

# フレーバーアノマリーの新たな展開

#### 北原鉄平

- Institute of Theoretical Physics (Beijing), **Chinese Academy of Sciences** 
  - 基研研究会素粒子物理学の進展2023 2023年8月30日,京都大学 YITP



## Introduction

- Three types of approach to consider new physics:
  - **Top-down: based on symmetry with breaking, naturalness**  $\blacklozenge$
  - **Bottom-up: based on our world and data**
  - More fundamental physics and apply it to this world  $\blacklozenge$
- Quark and lepton flavor physics provide a ton of data, so research of flavor physics is mainly performed by the **bottom-up** approach
- The ultimate goal is to solve unresolved problems in the Universe, e.g., Matter-antimatter asymmetry, Strong CP problem, Neutrino mass, etc

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk





#### Flavor physics in the past



Theoretical uncertainty, Experimental uncertainty, Lattice uncertainty...

#### Current flavor physics



The uncertainties are satisfactorily small to discover "something"

Al images: created by **b** Bing





Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### Contents







Topic1:  $B \rightarrow D\tau\nu$ ,  $D\ell\nu$  (robust)

## Test of Lepton Flavor Universality (LFU)



 $m_{\tau} = 1776 \,\mathrm{MeV}$  $m_e = 0.5 \,\mathrm{MeV}\,, \qquad m_\mu = 105 \,\mathrm{MeV}\,,$ 

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



**Different kinematical** phase space



### Lepton-flavor-universality observables: R(D) and R(D\*)



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

| 5     | $R_{D^*}$                                    | $R_D$                       | Correlation      |
|-------|----------------------------------------------|-----------------------------|------------------|
|       | $0.332 \pm 0.024 \pm 0.018$                  | $0.440 \pm 0.058 \pm 0.042$ | -0.27            |
|       | $0.293 \pm 0.038 \pm 0.015$                  | $0.375 \pm 0.064 \pm 0.026$ | -0.49            |
|       | $0.270 \pm 0.035 ^{+0.028}_{-0.025}$         |                             | _                |
|       | $0.283 \pm 0.018 \pm 0.014$                  | $0.307 \pm 0.037 \pm 0.016$ | -0.51            |
| 22Oct | $0.281 \pm 0.018 \pm 0.024$                  | $0.441 \pm 0.060 \pm 0.066$ | -0.43            |
| 23Mar | $0.257 \pm 0.012 \pm 0.018$                  |                             |                  |
| 23Jul | $0.267\substack{+0.041+0.028\\-0.039-0.033}$ | 3 <del>7-</del> 33          | 39 <del></del> 3 |
| age   | $0.284 \pm 0.009 \pm 0.008$                  | $0.356 \pm 0.025 \pm 0.014$ | -0.38            |

*p*-value of the data= 0.33; implying data are consistent







## Lepton-flavor-universality observables: R(D) and R(D\*)



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



## QED correction within the SM

Long-distance QED correction could violate the lepton flavor universality soft photons  $\bar{B}^0$ 

The QED corrections depend on the lepton velocities; non-rela  $\tau$  vs relativistic  $\mu \rightarrow opposite sign$ 

Soft-photon interference (FS-FS & IS-FS) is significant, see additional slide for the details

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

- [de Boer, TK, Nisandzic, 1803.05881; Calí, et al, 1905.02702; Isidori, Nabeebaccus, Zwicky, 2009.00929]
- Note that  $B \rightarrow D\ell\nu$  measurements are not soft-photon inclusive ( $q_{miss}^2 = 0$  is required)







### **Recent progress in SM: Dispersion matrix approach**

- Dispersion matrix approach is novel form factor's description for  $B \rightarrow D^{(*)}$
- Based on the lattice QCD data only. By applying the unitarity condition, one can extract the form factors for all  $q^2$  region with non-perturbative and model-independent manner
- No experimental data are needed [Di Carlo, et al, 2105.02497; Martinelli, et al, 2105.07851]



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk Are tensions relaxed nicely?



### Recent progress in SM: Dispersion matrix approach

It is pointed out that there are  $3\sigma$  tension in the dispersion matrix approach with lightlepton data [Fedele, et al, 2305.15457]



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

D<sup>\*</sup> longitudinal polarization fraction



## New physics interpretations of $b \rightarrow c \tau \nu$ anomaly

W' (additional SU(2) gauge symmetry) and  $Z' \rightarrow \tau \tau$  search [Faroughy, Greljo, Kamenik, 1609.07138] **Charged-Higgs with generic flavor structure** 2202.10468; Iguro, 2201.06565, 2302.08935] (next slide) Leptoquark (LQ)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



Severely constrained from  $\Delta M_s$  ( $B_s^0 - \bar{B}_s^0$  mixing),  $W' \to \tau \nu$  search [Abdullah, et al, 1805.01869]







Collider bound comes from  $pp \rightarrow LQ LQ^*$ , and broad parameter regions are still allowed





