Distributions of Three Generation Models in Type IIB Chiral Flux Vacua

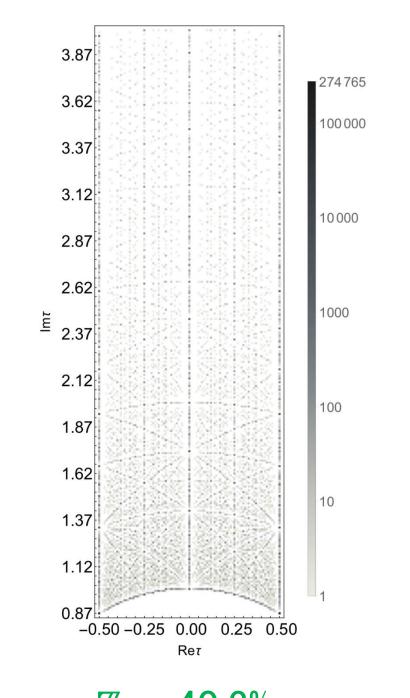
T. Kai (Kyushu Univ.), K. Ishiguro (KEK), H. Okada (Kyushu Univ.), H. Otsuka (Kyushu Univ.)

Based on arXiv:2305.19155

1. Introduction

Type IIB compactification on $T^6/(\mathbb{Z}_2 \times \mathbb{Z}'_2)$

Fluxes $\{a^0, a^i, b_i, b_0\}$, N_{flux}


 \Rightarrow many VEVs of complex structure (τ)

The distribution of complex structure moduli VEVs clusters at fixed points of modular symmetry of torus.

 $(\tau = i, \omega, i \infty \text{ with } \omega = \frac{-1 + \sqrt{3}i}{2}, \quad \mathbb{Z}_3 \text{ fixed point } : \tau = \omega)$

Especially, \mathbb{Z}_3 fixed point has the largest part in the distribution

We investigate the distribution of 3-generation models in the flux landscape

 \mathbb{Z}_3 : 40.3% The numbers of stable flux vacua on the fundamental

domain of au

Ishiguro, Kobayashi, Otsuka 2011.09154

2. Distribution of g-generation models (MSSM)

The background $U(1)_a$ gauge field strength F_a on $(T^2)_i$,

$$rac{m_a^i}{2\pi}\int_{T_i^2} F_a^i = n_a^i$$
, m_a^i : wrapping number on $(T^2)_i$ n_a^i : units of magnetic flux on $(T^2)_i$

The number of chiral zero-modes on T^6

$$I_{ab} = \prod_{i=1}^{3} (n_a^i m_b^i - n_b^i m_a^i),$$

This is Index theorem and the number of independent wave functions is known to be determined by <u>2 factors of D-branes</u>

D-brane configuration leading to MSSM like model

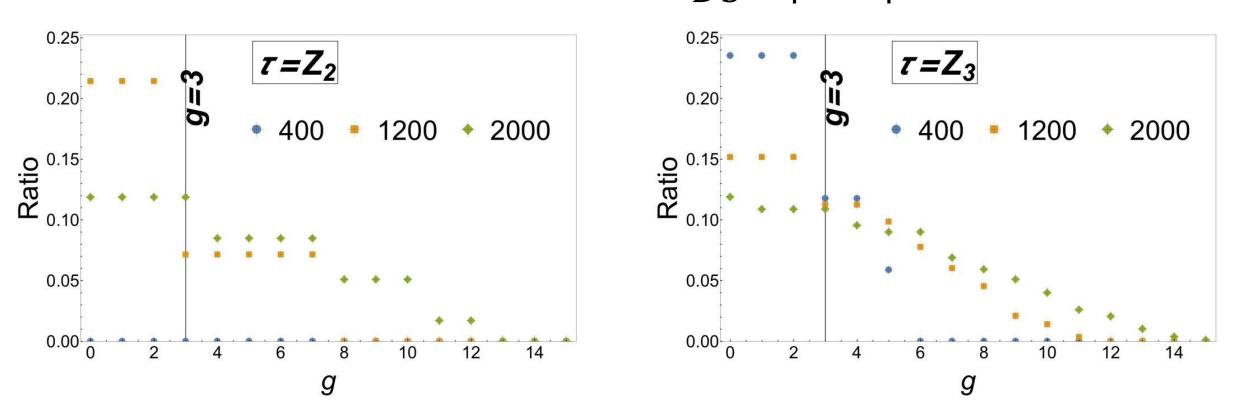
N_{lpha}	Gauge group	(n^1_α, m^1_α)	$(n_{\alpha}^2, m_{\alpha}^2)$	$(n_{\alpha}^3, m_{\alpha}^3)$
$N_a = 6$	$SU(3)_C$	(1,0)	(g,1)	(g, -1)
$N_b = 2$	$USp(2)_L$	(0,1)	(1,0)	(0, -1)
$N_c = 2$	$USp(2)_R$	(0,1)	(0, -1)	(1,0)
$N_d = 2$	$U(1)_d$	(1,0)	(g,1)	(g,-1)

