisymmetric string

- Field configuration:

$$
\Phi(x)=f(r) e^{i \theta} \quad A_{\theta}(x)=a(r)
$$

\longrightarrow winding \# $=1$ \& magnetic flux $\int d^{2} x B=2 \pi$

- no significant difference for the string solutions

Asymptotics of CW-ANO string

- Asymptotic behavior at $r \rightarrow \infty$ can be derived analytically.
- Since $f(r) \simeq 1$ and $a(r) \simeq 1$ at $r \rightarrow \infty$, it is useful to write down linearized EOM w.r.t. $\delta f \equiv 1-f$ and $\delta a \equiv 1-a$

$$
\begin{aligned}
& \delta f^{\prime \prime}+\frac{1}{r} \delta f^{\prime}-2 \beta \delta f=\mathcal{O}\left((\delta f)^{2},(\delta a)^{2}\right) \\
& \delta a^{\prime \prime}-\frac{1}{r} \delta a^{\prime}-2 \delta a=\mathcal{O}\left((\delta f)^{2},(\delta a)^{2}\right)
\end{aligned}
$$

Only curvature around vac is relevant.

- Asymptotic behavior doesn't depend on the potential shapes.

$$
\delta f \simeq r^{-1 / 2} \exp [-\sqrt{2 \beta} r] \quad \delta a \simeq r^{1 / 2} \exp [-\sqrt{2} r]
$$

Higher winding \#

- Field configuration:

$$
\Phi(x)=f(r) e^{i n \theta} \quad A_{\theta}(x)=n a(r)
$$

\longrightarrow winding \# $=n$ \& magnetic flux $\int d^{2} x B=2 \pi n$

- String tension for OO and CW cases:

- For QO case, all lines cross at $\beta=1$ (BPS state) while it doesn't happen for CW case (next slide).

BPS state

- In Quadratic Quartic case, the energy can be rewritten by completion of square:

$$
T=2 \pi|n|
$$

$$
+2 \pi \int_{0}^{\infty} \mathrm{d} r r\left[\left(f^{\prime}+|n| \frac{a-1}{r} f\right)^{2}+\frac{n^{2}}{2 r^{2}}\left(a^{\prime}+\frac{r}{|n|}\left(f^{2}-1\right)\right)^{2}+\frac{1}{2}(\beta-1)\left(f^{2}-1\right)^{2}\right]
$$

- For $\beta=1$, the last term vanishes and the EOMs reduce to

$$
f^{\prime}+|n| \frac{a-1}{r} f=0 \quad a^{\prime}+\frac{r}{|n|}\left(f^{2}-1\right)=0
$$

$$
\longrightarrow \quad \frac{T}{|n|}=2 \pi
$$

But, CW case doesn't have this property due to the log-potential.

Plan of talk

- Introduction \leftarrow Done
- CW-ANO string \leftarrow Done
- Interaction of CW-ANO string
- Summary

Interaction of CW-ANO string

Two string system

- put two strings orthogonal to $x y$ plane w/ distance d.

Calculation of interaction potential

1. put two strings w/ distance d
2. fix distance d (pinning string cores)

3. minimize the energy of the system
\rightarrow minimum-energy configuration w/ fixed d
4. do $1 \sim 3$ for various d
\rightarrow interaction potential as a function of d

- minimization is performed by the relaxation method (gradient flow):

$$
\begin{array}{ll}
\partial_{\tau} X=-\frac{\delta E}{\delta X} & X=\Phi \text { or } A_{i} \\
\tau: \text { fictitious time }
\end{array}
$$

Result

- Interaction potential as a function of d for different β

Quadratic-Quartic

Coleman-Weinberg

Result

- Interaction potential as a function of d for different β

Quadratic-Quartic

Coleman-Weinberg

Result: Energy barrier

- Interaction potential as a function of d for different β

Coleman-Weinberg

- Energy barrier appears in CW case for $\beta>1$!!

$$
\left\{\begin{array}{l}
\text { attractive } \\
\text { repulsive }
\end{array}\right\} \text { for }\left\{\begin{array}{l}
\text { short } \\
\text { large }
\end{array}\right\} \text { distance }
$$

Reason?

This repulsive behavior is easy to understand.

Each vortex has the asymptotic behavior:

$$
\left\{\begin{array}{l}
\delta f \simeq r^{-1 / 2} \exp [-\sqrt{2 \beta} r] \\
\delta a \simeq r^{1 / 2} \exp [-\sqrt{2} r]
\end{array}\right.
$$

The gauge field is dominant at large d for $\beta>1$.
\longrightarrow The gauge field mediates the repulsive force.