#### Charged-Higgs scenario

For heavy charged Higgs, strong LHC bounds come from  $2\tau$  +MET, 2b (+ $\gamma$ ), 2j,  $\tau$  +MET (+b);  $m_{H^{\pm}} \leq 250 \,\text{GeV}$  is allowed [Blanke, Iguro, Zhang, 2202.10468; Iguro, 2201.06565, 2302.08935]



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



Unique prediction



## New physics interpretations of $b \rightarrow c \tau \nu$ anomaly

|    | a <u> </u>         |                 |                                                                                     |                         |              |              |                          |                                                            |
|----|--------------------|-----------------|-------------------------------------------------------------------------------------|-------------------------|--------------|--------------|--------------------------|------------------------------------------------------------|
|    |                    | $\mathbf{Spin}$ | Charge                                                                              | Operators               | $R_D$        | $R_{D^*}$    | LHC                      | Flavor                                                     |
|    | $H^{\pm}$          | 0               | $({f 1},{f 2},{}^1\!/\!{}^2)$                                                       | $O_{S_L}$               | ~            | ~            | b 	au  u                 | $B_c \rightarrow \tau \nu, F_L^{D^*}, P_{\tau}^{D^*}, M_W$ |
| LQ | $\mathbf{S}_1$     | 0               | $(ar{3},1,1/\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $O_{V_L},O_{S_L},O_T$   | $\checkmark$ | $\checkmark$ | au	au                    | $\Delta M_s, P^D_\tau, B\to K^{(*)}\nu\nu$                 |
| LQ | $ m R_{2}^{(2/3)}$ | 0               | $({f 3},{f 2},{7/\!6})$                                                             | $O_{S_L},O_T,(O_{V_R})$ | $\checkmark$ | $\checkmark$ | $b \tau \nu,  \tau \tau$ | $R_{\Upsilon(nS)},P_{	au}^{D^*},M_W$                       |
| LQ | $U_1$              | 1               | $({f 3},{f 1},{f 2}/{f 3})$                                                         | $O_{V_L},O_{S_R}$       | $\checkmark$ | $\checkmark$ | $b \tau \nu,  \tau \tau$ | $R_{K^{(*)}}, R_{\Upsilon(nS)}, B_s \to \tau \tau$         |
| LQ | $V_2^{(1/3)}$      | 1               | $(ar{3}, 2, {}^{5}\!/\!\!6)$                                                        | $O_{S_R}$               | $\checkmark$ | $2\sigma$    | au	au                    | $B_s \to \tau \tau, B_u \to \tau \nu, M_W$                 |
|    |                    |                 |                                                                                     |                         |              |              |                          |                                                            |

#### Leptoquark (LQ)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

[Iguro, TK, Watanabe, 2210.10751 + Iguro, Omura, 2306.00052]

They can be deviated from SM

One can distinguish each model by these observables





#### **Polarization obserbavles**

$$P_{\tau}(D^{(*)}) = \frac{\Gamma\left(B \to D^{(*)}\tau^{\lambda=+1/2}\nu\right) - \Gamma\left(B \to D^{(*)}\tau^{\lambda=-1/2}\nu\right)}{\Gamma\left(B \to D^{(*)}\tau\nu\right)}$$



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### Belle II (final) sensitivity



## New idea: LFU violation in Upsilon decay



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk Correlation in the U<sub>1</sub> LQ scenario



## New idea: sum-rule between $R(\Lambda_c)$ and $R(D^{(*)})$

Baryonic counterpart ( $b \rightarrow c \tau \nu$ ):  $\mathcal{R}(\Lambda)$ 

There is a model-independent sum-rule for R(D),  $R(D^*)$ , and  $R(\Lambda_c)$ , through new physics

form factor analysis (originated from heavy quark symmetry)

$$\frac{R\left(\Lambda_{c}\right)}{R\left(\Lambda_{c}\right)_{\mathrm{SM}}} \simeq 0.28 \frac{R(D)}{R(D)_{\mathrm{SM}}} + 0.72 \frac{R\left(D^{*}\right)}{R\left(D^{*}\right)_{\mathrm{SM}}}$$

It can crosscheck of  $R(D^{(*)})$  anomaly by coherent amplification of  $R(\Lambda_c)$ 

 $R(\Lambda_c) = 0.380 \pm 0.012_{P}$  $R(\Lambda_c)_{\rm SM} = 0.324 \pm 0.00$ 

 $R(\Lambda_c)_{\rm exp} = 0.242 \pm 0.075$  [LHCb, <u>2201.03497</u>]

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

 $R(D^{(*)})$ 

data

anomaly

$$\mathbf{L}_{c}) = \frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \tau^{-} \bar{\nu}_{\tau})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \ell^{-} \bar{\nu}_{\ell})}$$

