量子計算の素粒子物理学への応用について

Masazumi Honda

（本多正純）

iTHEMS

© CGPQI

Center for Gravitational Physics and Quantum Information
Yukawa Institute for Theoretical Physics，Kyoto University

PRESIII
 SAKIGAKE

Quantum computer sounds growing well...

Article

Evidence for the utility of quantum computing before fault tolerance

https://doi.org/10.1038/s41586-023-06096-3

Received: 24 February 2023
Accepted: 18 April 2023
Published online: 14 June 2023

Youngseok Kim ${ }^{1,6 \otimes}$, Andrew Eddins ${ }^{2,6 \boxtimes}$, Sajant Anand ${ }^{3}$, Ken Xuan Wei', Ewout van den Berg ${ }^{1}$, Sami Rosenblatt ${ }^{1}$, Hasan Nayfeh ${ }^{1}$, Yantao Wu ${ }^{3,4}$, Michael Zaletel ${ }^{3,5}$, Kristan Temme ${ }^{1}$ \& Abhinav Kandala ${ }^{1 \times 1}$

Quantum computer sounds growing well...

Article

Evidence for the utility of quantum computing before fault tolerance

How can we use it for us?

Applications mentioned in media ?

etc...

In my mind...

I

etc...

What is meant by

"Application of Quantum Computation to High Energy Physics" ??

What is meant by

"Application of Quantum Computation to High Energy Physics" ??

In general, it is
to replace ${ }_{\text {a } a \text { part of) }}$ computations by quantum algorithm
Therefore,
physical meaning of qubits in quantum computer depends on contexts

What is meant by

"Application of Quantum Computation to High Energy Physics" ??

In general, it is
to replace ${ }_{\text {ap part of }}$ computations by quantum algorithm
Therefore,
physical meaning of qubits in quantum computer depends on contexts

Here,

> qubits = states in quantum system

Feynman as a keynote speaker at a conference in MIT (1981):

"Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem because it doesn't look so easy."

This talk:
Application of Quantum Computation to

Quantum Field Theory (QFT)

- Generic motivation:
simply would like to use powerful computers?
- Specific motivation:

Quantum computation is suitable for operator formalism
\longrightarrow Liberation from infamous sign problem in Monte Carlo?

Sign problem in Monte Carlo simulation

Conventional approach to simulate QFT: (this point will be e elaborated tomorrow)
(1) Discretize Euclidean spacetime by lattice:

\& make path integral finite dimensional:

$$
\int D \phi \mathcal{O}(\phi) e^{-S[\phi]} \longleftrightarrow \int d \phi \mathcal{O}(\phi) e^{-S(\phi)}
$$

(2)

Sign problem in Monte Carlo simulation

Conventional approach to simulate QFT:
(this point will be elaborated tomorrow)
(1) Discretize Euclidean spacetime by lattice:

\& make path integral finite dimensional:

$$
\int D \phi \mathcal{O}(\phi) e^{-S[\phi]} \longleftrightarrow \int d \phi \mathcal{O}(\phi) e^{-S(\phi)}
$$

(2) Numerically Evaluate it by (Markov Chain) Monte Carlo method regarding the Boltzmann factor as a probability:

$$
\langle\mathcal{O}(\phi)\rangle \simeq \frac{1}{\sharp(\text { samples })} \sum_{i \in \text { samples }} \mathcal{O}\left(\phi_{i}\right)
$$

Sign problem in Monte Carlo simulation (Cont'd)

 Markov Chain Monte Carlo:$$
\int d \phi \mathcal{O}(\phi) \frac{e^{-S(\phi)}}{\text { probability }}
$$

problematic when Boltzmann factor isn't $\mathbf{R}_{\geqq 0}$ \& is highly oscillating Examples w/ sign problem:

- topological term - complex action
- chemical potential __ indefinite sign of fermion determinant
- real time \qquad " $e^{i S(\phi) "}$ much worse

Sign problem in Monte Carlo simulation (Cont'd)

 Markov Chain Monte Carlo:$$
\int d \phi \mathcal{O}(\phi) \overbrace{\text { probability }}^{e^{-S(\phi)}}
$$

problematic when Boltzmann factor isn't $\mathrm{R}_{\geqq 0}$ \& is highly oscillating
Examples w/ sign problem:

- topological term - complex action
- chemical potential __ indefinite sign of fermion determinant
- real time \qquad " $e^{i S(\phi) "}$ much worse

In operator formalism,
sign problem is absent from the beginning

Cost of operator formalism

We have to play with huge vector space
since QFT typically has $\underset{\text { regularization needed! }}{\infty \text {-dim. }}$ Hilbert space

Technically, computers have to
memorize huge vector \& multiply huge matrices

Cost of operator formalism

We have to play with huge vector space
since QFT typically has $\underset{\text { regularization needed! }}{\infty \text {-dim. }}$ Hilbert space

Technically, computers have to
memorize huge vector $\&$ multiply huge matrices

Quantum computers do this job?

