Generalized Z string and its stability Yukihiro Kanda (Nagoya University)

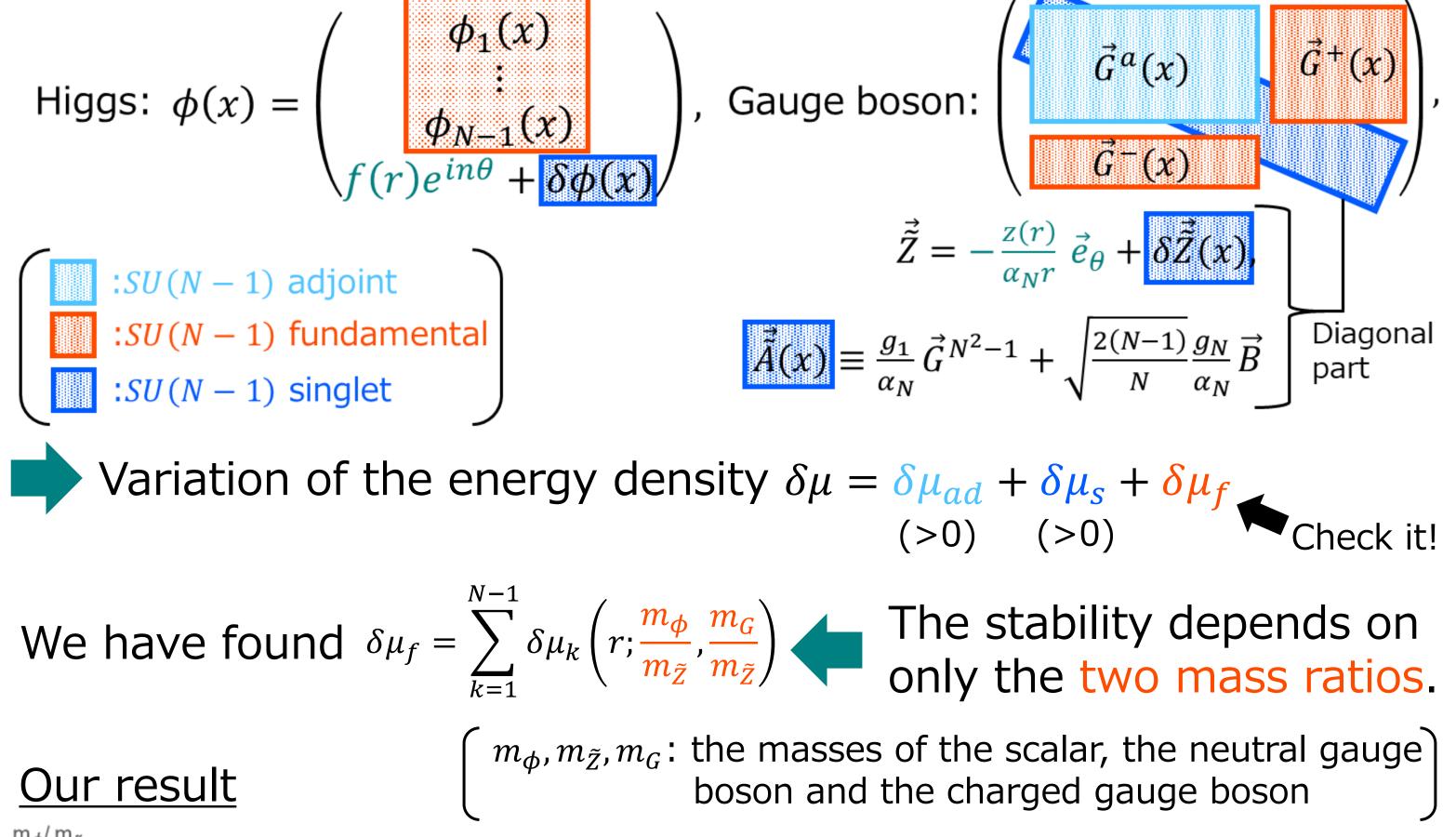
Based on PRD 107 (2023) 9, 096007 [arXiv: 2303.09517]

1. Introduction and motivation

Cosmic string ... A classical solution having 1-dimensional excited region which is produced in symmetry breaking

Ex. In U(1) Higgs model with a potential $V(\phi) = \lambda (|\phi|^2 - v^2)^2$, $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi) \qquad (D_{\mu}\phi = (\partial_{\mu} - igA_{\mu})\phi)$

