LHCからの最新物理結果と Run 3の状況 (- 125 GeVビッグス測定を中心に -)

2023/08/30 基研研究会2023 廣瀬茂輝(筑波大)

■ 自己紹介

- 2011~2017年: Belle (II) @ 名古屋大 [〔] – BelleでR(D*)とP₇(D*)を測って博士論文・
 - 書いた <u>PRL 118, 211801 (2017)</u>
 - D論を書いているときに、「EWスケールに
 何かあるならまずヒッグスの理解?」

- 2017~2020年: ATLAS @ フライブルク大
 - ヒッグス粒子の物理を始めた… $H → \tau \tau$ で 第三世代から攻める
 - 現行ATLASシリコンストリップ検出器の運転、
 オフライン解析 <u>JINST 17 (2022) P01013</u>

FREIBURG

2020年~: ATLAS @ 筑波大

- 引き続きヒッグスの物理
- 高輝度LHC用シリコン検出器の開発・量産
 ATL-ITK-PROC-2023-001

■ 今日の内容

- 8. アップグレードは大詰めへ, 高輝度LHCに向けたATLAS検出器 KEK QUP 外川学
- 9. おわりに KEK素核研 花垣和則

■ LHC加速器

• 世界最大かつ最高エネルギーの陽子陽子衝突型加速器

- 周長27 km
- 重心系エネルギー13.6 TeV(設計は14 TeV)
- 瞬間ルミノシティー2.06×10³⁴ cm⁻²s⁻¹(最高記録)
- 40 MHzで陽子同士が衝突
- 4つの主要な実験: ATLAS, CMS, LHCb, ALICE

- ・ LHCにある2つの巨大汎用検出器
 - 構造はよく似ているが、細部に異なる特徴がある

	ATLAS	CMS	
検出器直径	25 m	15 m	
トロイド磁場	4.1 T (peak)	ない	
ソレノイド磁場	2 T	3.8 T	→ 低 $p_{\rm T}$
電磁カロリメータ	液体Ar + Pb(サンプリング型)	PbWO₄(全吸収型)	→ エネ
		· · · · · · · · · · · · · · · · · · ·	品い

高p_TではATLASが強い

- → 低p_TではCMSが強い
- ▶ エネルギー測定はCMSが

強い(が、高 $p_{\rm T}$ ではコンパラ)

■ データ収集の状況(ATLAS)

ATLAS Luminosity Public Plots

- Run 2: 140 fb⁻¹ → ヒッグス粒子780万個分
- Run 3: 66 fb⁻¹ (解析に使えるのは60 fb⁻¹弱) → ヒッグス粒子360万個分

<u>既に、ATLASだけで107ヒッグス粒子分のデータをもっている!</u>

■ Run 2までのヒッグス測定の状況

- 主要な生成、崩壊過程をすべて観測
 - すべてのチャンネルを含めた信号強度μ=1.05 ± 0.06
 - ウィークボソンや第3世代との結合定数の測定精度は<10%
 - 第2世代に入り始めている ($H \rightarrow \mu\mu$ はRun 3の重要トピックの1つ)
- CMSも同程度の精度で測定している

CMS, Nature 607, 60 (2022)

Run 3のデータ収集を進める一方、Run 2データでの大事な結果を出し続けている

9/39

生成、崩壊の精密測定

gg→H (WW

qq→Hqq (WW*)

ag → H (ZZ*)

 $aa \rightarrow Haa (77)$

VHilop (ZZ*

ffH (ZZ*

これらの実験結果をインプットに、EFTやBSMパラメータを探った

■ 2HDMとMSSMに対する制限 SATLAS

m_A < 600 GeVをほぼtanβに依存せずに棄却

12/39

Boosted Higgs bosons

- 高運動量な領域は、ヒッグスと結合するBSMの影響を受け やすい
- 高運動量な領域だと

- QCD由来のバックグラウンドが比較的マシ

- (SMと比較したいなら)SMの生成断面積が非常に小さい

...なので、崩壊分岐比が大きいH → bb, ττが有利

■ Boosted $H \rightarrow bb$ の再構成

 ヒッグスが高運動量になりすぎると、そこから出てくる崩壊物 が1つにまとまってしまう → 1つのジェットとして再構成

H

14/39

1つの巨大なジェットと

みなす

- 内部構造を表すO(100)個の 特徴量を使ってトレーニング
- CMSは、CNNを使った高性能な $H \rightarrow bb$ タガーを開発
 - ATLASは負けていたが、最近同等性能のものを開発