Contents

0. Introduction

1. Quantum computation

2. Ising model
3. Schwinger model
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya'20]
[MH-Itou-Kikuchi-Nagano-Okuda '21]
[MH-Itou-Kikuchi-Tanizaki '21]
4. Future prospects

Qubit = Quantum Bit

Qubit = Quantum system w/ 2 dim. Hilbert space Basis:

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1}
$$

"computational basis"
Generic state:

$$
\alpha|0\rangle+\beta|1\rangle \quad \text { w/ } \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Ex.) Spin $1 / 2$ system:

$$
|0\rangle=|\uparrow\rangle, \quad|1\rangle=|\downarrow\rangle
$$

(We don't need to mind how it is realized as "users")

Multiple qubits

$\underline{2}$ qubits -4 dim. Hilbert space:

$$
\begin{gathered}
|\psi\rangle=\sum_{i, j=0,1} c_{i j}|i j\rangle, \quad|i j\rangle \equiv|i\rangle \otimes|j\rangle \\
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

N qubits -2^{N} dim. Hilbert space:

$$
\begin{aligned}
& |\psi\rangle=\sum_{i_{1}, \cdots i_{N}=0,1} c_{i_{1} \cdots i_{N}}\left|i_{1} \cdots i_{N}\right\rangle, \\
& \left|i_{1} i_{2} \cdots i_{N}\right\rangle \equiv\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
\end{aligned}
$$

Rule of the game

Do something interesting by a combination of

1. action of Unitary operators:

\&
2.

Rule of the game

Do something interesting by a combination of

1. action of Unitary operators:

$$
|\psi\rangle \quad U \quad U|\psi\rangle
$$

\&

2. measurements:

$$
=\alpha|0\rangle+\beta|1\rangle=\begin{aligned}
& |\psi\rangle \\
& \left\{\begin{array}{l}
c=0 \mathrm{w} / \text { probability }|\alpha|^{2} \\
c=1 \mathrm{w} / \text { probability }|\beta|^{2}
\end{array}\right.
\end{aligned}
$$

Unitary gates used here

\underline{X}, Y, Z gates: (just Pauli matrices)

$$
\begin{gathered}
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
X \text { is "NOT": } X|0\rangle=|1\rangle, X|1\rangle=|0\rangle
\end{gathered}
$$

$\underline{R}_{X}, R_{Y}, R_{Z}$ gates:

$$
R_{X}(\theta)=e^{-\frac{i \theta}{2} X}, \quad R_{Y}(\theta)=e^{-\frac{i \theta}{2} Y}, \quad R_{Z}(\theta)=e^{-\frac{i \theta}{2} Z}
$$

Controlled X (NOT) gate:

$$
\begin{cases}C X|00\rangle=|00\rangle, & C X|01\rangle=|01\rangle \\ C X|10\rangle=|11\rangle, & C X|11\rangle=|10\rangle\end{cases}
$$

Errors in classical computers

Computer interacts w/ environment \Rightarrow error/noise

Errors in classical computers

Computer interacts w/ environment \square error/noise

Suppose we send a bit but have "error" in probability p
A simple way to correct errors:

Errors in classical computers

Computer interacts w/ environment \square error/noise

Suppose we send a bit but have "error" in probability p
A simple way to correct errors:
(1) Duplicate the bit (encoding): $0 \rightarrow 000, \quad 1 \rightarrow 111$
(2) Error detection \& correction by "majority voting":

$$
\begin{aligned}
& 001 \rightarrow 000, \quad 011 \rightarrow 111, \\
\longmapsto & \text { etc... } \\
P_{\text {failed }}=3 p^{2}(1-p)+p^{3} & \text { (improved if } p<1 / 2)
\end{aligned}
$$

Errors in quantum computers

(we'll come back to this point tomorrow)

Computer interacts w/ environment \square error/noise

Unknown unitary operators are multiplied:

(in addition to decoherence \& measurement errors)

$$
|\psi\rangle \quad \begin{array}{ll}
\substack{\text { error! } \\
-\frac{w}{m}!} & U|\psi\rangle \\
& \text { not only bit flip! }
\end{array}
$$

We need to include "quantum error corrections" but it seems to require a huge number of qubits
\sim major obstruction of the development

(Classical) simulator for Quantum computer

Quantum computation \subset Linear algebra
The same algorithm can be implemented in classical computer but w/o speed-up (1 quantum step = many classical steps)

Simulator $=$ Tool to simulate quantum computer by classical computer

- Doesn't have errors \rightarrow ideal answers
(More precisely, classical computer also has errors but its error correction is established)
- The same code can be run in quantum computer w/ speed-up

Useful to test algorithm \& estimate computational resources

Contents

0. Introduction

1. Quantum computation

2. Ising model
3. Schwinger model
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya'20]
[MH-Itou-Kikuchi-Nagano-Okuda '21]
[MH-Itou-Kikuchi-Tanizaki '21]
4. Future prospects

The $(1+1) \mathrm{d}$ transverse Ising model

Hamiltonian (w/ open b.c.):
$\left(X_{n}, Y_{n}, Z_{n}: \sigma_{1,2,3}\right.$ at site $\left.n\right)$

$$
\widehat{H}=-J \sum_{n=1}^{N-1} Z_{n} Z_{n+1}-h \sum_{n=1}^{N} X_{n}
$$

Let's construct the time evolution op. $e^{-i \hat{H} t}$

Time evolution operator

Time evolution of any state is studied by acting the operator

$$
e^{-i \widehat{H} t}=e^{-i\left(H_{X}+H_{Z Z}\right) t}
$$

where

$$
H_{X}=-h\left(X_{1}+X_{2}\right), \quad H_{Z Z}=-J Z_{1} Z_{2}
$$

How do we express this in terms of elementary gates?
(such as $X, Y, Z, R_{X, Y, Z}, C X$ etc...)