Reason?

On the other hand, this attractive behavior is difficult.

Numerical simulation saids $T(d)$ increases w/

$$
T(d) \propto d^{4}
$$

for small d independently of β.

But it is difficult to understand analytically!

As shown later, the flatter structure of the potential seems crucial...

Other potentials

$$
\begin{aligned}
0.8
\end{aligned}
$$

Other potentials

Discussion

- Formation of Abrikosov-like lattice in superconductor?

$$
\begin{aligned}
& \text { dilute } \rightarrow \text { lattice-like structure } \\
& \text { dense } \rightarrow \text { gather and merge! }
\end{aligned}
$$

- Cosmic string in universe \rightarrow reconnection? gravitational waves?

might lead to non-trivial dynamics! (future work)

Summary

- We study vortex strings in $U(1)$ gauged model w/ Coleman-Weinberg potential (called CW-ANO string).

$$
V_{\mathrm{CW}}(\Phi)=\frac{\beta}{2}\left(\log \frac{|\Phi|^{2}}{v^{2}}-\frac{1}{2}\right)|\Phi|^{4}
$$

- In contrast to the conventional ANO string, interaction between the two CW-ANO strings has the energy barrier for $\beta>1$.

Backup

Stability of $n=2$ state

- We can read off the stability of the vortex of $n=2$ state.

Stability of $n=2$ state

- We can read off the stability of the vortex of $n=2$ state.

Stability of $n=2$ state

- We can read off the stability of the vortex of $n=2$ state.

Vortex String

- Vortex string appears by SSB of $U(1)$

O(1)

2D space

ϕ is a map: $\operatorname{Vac} .\left(S^{1}\right) \rightarrow S^{1}$ on $x y$-space w/ 1-to-1 correspondence

\rightarrow winding \# = 1 , vortex is topologically protected

Vortex String

- Vortex string appears by SSB of $U(1)$

ϕ is a map: $\operatorname{Vac} .\left(S^{1}\right) \rightarrow S^{1}$ on $x y$-space w/ 1-to-1 correspondence

\rightarrow winding \# = 1, vortex is topologically protected

Bardeen's argument

- Conventional potential

$$
V(\Phi)=-m^{2}|\Phi|^{2}+\lambda(\Phi)|\Phi|^{4}
$$

- quantum correction for m^{2}

$$
\delta m^{2}=\Lambda_{0}^{2}+m^{2} \log \frac{\mu^{2}}{\Lambda^{2}}+\cdots \quad \begin{array}{ll}
\Lambda: \text { UV cutoff scale } \\
& \mu: \text { renormalization scale }
\end{array}
$$

- In scale invariant scheme (such as $\overline{M S}$), Λ^{2} does not appear.
- In the RG-running sense, this corresponds to a choice of "boundary conditions" at the cutoff scale $\mu=\Lambda$.
\longrightarrow If we adopt a boundary condition that the mass vanishes at $\mu=\Lambda$, then $m^{2}=0$ at all scale. \rightarrow no naturalness problem

Dimensional transmutation

- OCD: $\quad \alpha_{s}(\mu)^{-1}=\alpha_{s}(\Lambda)^{-1}+\frac{b_{0}}{2 \pi} \log \frac{\mu}{\Lambda}$

$$
\frac{\partial \alpha_{s}}{\partial \log \mu}=-\frac{b_{0}}{2 \pi} \alpha_{s}
$$

$$
\alpha_{s}\left(\Lambda_{Q C D}\right)^{-1}=0 \Leftrightarrow \Lambda_{Q C D}=\Lambda \exp \left(-\frac{2 \pi}{b_{0} \alpha_{s}(\Lambda)}\right)
$$

Scale $\Lambda_{Q C D}$ is non-perturbatively generated.

- Coleman-Weinberg mechanism (taking unitary gauge)

$$
\begin{aligned}
& V_{\mathrm{CW}}(\phi)=\lambda(\phi) \phi^{4} \\
& \lambda(\phi)=b \log \frac{\phi}{\Lambda} \quad b=\frac{1}{16 \pi^{2}}\left(\# g^{4}-\# y^{4}\right): \beta \text {-func coeff } \\
& V_{\mathrm{CW}}^{\prime}(\phi)=0 \Leftrightarrow\langle\phi\rangle=\Lambda \exp \left[-\left(4 \frac{\lambda(\Lambda)}{b}+1\right)\right]
\end{aligned}
$$

Potential minimum $\langle\phi\rangle$ is non-perturbatively generated.

Higher winding

Higher winding (con't)

Reason?

Relaxation

Energy decomposition