■ Boosted $H \rightarrow bb$ 解析

15/39

Boosted $H \rightarrow bb$ タガーを用いた $p_{\rm T}$ > 450 GeVの測定 $\mu_{\rm ggF}$ = 2.1 $^{+1.9}_{-1.7}$ (1.2 σ) (統計誤差が支配的)

- VBF生成をターゲットにした解析もしている (ggF+VBFでSMから2.6 σ のずれ?ふらつき?)

- 微分断面積測定: p_T = 1.2 TeVまで測定
 - ATLASと同程度の結果(CMSとビン定義が異なるので比較しにくい)

- $H \rightarrow \tau \tau \sigma$ 場合も、 $H \rightarrow bb$ 1つの巨大なジェットと のように1個の大きいジェット みなす として高運動量ヒッグスを >それぞれのサブジェットに 再構成できる 1 or 3本のトラック
 - それぞれのサブジェットに対して、通常のtau ID(もし1本のトラックが レプトンらしければレプトンID)をかける

efficiency

- *p*_T > 500 GeVで大きな効果
 - 通常のアルゴリズムだと効率が20% までおちる
 - Boosted $H \rightarrow \tau \tau$ 再構成アルゴリズム ではp_T = 1 TeVでも80%近い
 - ATLASでも同様のアルゴリズムがある
 - 両方のτがハドロニック崩壊した場合のみ ATLAS, JHEP 11 (2020) 163
 - レプトニック崩壊を含む場合の アルゴリズムは別途開発中

16/39

■ $H \rightarrow Z^* \gamma$ 探索

18/39

■ $H \rightarrow Z^* \gamma$ 探索: ATLAS+CMS combination

- ATLASとCMSのRun 2結果のcombinationを取った
 - 再解析ではなく、系統誤差の相関を考慮しつつ両実験の解析結果を 統計解釈したもの

 ATLAS and CMS, CMS-PAS-HIG-23-002

• $H \rightarrow Z^* \gamma$ のみに現れるBSMは考えにくい

- BR($H \rightarrow \gamma \gamma$)は既に7%の精度で測定されている(SMと無矛盾)

• Run 3での統計増加が重要なチャンネル

■ VBF WH過程の探索

20/39

- 2つのダイヤグラムの干渉から、λ_{WZ}の符号を決定可能
 SMでは負の干渉
 - もしλ_{WZ} < 0であれば正の干渉に → SMに比べて断面積が激増

結果

 $\mu = 2.6^{+2.6}_{-2.4}$ (stat) ± 3.8 (syst) (*μ* < 11.2 @ 95% C.L.)

- 有意な信号は観測されなかった $\rightarrow \lambda_{WZ} = -1 \epsilon 8 \sigma で排除$

 λ_{WZ} の符号を初めて決定

22/39

ヒッグス粒子の性質の測定

ATLAS, arXiv:2308.07216

- *H* → *γγ*によるヒッグス質量 測定
 - H → Z*Z → 4ℓとともに質量
 測定のゴールデンチャンネル
- Run 2全データによる解析:
 前回からの改善
 - γキャリブレーションが劇的に 良くなった

γのエネルギー分解能&キャリブレーション不定性の違う領域を
 分けて解析

 m_H = 125.22 ± 0.11 (stat) ± 0.09 (syst) GeV (0.14 (total))

参考: 36.1 fb⁻¹の結果: 124.93 ± 0.21 (stat) ± 0.34 (syst) GeV

• 0.11%の測定を達成!