Time evolution operator

Time evolution of any state is studied by acting the operator

$$
e^{-i \hat{H} t}=e^{-i\left(H_{X}+H_{Z Z}\right) t}
$$

where

$$
H_{X}=-h\left(X_{1}+X_{2}\right), \quad H_{Z Z}=-J Z_{1} Z_{2}
$$

How do we express this in terms of elementary gates?
(such as $X, Y, Z, R_{X, Y, Z}, C X$ etc...)
Step 1: Suzuki-Trotter decomposition:

$$
\begin{aligned}
e^{-i \widehat{H} t} & =\left(e^{-i \widehat{H} \frac{t}{M}}\right)^{M} \quad \text { (M: large positive integ } \\
& \simeq\left(e^{-i H_{X} \frac{t}{M}} e^{-i H_{Z Z} \frac{t}{M}}\right)^{M}+\mathcal{O}(1 / M)
\end{aligned}
$$

Time evolution operator (Cont'd)

$$
e^{-i \widehat{H} t} \simeq\left(e^{-i H_{X} \frac{t}{M}} e^{-i H_{Z Z} \frac{t}{M}}\right)^{M}
$$

The 1st one is trivial:

$$
e^{-i H_{X} \frac{t}{M}}=e^{-i \frac{h t}{M} X_{2}} e^{-i \frac{h t}{M} X_{1}}=R_{X}^{(2)}\left(\frac{2 h t}{M}\right) R_{X}^{(1)}\left(\frac{2 h t}{M}\right)
$$

Time evolution operator (Cont'd)

$$
e^{-i \widehat{H} t} \simeq\left(e^{-i H_{X} \frac{t}{M}} e^{-i H_{Z Z} \frac{t}{M}}\right)^{M}
$$

The 1st one is trivial:

$$
e^{-i H_{X} \frac{t}{M}}=e^{-i \frac{h t}{M} X_{2}} e^{-i \frac{h t}{M} X_{1}}=R_{X}^{(2)}\left(\frac{2 h t}{M}\right) R_{X}^{(1)}\left(\frac{2 h t}{M}\right)
$$

The 2 nd one is nontrivial:

$$
e^{-i H_{Z Z} \frac{t}{M}}=e^{-i \frac{J t}{M} Z_{1} Z_{2}}=\cos \frac{J t}{M}-i Z_{1} Z_{2} \sin \frac{J t}{M}
$$

One can show

$$
e^{-i \frac{J t}{M} Z_{1} Z_{2}}=C X R_{Z}^{(2)}\left(\frac{2 J t}{M}\right) C X
$$

"Computational cost" for large size system

$$
\delta t=\frac{t}{M} \ll 1
$$

Classical computer

multiplications of matrices to vectors $\mathrm{w} /$ sizes $=2^{N}$ exponentially large steps

Quantum computer

- time evolution $=\mathcal{O}(N M)$ experimental operations

Feynman as a keynote speaker at a conference in MIT (1981):

"Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem because it doesn't look so easy."

Contents

0. Introduction

1. Quantum computation

2. Ising model

3. Schwinger model
[MH-Itou-Kikuchi-Nagano-Okuda '21]
[MH-Itou-Kikuchi-Tanizaki '21]

4. Future prospects

"Regularization" of Hilbert space

Hilbert space of QFT is typically ∞ dimensional
\longrightarrow Make it finite dimensional!

- Fermion is easiest (up to doubling problem)
- Putting on spatial lattice, Hilbert sp. is finite dimensional
- scalar
__ Hilbert sp. at each site is ∞ dimensional (need truncation or additional regularization)
- gauge field (w / kinetic term)
- no physical d.o.f. in $0+1 \mathrm{D} / 1+1 \mathrm{D}$ (w/ open bdy. condition)
$-\infty$ dimensional Hilbert sp. in higher dimensions

Let's consider charge- q Schwinger model:

$$
L=\frac{1}{2 g^{2}} F_{01}^{2}+\frac{\theta_{0}}{2 \pi} F_{01}+\bar{\psi} \mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\mathrm{i}(q) A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

Field content:
$\left\{\begin{array}{l}\cdot U(1) \text { gauge field } \\ \cdot \text { charge-q Dirac fermion }\end{array}\right.$
Let's explore
screening vs confinement problem

Screening versus Confinement

Let's consider
potential between 2 heavy charged particles

Classical picture:

$$
V(x)=\frac{q_{p}^{2} g^{2}}{2} x ? \quad \begin{gathered}
\text { Coulomb law in } 7+7 d \\
\text { confinement }
\end{gathered}
$$

too naive in the presence of dynamical fermions

Expectations from previous analyzes

Potential between probe charges $\pm q_{p}$ has been analytically computed
[Iso-Murayama '88, Gross-Klebanov-Matytsin-Smilga '95]

- massless case:

$$
V(x)=\frac{q_{p}^{2} g^{2}}{2 \mu}\left(1-e^{-q \mu x}\right) \quad \text { screening }
$$

$$
\mu \equiv g / \sqrt{\pi}
$$

- massive case:

Expectations from previous analyzes

Potential between probe charges $\pm q_{p}$ has been analytically computed
[Iso-Murayama '88, Gross-Klebanov-Matytsin-Smilga '95]

- massless case:

$$
V(x)=\frac{q_{p}^{2} g^{2}}{2 \mu}\left(1-e^{-q \mu x}\right) \quad \text { screening }
$$

- massive case:

$$
V(x) \sim m q \Sigma\left(\cos \left(\frac{\theta+2 \pi q_{p}}{q}\right)-\cos \left(\frac{\theta}{q}\right)\right) x \quad(\mathrm{~m} \ll g,|x| \gg 1 / g)
$$

$=$ Const. for $q_{p} / q=Z \quad$ screening
$\propto x$ for $\mathrm{q}_{\mathrm{p}} / \mathrm{q} \neq Z$ confinement? but sometimes negative slope!

That is, as changing the parameters...

Let's explore this aspect by quantum simulation!

Wब！MARKET

DETAIL ァイテムの洋䚀

DESIGNED BY

Charge-q Schwinger model

Continuum:

$$
L=\frac{1}{2 g^{2}} F_{01}^{2}+\frac{\theta_{0}}{2 \pi} F_{01}+\bar{\psi} \mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\mathrm{i} q A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

Taking temporal gauge $A_{0}=0, \quad\left(\Pi\right.$: conjugate momentum of $\left.A_{1}\right)$

$$
H(x)=\frac{g^{2}}{2}\left(\Pi-\frac{\theta_{0}}{2 \pi}\right)^{2}-\bar{\psi} \mathrm{i} \gamma^{1}\left(\partial_{1}+\mathrm{i} q A_{1}\right) \psi+m \bar{\psi} \psi
$$

Physical states are constrained by Gauss law:

$$
0=-\partial_{1} \Pi-q g \bar{\psi} \gamma^{0} \psi
$$

Put the theory on lattice

- Fermion (on site):
"Staggered fermion" [Susskind, Kogut-Susskind'75]

$$
\frac{\chi_{n}}{\frac{a^{1 / 2}}{\text { lattice spacing }}} \longleftrightarrow \psi(x)=\left[\begin{array}{l}
\psi_{u} \\
\psi_{d}
\end{array}\right] \text { odd site }
$$

- Gauge field (on link):

$$
\phi_{n} \leftrightarrow-a g A^{1}(x), \quad L_{n} \leftrightarrow-\frac{\Pi(x)}{g}
$$

Lattice theory w/ staggered fermion

Hamiltonian:

$$
\begin{array}{r}
H=J \sum_{n=0}^{N-2}\left(L_{n}+\frac{\theta_{0}}{2 \pi}\right)^{2}-\mathrm{i} w \sum_{n=0}^{N-2}\left[\chi_{n}^{\dagger}\left(U_{n}\right)^{q} \chi_{n+1}-\text { h.c. }\right]+m \sum_{n=0}^{N-1}(-1)^{n} \chi_{n}^{\dagger} \chi_{n} \\
\\
\left(w=\frac{1}{2 a}, J=\frac{g^{2} a}{2}\right)
\end{array}
$$

Commutation relation:

$$
\left[L_{n}, U_{m}\right]=U_{m} \delta_{n m}, \quad\left\{\chi_{n}, \chi_{m}^{\dagger}\right\}=\delta_{n m}
$$

Gauss law:

$$
L_{n}-L_{n-1}=q\left[\chi_{n}^{\dagger} \chi_{n}-\frac{1-(-1)^{n}}{2}\right]
$$

Eliminate gauge d.o.f.

1. Take open b.c. \& solve Gauss law:

$$
L_{n}=L_{-1}+q \sum_{j=1}^{n}\left(\chi_{j}^{\dagger} \chi_{j}-\frac{1-(-1)^{j}}{2}\right) \quad \mathrm{w} / L_{-1}=0
$$

2. Take the gauge $U_{n}=1$

Then,

$$
\begin{aligned}
H= & -\mathrm{i} w \sum_{n=1}^{N-1}\left[\chi_{n}^{\dagger} \chi_{n+1}-\text { h.c. }\right]+m \sum_{n=1}^{N}(-1)^{n} \chi_{n}^{\dagger} \chi_{n} \\
& +J \sum_{n=1}^{N}\left[\frac{\theta_{0}}{2 \pi}+q \sum_{j=1}^{n}\left(\chi_{j}^{\dagger} \chi_{j}-\frac{1-(-1)^{j}}{2}\right)\right]^{2} .
\end{aligned}
$$

This acts on finite dimensional Hilbert space

Insertion of the probe charges

(1) Introduce the probe charges $\pm q_{p}$:

$$
\begin{gathered}
e^{i q_{p} \int_{C} A} \\
\mid \| \\
e^{i q_{p} \int_{S, \partial S=C} F}
\end{gathered}
$$

local θ-term w/ $\theta=2 \pi q_{p}!!$
(2) Include it to the action \& switch to Hamilton formalism

$$
\theta=\theta_{0} \quad+q_{p} \quad \theta=\theta_{0}+2 \pi q_{p} \quad-q_{p} \quad \theta=\theta_{0}
$$

(3) Compute the ground state energy (in the presence of the probes)

