A Global Analysis of Resonance-enhanced Light Scalar Dark Matter

Tobias Binder, Sreemanti Chakraborti, Shigeki Matsumoto and Yu Watanabe arXiv:2205.10149

1.Introduction

- Thermal dark matter($\mathcal{O}(1)$ MeV $\leq m_{DM} \leq \mathcal{O}(100)$ TeV) is an attractive DM candidate.
- Among them, WIMP($\mathcal{O}(1)$ GeV $\leq m_{DM} \leq \mathcal{O}(1)$ TeV) has intensively searched for, however not been founded.
 - \rightarrow Light thermal DM($m_{\rm DM} \lesssim O(1) {\rm GeV}$) is getting a more attention.
- σ of them at recommbination(freeze-out) is required to be less than(about) 1pb by CMB(relic abundance), so $\langle \sigma v \rangle$ should be **velocity-dependent** e.g. s-channel resonance. Futhermmore such candidate may **solve the** core-cusp problem.
- As an example of those models we studied the model including the **scalar** \bullet singlet DM and mediator.

2.Model

The Lagrangian is $\mathscr{L} = \mathscr{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} \chi)^2 - \frac{\mu_{\chi}^2}{2} \chi^2 - \frac{\lambda_{H\chi}}{2} |H|^2 \chi^2 - \frac{\lambda_{\chi}}{4!} \chi^4$ $+\frac{1}{2}(\partial_{\mu}\Phi)^{2}-\frac{\mu_{\Phi\chi}}{2}\Phi\chi^{2}-\frac{\lambda_{\Phi\chi}}{4}\Phi^{2}\chi^{2}-V(\Phi,H),$ $V(\Phi,H) = \mu_{\Phi H} \Phi |H|^2 + \frac{\lambda_{\Phi H}}{2} \Phi^2 |H|^2 + \mu_1^3 \Phi + \frac{\mu_{\Phi}^2}{2} \Phi^2 + \frac{\mu_3}{3!} \Phi^3 + \frac{\lambda_{\Phi}}{4!} \Phi^4,$ • We assume $m_{\phi} \simeq 2m_{\chi}$ (s-channel resonance). $\rightarrow \chi \searrow \phi$ SM Phenomenologically important parametars are ••• mass of mediator • m_{ϕ} • v_R ··· place of resonance ($\equiv 2(m_{\phi}/m_{\gamma}-2)^{1/2}$) • $\sin\theta$ ··· mixing angle between mediator and higgs boson • γ_{ϕ} ... invisible decay rate of mediator ($\Gamma(\phi \rightarrow \chi \chi) = \gamma_{\phi} m_{\phi} v_{DM}$) \downarrow

3.Favored parameter regions-

• Self-Scattering

• N-body simulations(astrophysical observations) prefer DM density profile with a cusp(core) near the galactic center(GC). This mismatch may be solved by self-scattering of DM, which thermalize DM near the GC.

- Self-scattering cross sections \bullet needed to solve core-cusp problem.
- Velosity-dependent selfscattering cross sections seem to fit the data well.

• CMB

 10^{-20}

Decoupling of thermal BSM particles after that of neutrino is forbidden lacksquaredue to the asymmetrical entropy injection to the primodal prasma.

• $\langle \sigma v \rangle$ at the recombination

••• velosity-independent part of the self-scattering cross section σ_0

4.Constraints from experiments-

• Collider

Since in the favored parameter space the **mediator decays invisibly**, invisible decays of SM particles e.g. Higgs boson, K and B meson gives the severe constraint.

Direct Detection

The scattering cross section between DM and a nucleon is \bullet constrained. **Migdal effect** plays an important role.

- The constraint from collider(gray dots), direct detection at present(grayshaded region) and that in the nerar future(green line).
- Since $\sin \theta$ is **suppressed**, the constraint is **weak**.

- $era(v \ll 10 \, km/s)$ should be small in order not to modify the anisotropy of CMB.
- S-channel resonance make $\langle \sigma v \rangle$ enhanced(suppressed) at freeze-out(recombination).

• Relic abundance

- We assume DM is produed by freeze-out mechanism.
- Since DM annihilations are enhanced through s-channel resonance, lacksquare $\sin \theta$ becomes small. \rightarrow Early Kinetic Decoupling occurs.
- This reduces the abundance, and makes $\sin\theta$ 6 times smaller. lacksquare

Indirect Detection

- Voyager can observe e^{\pm} produced by annihilation of DM.
- COMPTEL gives the most straingent constraint to the γ -ray produced by annihilation of DM.
- There are **large uncertainties** e.g. DM profile, hadronic fragmentation functions of sub-GeV DM.

- The constraint from Voyager(gray dots), COMPTEL (gray-shaded region) and γ -ray observations in the nerar future(green line).
- Several parameter sets survives at present and almost all of them will be constrained.

• The correration among v_R , γ_ϕ and σ_0 , $\sin heta$ and range of m_ϕ are decided by self-scattering, relic abundance and CMB, respectively.

5.Summary

- Light thermal DM with velocity-dependent $\langle \sigma v \rangle$ is an attractive DM candidate.
- As an example of those models we studied the model including **the scalar** \bullet singlet DM and mediator.
- A part of **attractive regions** in which DM can solve core-cusp problem, \bullet explain the relic density and overcome the constraint from CMB is still surviving from constraints at present concerning the uncertainties.
- Almost all of these will be **constrained** by **near future** MeV γ -ray observations e.g. GECCO and COSI.