[Fedele, et al, 2211.14172]

$$R(D^{(*)}) \pm 0.005_{\rm FF}$$

Currently, a slight (~ $2\sigma$ ) inconsistency appeared



Tree-level matching condition:  $C_{S_{R}}$  (/



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

R(D<sup>(\*)</sup>) requires CPV and EDM via LQ [Iguro, TK, 2307.11751] [Babu, et al, 2009.01771; Bečirević, at al, 2206.09717; Kirk, Okawa, Wu, 2307.11152] Generally, LQ-Yukawa contains CPV phase:  $\mathcal{L} = (Y_L \bar{Q}_i \gamma_\mu P_L L_3 + Y_R \bar{b} \gamma_\mu P_R \tau) U_1^\mu$ 

Interestingly, a certain LQ provides robust correlation of the CPV phase with  $R(D^{(*)})$ 

For U<sub>1</sub> vector LQ case, single CPV phase  $\phi_R$  is predicted (one can set  $\phi_R = \text{Arg}[(Y_R)_{33}]$ ) When UV model is 3rd-generation-philic gauge symmetry with universal (L=R) gauge coupling:

$$\Lambda_{\mathrm{LQ}}) = -2e^{i\phi_R}C_{V_L}\left(\Lambda_{\mathrm{LQ}}\right) \qquad \begin{array}{l} O_{V_L} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau}),\\ O_{S_R} = (\bar{c}P_Rb)(\bar{\tau}P_L\nu_{\tau}). \end{array}$$

Leading contribution to neutron EDM is the Weinberg operator (comes from bottom CEDM) [Haisch, Hala, 1909.08955]

CPV in  $b \rightarrow s\gamma$  would be interesting as well









*R*(*D*<sup>(\*)</sup>) requires CPV and EDM via LQ [Iguro, TK, 2307.11751] [Babu, et al, 2009.01771; Bečirević, at al, 2206.09717; Kirk, Okawa, Wu, 2307.11152]

Since  $R(D^{(*)})$  is CPC observable, it depends on  $\cos \phi_R$ , while EDMs depend on  $\sin \phi_R$ 

There is a robust relation:



**Opposite signs** within reaches of the future prospects

 $|d_e| < 10^{-32} e \text{ cm} \rightarrow \text{null electron EDM is predicted}$ 

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk











#### Leptoquark indirect collider search



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



+b jet suppresses only bkg

R<sub>2</sub> LQ scenario can be probed by bτ+MET search with Run 2 data





#### CMS new LQ-type excess



[CMS, CMS-PAS-EXO-19-016 (2022); LeptonPhoton2023 update] In additional b-tag category, there is no excess

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



 $3.4-3.7\sigma$  level excess at  $M_{\rm LO} \sim 2$  TeV @ CMS







## Another LFU observables: R(K) and R(K\*)

 $R(K^{(*)}) = \frac{\mathsf{BR}(B \to K^{(*)}\mu^+\mu^-)}{\mathsf{BR}(B \to K^{(*)}e^+e^-)}$ 

Bkg estimation of the electron mode was improved drastically

 $B \to K \pi^+ \pi^-$ 

with  $\pi \sim e$ 

LHCb - Data 9 fb-1 24 MeV  $\cdots B^+ \rightarrow K^+ e^+ e^-$ 160 140  $B^+ \rightarrow J/\psi(e^+e^-)K^+$ 120 Part. reco. 100 Candidates Combinatorial 80 60 40 20 5,000 5,500 6.000  $R_K$  central- $q^2$ LHCb + Data  $9 \, {\rm fb}^{-1}$ — Total Signal Combinatoria  $B^+ \rightarrow K^+ J/\psi (\rightarrow e^+ e^-)$ attattettette 5000 55006000  $m(K^+e^+e^-)$  [MeV/ $c^2$ ]

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### [LHCb Run1+2, 2212.09152]







**Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

### $b \rightarrow s \mu^+ \mu^-$ data are still deviated

## Global fit of $b \rightarrow s\mu^+\mu^-$ data

QCD long-distance effects are crucial





charm-penguin

rescattering effect

The rescattering effect can also be understood as the LFU NP contribution

rescattering effect  $\simeq C_{9,\text{universal}}^{\text{NP}} = -\mathcal{O}(1)$ 

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### [Ciuchini, et al, 2212.10516]





## New excess? in $B^+ \rightarrow K^+ \nu \bar{\nu}$

Belle II announced the result of  $BR(B^+ \rightarrow K^+ \nu \bar{\nu})$ , which is 2.8 $\sigma$  above from the SM

Then, the world average (Belle+Belle II+BaBar) gives  $2.2\sigma$  above from the SM



#### [Belle II, EPS-HEP2023]

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

heavy Z' global fit: When LF is conserved but LFU is violated  $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) \leq 1.1 \text{ SM value}$ When both LF and LFU are violated ( $\nu_i \bar{\nu}_i$ ), Belle II data can be accommodated  $B_s \rightarrow e\mu$  is smoking-gun

[Athron, Martinez, Sierra, 2308.13426]







### Tree-level non-leptonic B-decays



On the other hand,  $\bar{B}^0 \to D^{(*)+}K^-, B_s^0 \to D_s^{(*)+}\pi^-$  are unique colored-allowed tree-level decays. Only 1 topology; no annihilation and penguin. Theoretically & experimentally clean.