Going to spin system

$$
\left\{\chi_{n}^{\dagger}, \chi_{m}\right\}=\delta_{m n}, \quad\left\{\chi_{n}, \chi_{m}\right\}=0
$$

This is satisfied by the operator:
"Jordan-Wigner transformation"

$$
\chi_{n}=\frac{X_{n}-\mathrm{i} Y_{n}}{2}\left(\prod_{i=1}^{n-1}-\mathrm{i} Z_{i}\right) \quad\left(X_{n}, Y_{n}, Z_{n}: \sigma_{1,2,3} \text { at site } n\right)
$$

Going to spin system

$$
\left\{\chi_{n}^{\dagger}, \chi_{m}\right\}=\delta_{m n},\left\{\chi_{n}, \chi_{m}\right\}=0
$$

This is satisfied by the operator:
"Jordan-Wigner transformation"

$$
\chi_{n}=\frac{X_{n}-\mathrm{i} Y_{n}}{2}\left(\prod_{i=1}^{n-1}-\mathrm{i} Z_{i}\right) \quad\left(X_{n}, Y_{n}, Z_{n}: \sigma_{1,2,3}^{\text {[Jordan-Wigner'28] }} \text { at site } n\right)
$$

Now the system is purely a spin system:

$$
H=-\mathrm{i} w \sum_{n=1}^{N-1}\left[\chi_{n}^{\dagger} \chi_{n+1}-\text { h.c. }\right]+m \sum_{n=1}^{N}(-1)^{n} \chi_{n}^{\dagger} \chi_{n}+J \sum_{n=1}^{N}\left[\frac{\vartheta_{n}}{2 \pi}+q \sum_{j=1}^{n}\left(\chi_{j}^{\dagger} \chi_{j}-\frac{1-(-1)^{j}}{2}\right)\right]^{2}
$$

\downarrow

$$
H=J \sum_{n=0}^{N-2}\left[q \sum_{i=0}^{n} \frac{Z_{i}+(-1)^{i}}{2}+\frac{\vartheta_{n}}{2 \pi}\right]^{2}+\frac{w}{2} \sum_{n=0}^{N-2}\left[X_{n} X_{n+1}+Y_{n} Y_{n+1}\right]+\frac{m}{2} \sum_{n=0}^{N-1}(-1)^{n} Z_{n}
$$

Qubit description of the Schwinger model !!

Atmosphere (?) of using quantum computer...

Suppose we'd like to measure the state: $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
Screenshot of IBM Quantum Experience:

Atmosphere (?) of using quantum computer...

Suppose we'd like to measure the state: $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
Screenshot of IBM Quantum Experience:

Output of 1024 times measurements ("shots") :

Idea: express physical quantities in terms of "probabilities" \& measure the "probabilities"

Constructing vacuum (ground state)

${ }^{\exists}$ various quantum algorithms to construct vacuum:

- adiabatic state preparation
- algorithms based on variational method
- imaginary time evolution

Here, let's apply
adiabatic state preparation

Adiabatic state preparation of vacuum

Step 1: Choose an initial Hamiltonian H_{0} of a simple system whose ground state $\left|\mathrm{vac}_{0}\right\rangle$ is known and unique

Step 2:

Step 3:

Adiabatic state preparation of vacuum

Step 1: Choose an initial Hamiltonian H_{0} of a simple system whose ground state $\left|\mathrm{vac}_{0}\right\rangle$ is known and unique

Step 2: Introduce adiabatic Hamiltonian $H_{A}(t)$ s.t.

$$
\left\{\begin{array}{l}
\cdot H_{A}(0)=H_{0}, H_{A}(T)=H_{\text {target }} \\
\cdot\left|\frac{d H_{A}}{d t}\right| \ll 1 \text { for } T \gg 1
\end{array}\right.
$$

Step 3:

Adiabatic state preparation of vacuum

Step 1: Choose an initial Hamiltonian H_{0} of a simple system whose ground state $\left|\mathrm{Vac}_{0}\right\rangle$ is known and unique

Step 2: Introduce adiabatic Hamiltonian $H_{A}(t)$ s.t.

$$
\left\{\begin{array}{l}
\cdot H_{A}(0)=H_{0}, H_{A}(T)=H_{\text {target }} \\
\cdot\left|\frac{d H_{A}}{d t}\right| \ll 1 \text { for } T \gg 1
\end{array}\right.
$$

Step 3: Use the adiabatic theorem

If $H_{A}(t)$ has a unique ground state w/ a finite gap for $\forall t$, then the ground state of $H_{\text {target }}$ is obtained by

$$
|\mathrm{vac}\rangle=\lim _{T \rightarrow \infty} \mathcal{T} \exp \left(-i \int_{0}^{T} d t H_{A}(t)\right)\left|\mathrm{vac}_{0}\right\rangle
$$

Matching exact result $(q=1 \& m=0)$ (after continuum limit)

$$
T=100, \delta t=0.1, N_{\max }=16,1 M \text { shots }
$$

Massless vs massive for $\theta_{0}=0 \& q_{p} / q \in Z$

[MH-Itou-Kikuchi-Nagano-Okuda '21]
Parameters: $g=1, a=0.4, N=15 \& 21, T=99, q_{p} / q=1$
Lines: analytical results in the continuum limit (finite \& ∞ vols.)

$$
q_{p}=1, m=0
$$

Consistent w/ expected screening behavior

Results for $\theta_{0}=0 \& q_{p} / q \notin Z$

Parameters: $g=1, a=0.4, N=15, T=99, q_{p} / q=1 / 4, m=0 \& 0.2$ Lines: analytical results in the continuum limit (finite $\& \infty$ vol.)