- γキャリブレーション手法の改善で、系統誤差が大幅に減った

■ ヒッグス質量測定 States

ATLAS, arXiv:2308.04775

H → *Z*^{*}*Z* → 4ℓと合わせた統計解析

 m_H = 125.11 \pm 0.09 (stat) \pm 0.06 (syst) GeV

- 相対精度0.09%の精度!

- 系統誤差はほぼe/γのキャリブレーションに由来
 - 究極的には(統計が十分にあれば)4μが最も精度出るか

24/39

25/39

ダイヒッグス探索

■ ダイヒッグス探索の状況

タガーの性能の良さから、良い感度が出た

結果の比較

U.L. on $\sigma/\sigma_{ m SM}$	ATLAS	CMS		
Resolved	< 5.4 obs. (8.1 exp.)	< 3.9 obs. (7.8 exp.)		
Boosted		< 9.9 obs. (5.1 exp.)		
Combined	< 5.4 obs. (8.1 exp.)	< 6.4 obs. (4.0 exp.)		

– ブーストしたH → bbを入れることで感度を伸ばせる

- κ_{λ} への制限が必ずしも改善していないのは、BDTの使い方を変えた 影響で κ_{λ} に対するアクセプタンスが変わったため

Run 3 and beyond

- 昨年7月からLHC Run 3が始まった Target:~300 fb⁻¹
 - 重心系エネルギー13.6 TeV (Run 2から0.6 TeVだけ上がった)
 - ピークルミノシティ<2×10³⁴ cm⁻²s⁻¹
 → レベリングをして積分lumi.を稼ぐ
- 2029~: HL-LHC Target: ~4000 fb⁻¹
 - 重心系エネルギー14 TeV
 - ピークルミノシティ7.5 × 10³⁴ cm⁻²s⁻¹

実はまだLHC全期間の5%程度しかデータを取っていない (ハドロンコライダーでは、統計量の増加=xが大きいパートン同士の衝突事象数の増加)

■ ATLASアップグレード: Phase-1

• Run 2からRun 3の間(2019-2021)に行ったアップグレード

30/39

• 新しいハードウェアは無事すべてRun 3開始前に実装完了

■ Phase-1アップグレード

- カロリメータ&ミューオントリガーを刷新
- 日本グループも大活躍
 - カロリメータのボード総取り換え(1524枚!)
 - 新しいミューオントリガーの構築、コミッショニングなど

31/39

■ Run 3の状況

- ・ LHCのinner triplet破損 詳細は<u>CERN News 11 Aug 2023</u>
 - 7/17の電圧変動でクエンチした際、ヘリウムが 断熱真空に漏れた(外気には漏出していない)
 - Qマグネット間をつなぐベローズ部に2 mmの破断
 を発見、修理
 - 現在、低温に戻す作業中(4週間かかる)
 → 合計6週間のロス

• Run 3での結果も出始めている

- まずはいろいろな過程の13.6 TeVでの断面積測定から

 今年末までに約100 fb⁻¹ = Run 2(140 fb⁻¹)と大体コンパラ 60 fb⁻¹ →来年からが本番!

> GNNベースのb-tagやDeepSetを使ったTau IDの開発が 進んでいるので、Run 2再解析+Run 3で出始めるか…?

34/39

■ ATLASアップグレード: Phase-2

Run 3の後(2026-2028)に行うアップグレード

<u>ミューオン検出器</u>

- バレル部の「穴」を埋めるように新しい RPCを配置 → アクセプタンス(|η| <
 2.7)を75% → 95%に改善
- ミューオントリガー回路を刷新
 - 各コンポーネントの基礎開発から 量産のフェーズに入りつつある

High Granularity Timing Detector

- エンドキャップ部に時間分解能を 持ったシリコン検出器(LGAD)を 導入
- 飛跡のタイミングを*σ_t*~30 psで 捕え、前方飛跡の衝突点同定 精度を上げる

シリコン検出器(ITk)

- シリコン+ガスだったのを、総シ リコン製のものに置換
- |η| < 2.5から|η| < 4.0までアク セプタンスを拡大 → 前方ジェッ トに飛跡を付随させ、vertexの 特定を可能に

■ HL-LHCに向けて

・ いよいよ量産の準備が進行中!