 $B_d^0$  $D^+$ 

/ T + T Z -

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

Hadronic matrix element can be precisely calculated via the QCD factorization (QCDf) [Beneke, et al, 9905312]

$$|\mathcal{O}_i|\bar{B}^0\rangle \simeq \langle K^-|j_a|0\rangle \langle D^+|j_b|\bar{B}^0\rangle$$

QCD corrections are calculable





## **Tree-level non-leptonic B-decays**

with improved analysis [Endo, Iguro, Mishima, 2109.10811] → New calculation [Piscopo, Rusov, 2307.07594]



 $\mathsf{BR}_{\mathsf{exp}}$  <  $\mathsf{BR}_{\mathsf{SM}} \approx 4\sigma$ 

SM amplitudes are uniformly larger by  $\mathcal{O}(15\%)$ 

$$\times 10^{4}(B), \times 10^{3}(B_{s}$$

$$\bar{B}^{0} \rightarrow D^{+}K^{-}$$

$$\bar{B}^{0} \rightarrow D^{*+}K^{-}$$

$$\bar{B}^{0}_{s} \rightarrow D^{+}_{s}\pi^{-}$$

$$\bar{B}^{0}_{s} \rightarrow D^{*+}_{s}\pi^{-}$$

final-state rescattering effects are irrelevant [Endo, Iguro, Mishima, 2109.10811] QED corrections are also irrelevant [Beneke, et al, 2107.03819]

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

SM predictions by the QCDf at NNLO QCD + NLO power in  $\Lambda_{OCD}/m_b$  [Bordone, et al, 2007.10338],

| ) | Exp      | QCDf           | QCDf<br>improved | Deviation |  |  |
|---|----------|----------------|------------------|-----------|--|--|
|   | 1.86(20) | 3.26(15)       | 3.03(15)         | 5.6—4.7σ  |  |  |
|   | 2.12(15) | 3.27+0.39-0.34 | 3.27(16)         | 3.1–5.3σ  |  |  |
|   | 3.00(23) | 4.42(21)       | 4.09(21)         | 4.6—3.5σ  |  |  |
|   | 2.0(5)   | 4.3+0.9-0.8    | 4.46(22)         | 2.4—4.5σ  |  |  |





### New physics interpretation



NP interpretation (partial explanation) is possible by TeV-scale W' [Iguro, TK, 2008.01086;

Bordone, Greljo, Marzocca, 2103.10332]. But one has to tune up flavor texture to avoid  $\Delta M_{d,s}$ 

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

Factorized by SM CKM factor (to provide the uniform corrections)

Compatible with lifetime measurements [Bordone, et al, 2007.10338]







Topic4: CKM unitarity test (robust)

## Unitarity of CKM matrix



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk



### CKM unitarity triangle



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

A triangle can be drawn on a complex plane

**B** triangle



Many data are available! Currently, they are consistent with the triangle



### 1st-row Unitarity test in CKM matrix



 $VV^{\dagger} = \mathbb{I}_3$ 



#### Why these components?

Leading uncertainties from kaon form factors have been improved significantly [FLAG2021, 2111.09849]



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

## Unitarity condition 1st-row unitarity condition

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Sum of the absolute values must become **exact 1** 



# $V_{ud}$ and $V_{us}$ determinations vellin, Kirk, TK, Mescia, 2212.06862



#### All data are consistent

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

One can see several tensions in  $|V_{\mu s}|$  determinations











Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

# Global fit of $|V_{ud}|$ and $|V_{us}|$ [Crivellin, Kirk, TK, Mescia, 2212.06862]

$$K_{\mu 2}/\pi_{\mu 2}$$
  
 $\frac{K^- \rightarrow \mu \bar{\nu}}{\pi^- \rightarrow \mu \bar{\nu}}$   
Error budgets:  
LO: FFs  
NLO: data radiative

 $\mathbf{NLO}$ . uata, IdulatiVE correction

Uncertainty from  $|V_{ub}|$  is negligible





## Significance of Cabibbo-Angle Anomaly (CAA)

Global fit (including with correlations)

$$|V_{ud}|_{\text{global}} = 0.973\,79(25) \,,$$
  
 $|V_{us}|_{\text{global}} = 0.224\,05(35) \,,$ 

test of unitarity

$$\Delta_{\rm CKM}^{\rm global} \equiv |V_{ud}|_{\rm global}^2 + |V_{us}|_{\rm global}^2 + |V_{ub}|$$