Nielsen-Olesen string [Nielsen, Olesen (1973)] -

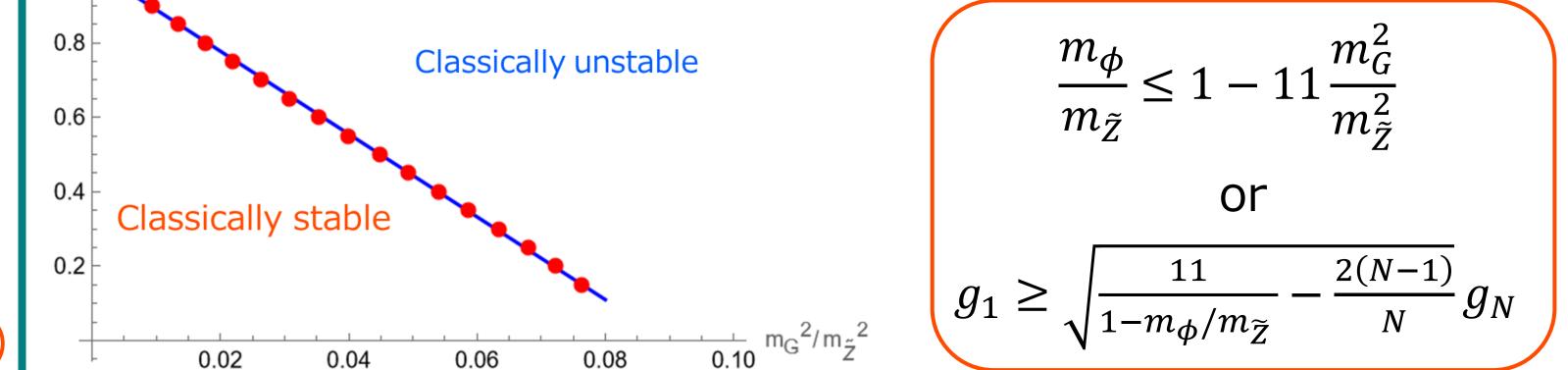

f(r) and a(r) are derived Scalar : $\phi_s(x) = f(r)ve^{in\theta}$ $(n \in \mathbb{Z})$ by solving EoM. Generalized Z-string Gauge boson : $\vec{A}_s(x) = \frac{na(r)}{gr} \vec{e}_{\theta}, A_s^0(x) = 0$ $\phi = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \vec{\tilde{Z}} = -\frac{2z(r)}{\alpha_N r} \vec{e}_{\theta}, \quad \text{(others)} = 0$ f(R), a(R) $(n = 1, 2\lambda = g^2)$ in the cylindrical coordinate (r, θ, z) $(f(0) = a(0) = 0, f(\infty) = a(\infty) = 1)$ $\sum_{\frac{2}{2}} \frac{1}{4} \frac{1}{6} \frac{1}{8} \frac{1}{10} R \equiv gvr$ $\int f(r) v e^{i\theta}$ / $f(0) = z(0) = 0, f(\infty) = z(\infty) = 1$ Recently, the NANOGrav 15-year data [arXiv:2306.16219] suggests not simple N-O strings but metastable strings or superstrings. Z string in $SU(2) \times U(1)$ Higgs model with $V(H) = \lambda (H^{\dagger}H - v^2)^2$ Higgs: $\phi(x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $SU(2) \times U(1) \xrightarrow{H: (2, 1/2)} U(1) \xrightarrow{Z \text{ string [Vachaspati (1992)]}} U(1)$ Related to Uthe Z boson X $H = \begin{pmatrix} 0 \\ f(r)ve^{i\theta} \end{pmatrix}, \qquad \vec{Z} = -\frac{2z(r)}{\alpha r} \vec{e}_{\theta},$ U(1):SU(N-1) adjoint (others) = 0 $(\alpha^2 = g_1^2 + g_2^2))$ SU(N-1) fundamental Consider N-O string SU(N-1) singlet m_H (m_H, m_Z) : the masses of the Higgs) Is Z string stable or unstable? and the Z boson Classically unstable μ : energy linear $_{\circ,4}$ -∠Ш. True (constant) vacuum density Classically <u>Our result</u> stable Z string is unstable in the SM. Difficult to calculate numerically m_¢/ m_ź $\sin^2 \theta_W$ [James, Perivolaropoulos, Vachaspati (1992)] 1.0