个KEK富士実験棟クリーンルームでの作業 REPIC館山工場のITkピクセルモジュール量産現場→

36/39

■ HL-LHCでのヒッグス結合測定

- Run 2の解析結果をもとに、統計・系統誤差をスケールしてHL-LHCでの測定精度を見積もり
 - (多くの場合)フルシミュレーションではない → 新しい検出器の性能を 考慮していない
 - 系統誤差の取り扱いには仮定が入っている
 - Snowmass 2022のため、昨年ATLAS、CMSともにアップデートがあった

■ HL-LHCでの第二世代結合の測定

37/39

- トラッカーの分解能向上とミューオン検出器のアクセプタンス向上の 効果を考慮した見積もり
- Hcc結合の直接探索(Snowmass 2022で初めて入った)

	ATLAS	CMS	
κ_{μ}	7.7%	3.5% (YR18では5.0%)	→ ATLASの結果はYR18から
$ \kappa_c $	< 3.0	< 3.4	アップデートされていない

■ HL-LHCでのself coupling測定

ATLAS	2018 [1]	Latest (2022)		CNS	2018 [1]	Latest (2022)
$HH \rightarrow b\overline{b}b\overline{b}$	0.61σ	1.0σ [4]	HE	$H \to b \overline{b} b \overline{b}$	0.95σ	
$HH \rightarrow b \overline{b} \tau \tau$	2.1σ	2.8 σ[2]	H	$H \to b \overline{b} \tau \tau$	1.4σ	
$HH \rightarrow b \overline{b} \gamma \gamma$	2.0σ	2.2σ[3]	HH	$H \to b \overline{b} \gamma \gamma$	1.8σ	2.16 σ [2]
All combined	3.0σ	3.4 σ [4]	HH	$\rightarrow b\overline{b}WW^*$	0.56σ	
		HH	$\rightarrow b \overline{b} Z Z^*$	0.37σ		
$0.5 < \kappa_{\lambda} < 1$ (68% C.L.)	6 800	sted bbを取り入れ ざらに伸びる?	All	combined	2.6σ	
[1] <u>ATL-PHYS-PUB-2018-053</u> [2] <u>ATL-PHYS-PUB-2021-044</u> [3] <u>ATL-PHYS-PUB-2022-001</u> [4] <u>ATL-PHYS-PUB-2022-053</u>			0.35 < κ _λ (68% C.I	< 1.9)	[1] <u>CMS-FTR-18-019</u> [2] <u>CMS-FTR-21-004</u>	

- YR18では、ATLAS+CMSで4.0 σ (0.52 < κ_{λ} < 1.5)と予想されていた
- その後、Run 2解析で様々な改善があった
 - 最新の見積もりでは、YR18に比べて10%以上の改善(ATLAS)

<u>ATLAS+CMSでHHの観測は、HL-LHCの再重要課題の1つ</u>

■ まとめ

- LHC-ATLAS実験では(CMSも)、これまでに10⁷ヒッグス粒子に 相当するデータを得た
 - Run 2において、主要な生成・崩壊過程をすべて観測
 - 「ヒッグスを精密測定」する時代に
- Run2、Run 3のデータを使った物理結果も続々と公表中
 - LHCP、Lepton Photon、EPSなどの春~夏の国際会議で、ヒッグス関係の新結果がたくさん出た
- 実験の状況
 - Run 3: 加速器のトラブルなどはありつつ、順調にデータ収集中
 - HL-LHC: アップグレードのための検出器や読み出しボードの量産が 始まりつつあるところ
 - → まずはこれが成功しなきやHL-LHCで意味のある研究はできない! (検出器をつくってスイッチを押せばデータがじゃんじゃんでてくるわけではない)

Run 3~HL-LHCで、ヒッグスに対する理解が加速的に進展するはず (Run 3結果も本格的に出始めるはずですので、ご期待ください)