#### **2.8\sigma (3.8\sigma) level** deviation from the unitarity condition

the single most precise data

$$\tau_n^{\text{bottle}} = 877.75(36) \text{sec} |V_{ud}|_n = 0.974\,13(43)$$
  
 $\tau_n^{\text{beam}} = 887.7(2.2) \text{sec} |V_{ud}|_n = 0.968\,66(131)$ 

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

[Crivellin, Kirk, TK, Mescia, 2212.06862]

$$\rho(V_{ud}, V_{us}) = 0.09$$

neutron-lifetime data dependence (bottle vs beam)  $|s|^2 - 1 = \begin{cases} -1.51(53) \times 10^{-3} (\text{w/bottle UCN best}), \\ -2.34(62) \times 10^{-3} (\text{w/in-beam best}), \end{cases}$ 









## Significance of Cabibbo-Angle Anomaly (CAA)

Other precise combination of the unitarity test (1st-column unitarity)

$$\Delta_{\rm CKM}^{1^{\rm st} {\rm column}} \equiv |V_{ud}|_{\rm global}^2 + |V_{cd}|^2 + |V_{td}|^2 - 1 = -0.0028(18) \,,$$

Uncertainty is predominated by data of  $D \rightarrow \mu \nu$ , being probed precisely by Belle II and BES III

Interesting new result from CMS [CMS, 2201.07861]

Inclusive hadronic decay of W ca

 $\alpha_{\rm S}(m_W^2)$  $0.095 \pm 0.033$ 

 $|V_{cs}|$  $0.967 \pm 0.011$ 

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

n measure 
$$\sum_{i=u,c} \sum_{j=d,s,b} |V_{ij}|^2$$
 (=2 in the SM)

 $\sum_{ij} |V_{ij}|^2$  $1.984 \pm 0.021$ 

Consistent with the unitarity But, the  $|V_{cs}|$  is deviated from the world average:  $|V_{cs}| = 0.987(11)$ 



Light

NP

## New physics interpretations of CAA

EFT fittings:  $(H^{\dagger}iD_{\mu}^{I}H)(\bar{L}\gamma^{\mu}\tau^{I}L)$  fit [Coutinho, et al, <u>1912.08823</u>]; right-handed current fit [Grossman, et al, Best pull 1911.07821, Cirigliano, et al, 2112.02087]; W- $\ell$ - $\nu$  fit [Crivellin, et al, 2002.07184];  $G_F$  fit [Crivellin, et al, 2102.02825] Heavy SU(2) vector boson (~10 TeV) [Capdevila, et al, 2005.13542] Leptoquark (~5TeV) [Marzocca, Trifinopoulos, 2104.05730] Kirk, TK, Mescia, 2212.06862] Vector-like Quark (1-5 TeV) [Belfatto, et al, 1906.02714, 2103.05549; Cheung, et al, 2001.02853; Branco, et al, 2103.13409] Best pull Vector-like Lepton (1-2 TeV) [Endo, Mishima, 2005.03933; Crivellin, et al, 2008.01113; Kirk, 2008.03261 Heavy right-handed neutrino (type I seesaw) can not explain the tension [the unphysical region  $|mixing|^2 < 0$  is favored] MeV sterile neutrino [TK, Tobioka, 2308.13003]

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

Vector-like quark can explain CAA with EWPO, FCNC, collider bounds [Crivellin,









## EFT fitting of CAA [Crivellin, Kirk, TK, Mescia, 2212.06862]



#### EFT global fitting implies that right-handed W-u-d and W-u-s new physics are preferred



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

|          | Best fit point                       | $-\Delta\chi^2$ | Pull         |           |
|----------|--------------------------------------|-----------------|--------------|-----------|
| -2]      | -0.50                                | 3.3             | $1.8 \sigma$ |           |
|          | -0.27                                | 1.1             | $1.1\sigma$  |           |
|          | -0.55                                | 3.7             | $1.9\sigma$  |           |
|          | -1.0                                 | 3.1             | $1.8\sigma$  |           |
|          | -2.0                                 | 7.4             | $2.7\sigma$  |           |
|          | (-1.4, -2.1)                         | 13              | $3.2\sigma$  | Best pull |
|          | (-0.43, -2.0)                        | 11              | $2.8\sigma$  |           |
|          | (0.27, -1.9, -2.4)                   | 16              | $2.9\sigma$  |           |
| $d_{12}$ | $\left(0.59, 0.76, -2.6, -2.5 ight)$ | 17              | $2.9\sigma$  |           |
| $d_{12}$ | (0.29, 0.11, -2.0, -2.4)             | 13              | $2.6\sigma$  |           |
|          |                                      |                 |              |           |





#### Sterile neutrino solution for CAA [TK, Tobioka, 2308.13003]

decays and neutron decay, and no effects on the others



1. active-sterile mixing 2. kinematical suppression

$$1 + \Delta_{\text{CKM}} \approx |V_{ud}|^2 \cos^2 U_{e4} + |V_{us}|^2 \qquad |U_{e4}|^2$$

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

MeV sterile neutrino provides good effects on  $|V_{ud}|$  determinations from superallowed  $\beta$ 



Topic5: Beryllium anomaly (excess?)



Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

![](_page_43_Picture_6.jpeg)

#### HUS experiment

![](_page_44_Picture_1.jpeg)

![](_page_44_Figure_3.jpeg)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### HUS experiment

The preliminary result of HUS for <sup>12</sup>C [HUS experiment, <u>ISMD2023</u>]

![](_page_45_Figure_3.jpeg)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### HUS experiment, Hanoi, Vietnam, is searching for ${}^{8}$ Be and ${}^{12}$ C transitions to check ATOMKI

![](_page_45_Picture_9.jpeg)

![](_page_45_Picture_10.jpeg)

Θ (degrees)

### X17 implications $\mathcal{A} \propto Q_u g_u - Q_d g_d = \frac{2}{3} e \left( g_u + \frac{1}{2} g_d \right) \to 0$ Severe bound from $\pi^0 \rightarrow \gamma X, X \rightarrow e^+e^-$ (NA48/2) Protophobic nature [Feng, et al, <u>1608.03591</u>]

- - Additional severe bound from  $\pi^+ \to e^+ \nu_e X, X \to e^+ e^-, \nu \bar{\nu}$ avoid  $m_e^2$  suppression
- Recent new physic studies conclude: promising candidate is axial vector [Barducci, Toni, 2212.06453; Denton, Gehrlein, 2304.09877]

![](_page_46_Picture_4.jpeg)

QED corrections? [Aleksejevs, et al, 2102.01127] (unpublished) Exotic QCD? [Kubarovsky, et al, 2206.14441] (unpublished)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

[Hostert, Pospelov, 2306.15077]

Protophobic vector was excluded

![](_page_46_Figure_9.jpeg)

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_47_Figure_1.jpeg)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

![](_page_47_Picture_3.jpeg)

LFU new physics or charm-long-distance contribution? New excess in  $B^+ \to K^+ \nu \bar{\nu}$ 

![](_page_47_Picture_8.jpeg)

ATOMKI data was confirmed by HUS. New physics interpretation is not easy

![](_page_47_Picture_10.jpeg)

# Backup slides

![](_page_48_Picture_1.jpeg)

(c) KMI/Nagoya-U

![](_page_48_Picture_4.jpeg)

## Leptoquark catalogue

[cf. Angelescu, Bečirević, Faroughy, Jaffredo, Sumensari, 2103.12504; Athron, Balazs, Jacob, Kotlarski, Stockinger, Stockinger-Kim, 2104.03691]

[LQ<sup>\*</sup> requires additional symmetry that forbids the proton decay, see 1603.04993]

| Label                 | Spin | Charge            | <b>R(D</b> (*))  | R(K <sup>(*)</sup> ) | muon g-2 | Mw              |
|-----------------------|------|-------------------|------------------|----------------------|----------|-----------------|
| S <sub>1</sub> LQ (*) | 0    | (3, 1, 1/3)       |                  | Loop                 |          | With <b>S</b> 3 |
| U <sub>1</sub> LQ     | 1    | (3, 1, 2/3)       |                  |                      | ×        | ×               |
| R <sub>2</sub> LQ     | 0    | (3, 2, 7/6 [1/6]) |                  | Loop                 |          |                 |
| V <sub>2</sub> LQ (*) | 1    | (3, 2, 5/6)       | only <b>R(D)</b> | Small                | Small    |                 |
| S <sub>3</sub> LQ (*) | 0    | (3, 3, 1/3)       | ×                |                      | ×        | With <b>S</b> 1 |
| U <sub>3</sub> LQ     | 1    | (3, 3, 2/3)       | X                |                      | ×        | ?               |

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

Leptoquarks that do not lead to proton decay and can contribute precision measurements

![](_page_49_Picture_8.jpeg)

### Related channel: $R(J/\psi)$

The LFU violation was also observed in  $B_c^- \rightarrow J/\psi$ 

$$C \mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^- \to J/\psi\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(B_c^- \to J/\psi\ell^-\bar{\nu}_{\ell})}$$

![](_page_50_Figure_3.jpeg)

 $R(J/\psi)_{\rm SM} = 0.258 \pm 0.004$ 

 $1.8\sigma$  consistent

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

![](_page_50_Figure_8.jpeg)

 $R(J/\psi)_{\rm exp} = 0.71 \pm 0.17_{\rm stat} \pm 0.18_{\rm syst}$  [LHCb, <u>1711.05623</u>]

Based on first lattice result [HPQCD, 2007.06956] using  $N_f=2+1+1$ , with "HISQ" c and heavy quark b

**Same-direction tension** as R(D) and R(D\*) anomalies

![](_page_50_Picture_12.jpeg)

![](_page_50_Picture_14.jpeg)

![](_page_50_Picture_15.jpeg)