Results for $\theta_{0}=0 \& q_{p} / q \notin Z$

Parameters: $g=1, a=0.4, N=15, T=99, q_{p} / q=1 / 4, m=0 \& 0.2$ Lines: analytical results in the continuum limit (finite $\& \infty$ vol.)

Consistent w/ expected confinement behavior

Positive / negative string tension

[MH-Itou-Kikuchi-Tanizaki '21]
Parameters: $g=1, a=0.4, N=25, T=99, q_{p} / q=-1 / 3, m=0.15$

Sign(tension) changes as changing θ-angle!!

Future prospects

Near future prospect

In near future, available device is so-called
Noisy intermediate-scale quantum device (NISQ) w/ limited number of qubits \& non-negligible errors

Near future prospect

In near future, available device is so-called
Noisy intermediate-scale quantum device (NISQ)
$\mathrm{w} /$ limited number of qubits \& non-negligible errors
On such device,
-quantum error correction can't be enough
\Rightarrow nice if ${ }^{\exists}$ a way to reduce errors w / o increasing qubits
\Rightarrow "quantum error mitigation"

Near future prospect

In near future, available device is so-called
Noisy intermediate-scale quantum device (NISQ)
$\mathrm{w} /$ limited number of qubits \& non-negligible errors
On such device,
-quantum error correction can't be enough
\Rightarrow nice if ${ }^{\exists}$ a way to reduce errors w / o increasing qubits
\Rightarrow "quantum error mitigation"

- algorithms w/ less gates are preferred
\Rightarrow Hybrid quantum-classical algorithm
(Popular one for finding vacuum: "variational method")

Quantum Error mitigation

[Figs. are from Endo-Cai-Benjamin-Yuan '20]

the simplest way $=$ extrapolation

In general,
difficult to decrease errors but possible to increase them
\Rightarrow error-free result by fitting as a function of error rate

This doesn't need to increase qubits but needs more shots

Variational quantum algorithm

Idea:

Acting gates \& measurements \Rightarrow Quantum computer
Parameter optimization
\Rightarrow Classical computer

This method needs much less gates than adiabatic state preparation but it's not guaranteed to get true ground state

"Quantum" Moore's law?

\#(qubits)

＂Quantum＂Moore＇s law？

\＃（qubits）

理論的に性能が保障された量子アルゴリズム による指数関数的な計算の加速
${ }^{106}: 1 /: N S Q$
（Noisy Intermediate－Scale Quantum technology）小•中規模でノイズを含む量子コンピュータ

量子超越

53Q：＠godgle 11Q＠Alibaba （50量子ビット \rightarrow 16PByte）

The challenge by IBM's 127-qubit device

Article

Evidence for the utility of quantum computing before fault tolerance

https://doi.org/10.1038/s41586-023-06096-3

Received: 24 February 2023
Accepted: 18 April 2023
Published online: 14 June 2023

Youngseok Kim ${ }^{1,6 \otimes}$, Andrew Eddins ${ }^{2,6 \boxtimes}$, Sajant Anand ${ }^{3}$, Ken Xuan Wei', Ewout van den Berg ${ }^{1}$, Sami Rosenblatt ${ }^{1}$, Hasan Nayfeh ${ }^{1}$, Yantao Wu ${ }^{3,4}$, Michael Zaletel ${ }^{3,5}$, Kristan Temme ${ }^{1}$ \& Abhinav Kandala ${ }^{1 \times 1}$

The challenge by IBM's 127-qubit device (cont'd)

Task: time evolution of Ising model on a lattice $\mathrm{w} /$ shape $=$ the qubit config. of the device

$$
\begin{aligned}
& H=-J \sum_{\langle i, j\rangle} Z_{i} Z_{j}+h \sum_{i} X_{i}, \\
& |\psi(t)\rangle:=e^{-i H t}|00 \cdots 0\rangle \\
& \langle\psi(t)| \mathcal{O}|\psi(t)\rangle
\end{aligned}
$$

Strategy: Suzuki-Trotter approximation + error mitigation by extrapolation

The challenge by IBM's 127-qubit device (cont'd)

"Quantum supremacy"?

But...

ar XiV > quant-ph > arXiv:2306. 14887

Quantum Physics

[Submitted on 26 Jun 2023]

Efficient tensor network simulation of IBM's kicked Ising experiment

Joseph Tindall, Matt Fishman, Miles Stoudenmire, Dries Sels

Applications PPP People may be interested

- 100 qubit simulation of Schwinger model
- Scattering [Jordan-Lee-Preskiil '17]
[Farrell-IIla-Ciavarella-Savage '23]
- Inflation (scalar in curved spacetime) [LLu-li'20]
- Boltzmann eq. [Yamazaki-Uchida-Fuisawa-Yoshida '23, Higuchi-Pedersen-Yoshikawa '23]
- Dark sector showers [Chigusa-Yamazaki'22]
- Schwinger model in open quantum system
[De Jong-Metcalf-Mulligan-Ploskon-Ringer-Yao '20, de Jong-Lee-Mulligan-Ploskon-Ringer-Yao '21, Lee-Mulligan-Ringer-Yao '23]
- Quantum many body scars in $2+1 \mathrm{~d}$ SU(2) YM
[Hayata-Hidaka '23]
- Imaging stars w/ error correction [Huang:brennen-ouyang'22]

Patterns to write papers

1. Find a bottle neck of (classical) numerical computation in your problem
2. Is there a corresponding quantum algorithm?