In collaboration with N. Maekawa (Nagoya University) 2. Generalized Z string $SU(N) \times U(1)$ Higgs model $\mathcal{L} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \left| D_{\mu} \phi \right|^{2} - \lambda \left(|\phi|^{2} - v^{2} \right)^{2}$ $\phi:\left(N,\frac{1}{2}\right)$ We write neutral massive gauge boson as $\alpha_N^2 \equiv \frac{2(N-1)}{N}g_N^2 + g_1^2$ $\tilde{Z}_{\mu} \equiv \sqrt{\frac{2(N-1)}{N} \frac{g_N}{\alpha_N}} G_{\mu}^{N^2-1} - \frac{g_1}{\alpha_N} B_{\mu} \qquad T^{N^2-1} = \frac{1}{\sqrt{2N(N-1)}} \operatorname{diag}(1, \dots, 1, 1-N)$

When N = 2,

it is the same as the Z string

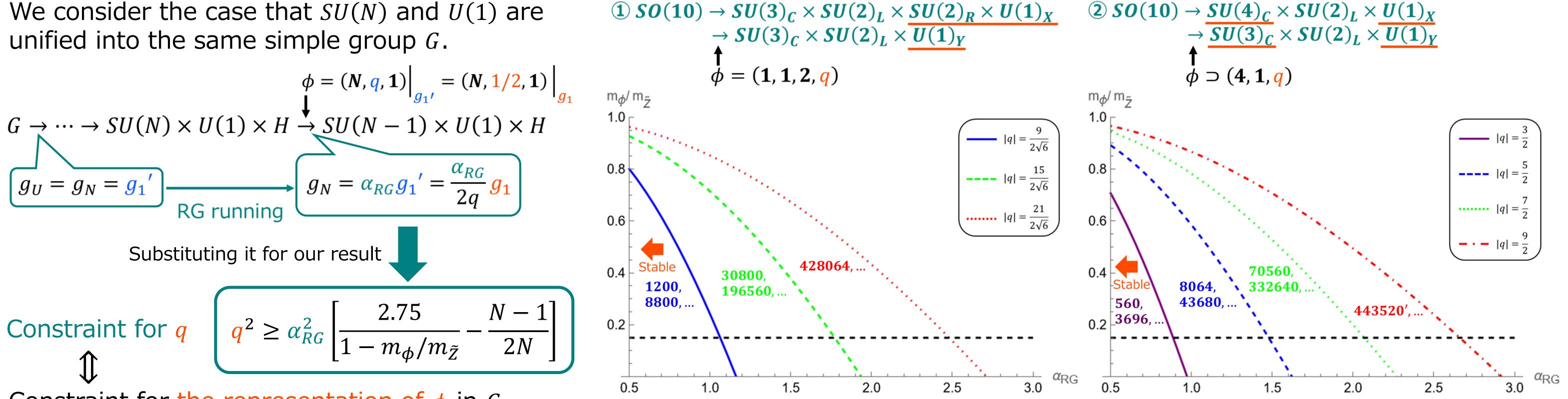
To study the classical stability, we consider all the perturbation.


Approximate stable region

In more general, we can consider embedded strings for sub-U(1) breaking, but their stability has not been studied except for the Z string. [Vachaspati, Barriola, Bucher (1994)]

To study the embedded strings which are produced in physics beyond the SM, we should answer

When are they produced?
Our work! (This presentation)


2 How are they observed? Our future work...

 g_1 should be at least 3 times bigger than g_N for string formation.

3. Applications for the gauge group unification

We consider the case that SU(N) and U(1) are unified into the same simple group G.

Constraint for the representation of ϕ in G

We apply it for two breaking patterns from SO(10) to $SU(3) \times SU(2) \times U(1)$.

To produce the generalized Z string in some GUT models,

- Very high representation Higgs are needed.
- The SM fermions are not simply unified.

Summary

- Embedded strings are not topological defects, but the classical solutions having 1-dimensional excited region (= cosmic string)
- We have generalized the Z string for the $SU(N) \times U(1)$ Higgs model and found that its stability can be determined the ratios of the masses $(m_{\phi}/m_{\tilde{Z}}, m_G/m_{\tilde{Z}})$. It is consistent with the results for the Z string studied in 1993.
- We have applied the formation condition to the case that SU(N) and U(1) have the same origin. We have found that a higher dimensional scalar is needed for the generalized Z string formation.