![](_page_50_Picture_16.jpeg)

![](_page_51_Figure_0.jpeg)

'CMS HEP Rovno Belle JINR cay EWPD Higgs L3LNV Suge **`**DELPHI ATLAS Borexino BESIII 15 CHARM PIENU Super-K NA62 T2KBBN Seesaw  $CMB + BAO + H_0$  $10^{-3}$   $m_4 ~[{
m GeV}]$  $10^{3}$ 1

[Bolton, Deppisch, Dev, <u>1912.03058</u>]

#### **Operators for CAA**

$$\begin{aligned} Q_{Hq}^{(1)ij} &= (H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{q}_{i} \gamma^{\mu} P_{L} q_{j}), \qquad Q_{Hq}^{(3)} \\ Q_{Hu}^{ij} &= (H^{\dagger}i \overset{\leftrightarrow}{D}_{\mu} H)(\bar{u}_{i} \gamma^{\mu} P_{R} u_{j}), \qquad Q_{Hu}^{ij} \\ Q_{Hud}^{ij} &= i (\tilde{H}^{\dagger} D_{\mu} H)(\bar{u}_{i} \gamma^{\mu} P_{R} d_{j}). \end{aligned}$$

$$\begin{split} \mathcal{L}_{W,Z} &= -\frac{g_2}{\sqrt{2}} W_{\mu}^{+} \, \bar{u}_i \gamma^{\mu} \left( \left[ V \cdot \left( \mathbbm{1} + v^2 C_{Hq}^{(3)} \right) \right]_{ij} P_L + \frac{v^2}{2} \left[ C_{Hud} \right]_{ij} P_R \right) d_j + \text{h.c.} \\ &- \frac{g_2}{6c_W} Z_{\mu} \, \bar{u}_i \gamma^{\mu} \left( \left[ (3 - 4s_W^2) \mathbbm{1} + 3v^2 V \cdot \left\{ C_{Hq}^{(3)} - C_{Hq}^{(1)} \right\} \cdot V^{\dagger} \right]_{ij} P_L \\ &- \left[ 4s_W^2 \mathbbm{1} + 3v^2 C_{Hu} \right]_{ij} P_R \right) u_j \\ &- \frac{g_2}{6c_W} Z_{\mu} \, \bar{d}_i \gamma^{\mu} \left( \left[ (2s_W^2 - 3) \mathbbm{1} + 3v^2 \left\{ C_{Hq}^{(3)} + C_{Hq}^{(1)} \right\} \right]_{ij} P_L \\ &+ \left[ 2s_W^2 \mathbbm{1} + 3v^2 C_{Hd} \right]_{ij} P_R \right) d_j \,, \end{split}$$

$$\begin{split} & \left( \left[ V \cdot \left( \mathbbm{1} + v^2 C_{Hq}^{(3)} \right) \right]_{ij} P_L + \frac{v^2}{2} \left[ C_{Hud} \right]_{ij} P_R \right) d_j + \hbar d_j \\ & - \left[ (3 - 4s_W^2) \mathbbm{1} + 3v^2 V \cdot \left\{ C_{Hq}^{(3)} - C_{Hq}^{(1)} \right\} \cdot V^\dagger \right]_{ij} P_L \\ & - \left[ 4s_W^2 \mathbbm{1} + 3v^2 C_{Hu} \right]_{ij} P_R \right) u_j \\ & \left( \left[ (2s_W^2 - 3) \mathbbm{1} + 3v^2 \left\{ C_{Hq}^{(3)} + C_{Hq}^{(1)} \right\} \right]_{ij} P_L \\ & + \left[ 2s_W^2 \mathbbm{1} + 3v^2 C_{Hd} \right]_{ij} P_R \right) d_j \,, \end{split}$$

$$\begin{split} &-\frac{g_2}{\sqrt{2}}W_{\mu}^{+}\,\bar{u}_i\gamma^{\mu}\left(\left[V\cdot\left(\mathbbm{1}+v^2C_{Hq}^{(3)}\right)\right]_{ij}P_L+\frac{v^2}{2}\,[C_{Hud}]_{ij}\,P_R\right)d_j+\mathrm{h.}\\ &-\frac{g_2}{6c_W}Z_{\mu}\,\bar{u}_i\gamma^{\mu}\left(\left[(3-4s_W^2)\mathbbm{1}+3v^2\,V\cdot\left\{C_{Hq}^{(3)}-C_{Hq}^{(1)}\right\}\cdot V^{\dagger}\right]_{ij}P_L\\ &-\left[4s_W^2\mathbbm{1}+3v^2C_{Hu}\right]_{ij}P_R\right)u_j\\ &-\frac{g_2}{6c_W}Z_{\mu}\,\bar{d}_i\gamma^{\mu}\left(\left[(2s_W^2-3)\mathbbm{1}+3v^2\left\{C_{Hq}^{(3)}+C_{Hq}^{(1)}\right\}\right]_{ij}P_L\\ &+\left[2s_W^2\mathbbm{1}+3v^2C_{Hd}\right]_{ij}P_R\right)d_j\,,\end{split}$$