Patterns to write papers

1. Find a bottle neck of (classical) numerical computation in your problem
2. Is there a corresponding quantum algorithm?
ξ No
Make the algorithm!

Patterns to write papers

1. Find a bottle neck of (classical) numerical computation in your problem
2. Is there a corresponding quantum algorithm?

$$
\hbar \text { Yes }
$$

Is there an application to your problem?
§ No
Make the algorithm!

Patterns to write papers

1. Find a bottle neck of (classical) numerical computation in your problem
2. Is there a corresponding quantum algorithm?

$$
夕 \text { Yes }
$$

Is there an application to your problem?

$\hbar \mathrm{Yes}$

Improve methods
or get physically
new results!

Patterns to write papers

1. Find a bottle neck of (classical) numerical computation in your problem
2. Is there a corresponding quantum algorithm?

$$
\{\mathrm{Yes}
$$

Is there an application to your problem?

Improve methods or get physically new results!

$$
\zeta \text { Yes }
$$

§ No
Make the algorithm!
\measuredangle No

Propose the application \& estimate complexity!

Appendix

FTQC vs NISQ

Fault Tolerant Quantum Computer (FTQC)

- large quantum computer w/ sufficient error correction
- our dream
- expected to show "quantum supremacy" if it is realized
- not sure if it is realized in future

Noisy Intermediate-Scale Quantum computer (NISQ)
[cf. Preskill '18]

- intermediate quantum computer w/ non-negligible errors
- current/near future device
- not sure if ${ }^{\exists}$ problems to give "quantum supremacy"

Symmetries in charge- q Schwinger model

$$
L=\frac{1}{2 g^{2}} F_{01}^{2}+\frac{\theta_{0}}{2 \pi} F_{01}+\bar{\psi} \mathrm{i} \gamma^{\mu}\left(\partial_{\mu}+\mathrm{i} q A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

- $\boldsymbol{Z}_{\boldsymbol{q}}$ chiral symmetry for $m=0$
- ABJ anomaly: $U(1)_{A} \rightarrow \boldsymbol{Z}_{\boldsymbol{q}}$
_- known to be spontaneously broken
- Z_{q} 1-form symmetry
__ remnant of $U(1)$ 1-form sym. in pure Maxwell
——Hilbert sp. is decomposed into q-sectors "universe" (cf. common for $(d-1)$-form sym. in d dimensions)

FAQs on negative tension behavior

Q1. It sounds that many pair creations are favored. Is the theory unstable?

—— No. Negative tension appears only for $q_{p} \neq q \mathbf{Z}$.
So, such unstable pair creations do not occur.

FAQs on negative tension behavior (cont'd)

[cf. MH-Itou-Kikuchi-Tanizaki’21]
$E_{\text {inside }} \uparrow W_{q_{p}} \quad E_{\text {outside }}\left(=E_{0} ?\right)$
Q2. It sounds $E_{\text {inside }}<E_{\text {outside }}$. Strange?
__ Inside \& outside are in different sectors decomposed by Z_{q} 1-form sym.

$$
\mathcal{H}=\bigoplus_{\ell=0}^{q-1} \mathcal{H}_{\ell} \quad \text { "universe" }
$$

$E_{\text {inside }} \& E_{\text {outside }}$ are lowest in each universe:

$$
E_{\text {inside }}=\min _{\mathcal{H}_{\ell+q_{p}}}(E), \quad E_{\text {outside }}=\min _{\mathcal{H}_{\ell}}(E)
$$

Comment on adiabatic state preparation

$$
\text { ("systematic error") } \sim \frac{1}{T(\text { gap })^{2}}
$$

© Advantage:

- guaranteed to be correct for $T \gg 1 \& \delta t \ll 1$ if $H_{A}(t)$ has a unique gapped vacuum
- can directly get excited states under some conditions
© Disadvantage:
- doesn't work for degenerate vacua
- costly - likely requires many gates
more appropriate for FTQC than NISQ

Without probes

VEV of mass operator (chiral condensation)

$$
\langle\bar{\psi}(x) \psi(x)\rangle=\langle\operatorname{vac}| \bar{\psi}(x) \psi(x)|\operatorname{vac}\rangle
$$

Instead of the local op., we analyze the average over the space:

$$
\frac{1}{2 N a}\langle\mathrm{vac}| \sum_{n=1}^{N}(-1)^{n} Z_{n}|\mathrm{vac}\rangle
$$

Once we get the vacuum, we can compute the VEV as

$$
\begin{aligned}
\frac{1}{2 N a}\langle\mathrm{vac}| \sum_{n=1}^{N}(-1)^{n} Z_{n}|\mathrm{vac}\rangle & =\frac{1}{2 N a} \sum_{n=1}^{N}(-1)^{n} \sum_{i_{1} \cdots i_{N}=0,1}\langle\mathrm{vac}| Z_{n}\left|i_{1} \cdots i_{N}\right\rangle\left\langle i_{1} \cdots i_{N} \mid \mathrm{vac}\right\rangle \\
& =\frac{1}{2 N a} \sum_{n=1}^{N} \sum_{i_{1} \cdots i_{N}=0,1}(-1)^{n+i_{n}}\left|\left\langle i_{1} \cdots i_{N} \mid \mathrm{vac}\right\rangle\right|^{2}
\end{aligned}
$$

How can we obtain the vacuum?