The magnetic flux g on the second and third tori determines the generations of quark and lepton chiral multiplets in the visible sector

• D3-brane charge conservation

$$D3: \sum_{a} N_a n_a^1 n_a^2 n_a^3 + \frac{1}{2} N_{\text{flux}} = 16,$$

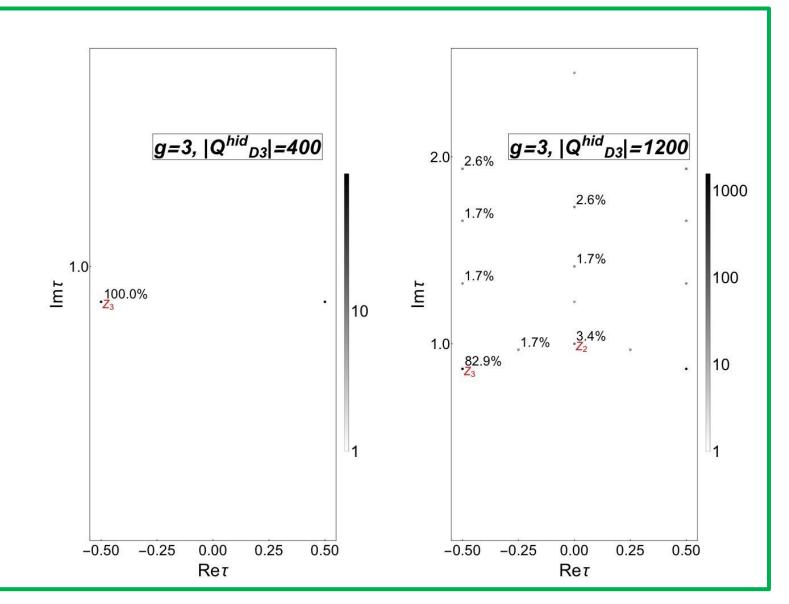
• The existence of magnetized D9-branes in the hidden sector


$$8g^2 = -Q_{D3}^{\text{hid}} + 16 - \frac{N_{\text{flux}}}{2},$$

 $(Q_{D3}^{hid}: D3$ -brane charge induced by the magnetic flux on D9-branes)

We freely change the value of $Q_{D3}^{\rm hid}$ to reveal the mutual relation between the generation number and the flux quanta

The numbers of flux vacua as a function of the generation number g at $\tau=i$ and $\tau=\omega$ respectively


We change the maximum value of Q_{D3}^{hid} ($|Q_{D3}^{\mathrm{hid}}|=400,1200,2000$)

The small generation number is favored in the string landscape

The numbers of stable flux vacua with g=3 generation of quarks/leptons on the fundamental domain of τ

MSSM-like models are still peaked at the \mathbb{Z}_3 fixed point

3. Distribution of g-generation models (Pati-Salam)

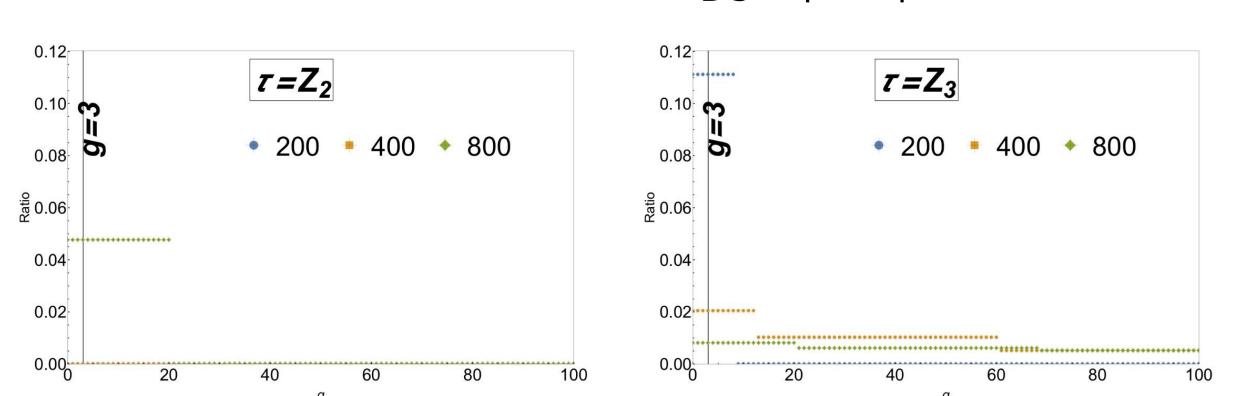
D-brane configuration leading to Pati-Salam-like model