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

$$\begin{aligned} Q_{Hq}^{(3)ij} &= (H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}^{I}} H)(\bar{q}_{i} \tau^{I} \gamma^{\mu} P_{L} q_{j}) \,, \\ Q_{Hd}^{ij} &= (H^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} H)(\bar{d}_{i} \gamma^{\mu} P_{R} d_{j}) \,, \end{aligned}$$

![](_page_52_Picture_9.jpeg)

# $ASU(2)_1 \times SU(2)_2 \times U(1)_V$ model

which contains heavy vector-like quarks and heavy SU(2) gauge multiplet 

$$\mathcal{L} = + \frac{g_{ij}}{2} Z'_{\mu} \bar{d}^{i}_{L} \gamma^{\mu} d^{j}_{L} - \frac{(VgV^{\dagger})_{ij}}{2} Z'_{\mu} \bar{u}^{i}_{L} \gamma^{\mu} u^{j}_{L} - \frac{(Vg)_{ij}}{\sqrt{2}} W'^{+}_{\mu} \bar{u}^{i}_{L} \gamma^{\mu} d^{j}_{L} + \text{H.c.},$$

$$g_{ij} \text{ basis is defined by the first term}$$

$$C^{q,W'}_{2}(M_{V}) = \frac{1}{4\sqrt{2}G_{F}M_{V}^{2}} \frac{(Vg)_{23}(Vg)^{*}_{1q}}{V_{cb}V^{*}_{uq}}.$$

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

- We consider an extended electroweak gauge group  $SU(2)_1 \times SU(2)_2 \times U(1)_V$  model,
- After integrating out the vector-like quarks, the following effective Lagrangian is generated [Boucenna, Celis, Fuentes-Martin, Vicente, Virto, 1608.01349]

![](_page_53_Picture_8.jpeg)

![](_page_53_Picture_9.jpeg)

#### Three scenarios

![](_page_54_Picture_1.jpeg)

Scenario1

Here, U(2) symmetry is imposed to avoid strong constraints from K- and D-meson mixings

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

$$\frac{j}{\sqrt{2}} Z'_{\mu} \bar{u}_{L}^{i} \gamma^{\mu} u_{L}^{j} - \frac{(Vg)_{ij}}{\sqrt{2}} W'^{+}_{\mu} \bar{u}_{L}^{i} \gamma^{\mu} d_{L}^{j} + \text{H.c.},$$

 $g_{ij} = \begin{pmatrix} g_{11} & 0 & 0 \\ 0 & g_{11} & 0 \\ 0 & 0 & g_{22} \end{pmatrix}, \quad g_{ij} = \begin{pmatrix} g_{11} & 0 & 0 \\ 0 & g_{11} & g_{23} \\ 0 & g_{22} & 0 \end{pmatrix}, \quad g_{ij} = \begin{pmatrix} g_{11} & 0 & 0 \\ 0 & g_{11} & g_{23} \\ 0 & g_{22} & g_{22} \end{pmatrix},$ 

Scenario2

Scenario3

![](_page_54_Picture_10.jpeg)

#### Scenario1

![](_page_55_Figure_1.jpeg)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

![](_page_55_Figure_3.jpeg)

Strong bounds comes from direct search by LHC

![](_page_55_Figure_5.jpeg)

#### We rescaled the widthdependent limit

![](_page_55_Figure_7.jpeg)

#### [CMS 1911.03947]

![](_page_55_Picture_10.jpeg)

![](_page_55_Picture_11.jpeg)

![](_page_56_Figure_1.jpeg)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

$$\frac{C_2^{NP}(\Lambda_{NP})}{C_2^{SM}} \sim \frac{g_{11} \times g_{23}}{4\sqrt{2}G_F M_V^2 V}$$

Enhancement by  $\frac{1}{V_{rel}} \sim 25$ 

 $g_{23}$  is saturated under the flavor constraints on this plane

![](_page_56_Picture_6.jpeg)

![](_page_56_Picture_7.jpeg)

![](_page_57_Figure_1.jpeg)

Recent Progress and Future Prospects in Flavor Anomalies **Teppei Kitahara** (ITP, CAS), PPP2023, YITP, Kyoto university, August 30, 2023, online talk

#### Scenario3

Contribution to  $\Delta M_s$  can be cancelled  $\Delta M_s^{W'} < 0, \ \Delta M_s^{Z'} > 0$ W-W' box Z' tree level

Then constraint from  $\Delta M_d$  is important!

 $\Delta M_d / \Delta M_s$  would give additional bound

 $C_2(NP)/C_2(SM) \sim -0.10$ 

would be possible

![](_page_57_Picture_10.jpeg)

![](_page_57_Picture_11.jpeg)

![](_page_57_Picture_12.jpeg)