Massless case

For massless case,
θ is absorbed by chiral rotation $\square \theta=0 \mathrm{w} / \mathrm{o}$ loss of generality
No sign problem
Nevertheless,
it's difficult in conventional approach because computation of fermion determinant becomes very heavy
${ }^{\exists}$ Exact result:

$$
\langle\bar{\psi}(x) \psi(x)\rangle=-\frac{e^{\gamma}}{2 \pi^{3 / 2}} g \simeq-0.160 g
$$

Can we reproduce it?

Thermodynamic \& Continuum limit

$$
g=1, m=0, N_{\max }=16, T=100, \delta t=0.1,1 M \underset{\text { (measurements) }}{\text { shots }}
$$

Thermodynamic limit ($\mathrm{w} /$ fixed a)

Continuum limit (after $V \rightarrow \infty$)

Estimation of systematic errors

Approximation of vacuum:

$$
|\operatorname{vac}>\simeq U(T) U(T-\delta t) \cdots U(2 \delta t) U(\delta t)| \operatorname{vac}_{0}>\equiv\left|\operatorname{vac}_{A}\right\rangle
$$

Approximation of VEV:

$$
\langle\mathcal{O}\rangle \equiv\langle\operatorname{vac}| \mathcal{O}|\mathrm{vac}\rangle \simeq\left\langle\operatorname{vac}_{A}\right| \mathcal{O}\left|\operatorname{vac}_{A}\right\rangle
$$

Introduce the quantity

$$
\langle\mathcal{O}\rangle_{A}(t) \equiv\left\langle\operatorname{vac}_{A}\right| e^{i \hat{H} t} \mathcal{O} e^{-i \widehat{H} t}\left|\operatorname{vac}_{A}\right\rangle
$$

$$
\left\{\begin{array}{l}
\text { independent of } \mathrm{t} \text { if }\left|\operatorname{vac}_{A}\right\rangle=|\mathrm{vac}\rangle \\
\text { dependent on } \mathrm{t} \text { if }\left|\operatorname{vac}_{A}\right\rangle \neq|\mathrm{vac}\rangle
\end{array}\right.
$$

This quantity describes intrinsic ambiguities in prediction
Useful to estimate systematic errors

Estimation of systematic errors (Cont'd)

Oscillating around the correct value
Define central value \& error as

$$
\frac{1}{2}\left(\max \langle\mathcal{O}\rangle_{A}(t)+\min \langle\mathcal{O}\rangle_{A}(t)\right) \quad \& \frac{1}{2}\left(\max \langle\mathcal{O}\rangle_{A}(t)-\min \langle\mathcal{O}\rangle_{A}(t)\right)
$$

Massive case

Result of mass perturbation theory:

$$
\langle\bar{\psi}(x) \psi(x)\rangle \simeq-0.160 g+0.322 m \cos \theta+\mathcal{O}\left(m^{2}\right)
$$

However,
${ }^{\exists}$ subtlety in comparison: this quantity is UV divergent $(\sim m \log \wedge)$

Use a regularization scheme to have the same finite part

Here we subtract free theory result before taking continuum limit:

$$
\lim _{a \rightarrow 0}\left[\langle\bar{\psi} \psi\rangle-\langle\bar{\psi} \psi\rangle_{\text {free }}\right]
$$

Chiral condens. for massive case at $\mathrm{g}=1$

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya '20]

$\underline{\theta}$ dependence at $m=0.1 \& g=1$

With probes

"String tension" for $\theta_{0}=0$

Parameters: $g=1, a=0.4, N=15, T=99, m / g=0.2$

Comment: density plots of energy gap

(known as "Tuna slice plot" inside the collaboration)
Parameters: $g=1, a=0.4, N=15, q_{p} / q=1, m / g=0.15$

smaller gap for larger ℓ
larger systematic error for larger ℓ

Continuum limit of string tension

[MH-Itou-Kikuchi-Tanizaki '21]

$$
g=1,(\text { Vol. })=9.6 / g, T=99, q_{p} / q=-1 / 3, m=0.15, \theta_{0}=2 \pi
$$

basically agrees with mass perturbation theory

Energy density @ negative tension regime

$$
g=1, a=0.4, N=25, T=99, q_{p} / q=-1 / 3, m=0.15, \theta_{0}=2 \pi
$$

Lower energy inside the probes!!

Comparison of $q_{p} / q=-1 / 3 \& q_{p} / q=2 / 3$

[MH-Itou-Kikuchi-Tanizaki '21]
Parameters: $\mathrm{q}=3, g=1, a=0.4, N=25, T=99, m=0.15$

Similar slopes \rightarrow (approximate) Z_{3} symmetry

Adiabatic scheduling

[MH-Itou-Kikuchi-Tanizaki '21]

$$
N=17, g a=0.40, m=0.20, q_{p}=2, \theta_{0}=2 \pi,
$$