N_{lpha}	Gauge group	$(n_{\alpha}^1, m_{\alpha}^1)$	$(n_{\alpha}^2, m_{\alpha}^2)$	$(\tilde{n}_{\alpha}^3, m_{\alpha}^3)$
$N_a = 8$	$U(4)_C$	(0, -1)	(1,1)	(1/2, 1)
$N_b = 4$	$U(2)_L$	(g,1)	(1,0)	(1/2, -1)
$N_c = 4$	$U(2)_R$	(g, -1)	(0,1)	(1/2, -1)

The magnetic flux g on the first torus determines $\tilde{n}_{\alpha}^3 = n_{\alpha}^3 + \frac{1}{2}m_{\alpha}^3$ the generations of quark and lepton chiral multiplets in the visible sector

• D3-brane charge conservation

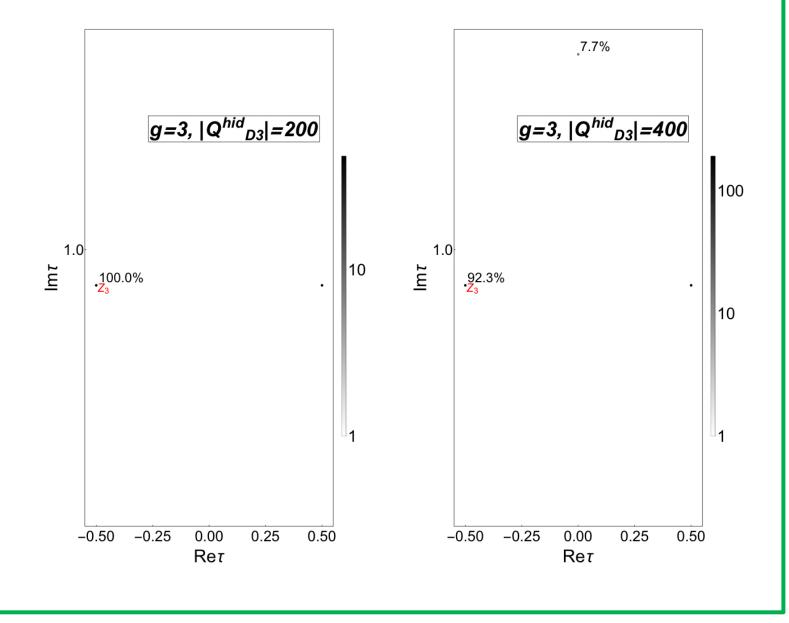
$$D3: \sum_{a} N_a n_a^1 n_a^2 \tilde{n}_a^3 + \frac{1}{2} N_{\text{flux}} = 8,$$


• The existence of magnetized D9-branes in the hidden sector

$$2g = -Q_{D3}^{\text{hid}} + 8 - \frac{N_{\text{flux}}}{2}$$

 $(Q_{D3}^{hid}: {\sf D3-brane}$ charge induced by the magnetic flux on D9-branes)

The numbers of flux vacua as a function of the generation number g at $\tau=i$ and $\tau=\omega$ respectively


We change the maximum value of Q_{D3}^{hid} ($|Q_{D3}^{\text{hid}}| = 200,400,800$)

The small generation number is also favored in the string landscape

The numbers of stable flux vacua with g=3 generation of quarks/leptons on the fundamental domain of τ .

Pati-Salam like models are still peaked at the \mathbb{Z}_3 fixed point

4. Summary

D-brane configurations leading to MSSM-like model and Pati-Salam like model

The magnetic flux g determines the generations of quark and lepton in the visible sector (Index theorem)

By tadpole cancellation conditions, the moduli distribution are related with the generation number

→ the string landscape leads to small generation number